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§1. Recollections on Grothendieck site
We denote by  the category of sets and maps.𝒮et
For a category , we call a functor  presheaf on .𝒞 𝒞op →𝒮et 𝒞

We call  the presheaf on  represented by .hX :𝒞op →𝒮et 𝒞 X

For an object  of , let  be a functor defined byX 𝒞 hX :𝒞op →𝒮et

for a morphism  in .f :U→V 𝒞
hX( f :U→V)=( f*:𝒞(V, X)→𝒞(U, X))

 for an object  of  andhX(U)=𝒞(U, X) U 𝒞

For a morphism  in , let  be a naturalφ :X→Y 𝒞 hφ :hX →hY
transformation defined by .(hφ)U =φ* :𝒞(U, X)→𝒞(U, Y)

Here,  denotes the set of morphisms in  from  to .𝒞(U, X) 𝒞 U X



Definition 1.1
Let  be a category.𝒞
( 1 ) A full subcategory  of  is called a sieve if it satisfies the𝒟 𝒞

following condition.
If  and  for some , then .U∈Ob𝒞 𝒞(U, V)≠∅ V∈Ob𝒟 U∈Ob𝒟
(2) For , sieves of  is called a sieve on .X∈Ob𝒞 𝒞/X X

for any object  of  and the inclusion map U 𝒞 iU :F(U)→G(U)
For set valued functors , if  is a subset of F, G :𝒞→𝒮et F(U) G(U)

defines a natural transformation , we call  a subfunctori :F→G F
of . If  is a subfunctor of , we denote this by .G F G F⊂G



For a sieve  is on ,  is a set of morphisms in  whoseR X Ob R 𝒞
targets are .X
If we put  for , then  is aR(Y)={f :Y→X | f∈Ob R} Y∈Ob𝒞 R
subfunctor of the presheaf  represented by .hX :𝒞op →𝒮et X
Namely,  gives a bijective correspondence between theR↦R(-)
set of sieves on  and the set of subfunctors of .X hX

Remark 1.2

Thus we identify a sieve on  with a subfunctor of .X hX

For a morphism  in a category , let us denote by  thef 𝒞 dom( f )
source of  and  the target of .f codom( f ) f



Definition 1.3

 is called a (Grothendieck) topology on . A categoryJ :X↦J(X) 𝒞

Let  be a category. For each , a set  of sieves on 𝒞 X∈Ob𝒞 J(X) X
is given. If the following conditions are satisfied, a correspondence

(T1) For any , .X∈Ob𝒞 hX ∈J(X)
(T2) For any ,  and morphism  of ,X∈Ob𝒞 R∈J(X) f :Y→X 𝒞

h−1
f (R)(Z)={g :Z→Y | fg∈R(Z)}

a subfunctor  of  defined below belongs to .h−1
f (R) hY J(Y)

(T3) A sieve  on  belongs to , if there exists S X J(X) R∈J(X)
such that  for any .h−1

f (S)∈J(dom( f )) f∈Ob R

 with a topology  is called a site which we denote by .𝒞 J (𝒞, J)



Proposition 1.4
Consider the following conditions on .J

(T3') A sieve  on  belongs to , if there exists S X J(X) R∈J(X)
such that  is a subfunctor of  and S R h−1

f (S)∈J(dom( f ))
for . f∈Ob R

(T4) A sieve  on  belongs to  if it has a subfunctorS X J(X)
which belongs to .J(X)

(T5) Suppose that  and that  is givenR∈J(X) Rf ∈J(dom( f ))
for each . Then, .f∈Ob R {fg | f∈Ob R, g∈Ob Rf}∈J(X)

(1) (T2) and (T3) imply (T4). (T1) and (T3) imply (T5).
(2) (T4) and (T5) imply (T3). (T3') and (T4) imply (T3).



Proposition 1.5
If , then .R, S∈J(X) R∩S∈J(X)

Definition 1.6

 a subfunctor of  defined by .G∩H F (G∩H)(X)=G(X)∩H(X)
For subfunctors  and  of a presheaf  on , let us denote byG H F 𝒞

Let ,  be topologies on . If  for any ,J J′￼ 𝒞 J(X)⊂J′￼(X) X∈Ob 𝒞
 is said to be finer than , or  be coarser than . J′￼ J J J′￼

Hence the set of all topologies on  is an ordered set.𝒞



Let  be a family of topologies on . We set (Ji)i∈I 𝒞 J(X)= Ji(X)
for each , then  is a topology on  and .X∈Ob 𝒞 J 𝒞 J=inf{Ji | i∈ I}
If  is the set of all topologies on  that are finer than every ,T 𝒞 Ji
then .sup{Ji | i∈ I}= inf T
A topology  on  given by  isJ 𝒞 J(X)=(the set of all sieves on X)
the finest topology on . On the other hand, a topology  given𝒞 J
by  is the coarsest topology.J(X)={hX}

⋂
i∈I



Proposition 1.7
For a set  of morphisms in  with target , we putR 𝒞 X

that ,  and .f∈R g∈Mor 𝒞 codom(g)=dom( f )

.R̄= Im(hf :hdom( f ) →hX)
In other words,  is the set of all morphisms of the form  suchR̄ fg

Then,  is the smallest sieve containing .R̄ R

Definition 1.8
Let  be a site.(𝒞, J)
(1) For a set  of morphisms in  with target , we call  theR 𝒞 X R̄

sieve generated by .R
(2) A family of morphisms  is called a covering of ( fi :Xi →X)i∈I X

if the sieve generated by  's belongs to . fi J(X)

⋃
f ∈R



We call  the topology generated by .JP P

Let  be a category. Suppose that, for each object , a set 𝒞 X P(X)

there is the coarsest topology  on  such that for each objectJP 𝒞
, every element of  is a covering. In fact,  is theX P(X) JP

intersection of all topologies satisfying the above condition.

of families of morphisms of  with target  is given. Then,𝒞 X



Let  be a category. For each , a set  of families𝒞 X∈Ob𝒞 P(X)
Definition 1.9

of morphisms of  with target  is given. If the following𝒞 X

(P1) For any , .X∈Ob𝒞 {idX}∈P(X)
(P2) If , then for any morphism ( fi :Xi →X)i∈I ∈P(X) f :Y→X

in , there exists  such that for𝒞 (gj :Yj →Y)j∈I′￼
∈P(Y)

each ,  factors through some .j∈ I′￼ fgj fi
(P3) If  and  for( fi :Xi →X)i∈I ∈P(X) (gij :Xij →Xi)j∈Ii

∈P(Xi)
each  are given, then ,i∈ I ( figij :Xij →X)(i,j)∈K ∈P(X)
where .K={(i, j) | i∈ I, j∈ Ii}

conditions (P1), (P2) and (P3) are satisfied, the correspondence
 is called a basis for a (Grothendieck) topology on .P :X↦P(X) 𝒞



Let  be a category and  a topology on . For each ,𝒞 J 𝒞 X∈Ob𝒞
let  be the set of all coverings of . Then  is a basis for aP(X) X P

Proposition 1.10

topology.

Proposition 1.11
(1) Let  be a basis for a topology on  and  the topologyP 𝒞 JP

generated by . Then, we haveP

(2) For a topology  on , let  be as in (1.10). Then the topologyJ 𝒞 P
.JP(X)={R⊂hX | R⊃S for some S∈P(X)}

generated by  coincides with .P J



Let  be a family of morphisms in .S=( fi :Xi →X)i∈I 𝒞
For each , we regard  as an element of .i∈ I fi S̄(Xi)
For a presheaf  on , define a map  byF 𝒞 Φ :𝒞̂(S̄, F)→ F(Xi)

. Then,  is injective and its image consists ofΦ(φ)=(φXi
( fi))i∈I Φ

Proposition 1.12

“If  for  and , then .”fiu= fjv u :Z→Xi v :Z→Xj F(u)(xi)=F(v)(xj)

and any object  of .Z 𝒞
families  which satisfy the following condition for any (xi)i∈I i, j∈ I

∏
i∈I

We denote by  the category of presheaves on  below.𝒞̂ 𝒞



§2. Plots on a set
Definition 2.1
Let  be a category and  a functor.𝒞 F :𝒞→𝒮et
For a set , we define a presheaf  on  to be a compositionX FX 𝒞

Here we denote by  a functor defined byFop :𝒞op →𝒮etop

 for  and  for .Fop(U)=F(U) U∈Ob𝒞 Fop( f )=F( f ) f∈Mor 𝒞

.𝒞op 𝒮etop 𝒮etFop hX

An element of         is called an -parametrization of .FX(U) F X∐
U∈Ob𝒞

We note that  is given by  for FX FX(U)=𝒮et(F(U), X) U∈Ob𝒞
and  for  and .FX( f )(α)=αF( f ) ( f :U→V)∈Mor 𝒞 α∈FX(V)



Definition 2.2
Let  be a site,  a set and  a functor.(𝒞, J) X F :𝒞→𝒮et
Assume that  has a terminal object  and that  consists𝒞 1𝒞 F(1𝒞)
of a single element. If a subset  of         satisfies the𝒟 FX(U)∐

U∈Ob𝒞
following conditions, we call  a the-ology on .𝒟 X

 (i) 𝒟⊃FX(1𝒞)
 For a morphism  in , the map (ii) f :U→V 𝒞 FX( f ) :FX(V)→FX(U)
induced by  maps  into .f 𝒟∩FX(V) 𝒟∩FX(U)
 For an object  of , an element  of  belongs to(iii) U 𝒞 x FX(U)

 if there exists a covering  such that𝒟∩FX(U) ( fi :Ui →U)i∈I
 maps  into  for any .FX( fi) :FX(U)→FX(Ui) x 𝒟∩FX(Ui) i∈ I



We call a pair  a the-ological object and call an element of(X, 𝒟)
 an -plot of .𝒟 F (X, 𝒟)

For a map  and a functor , we define aφ :X→Y F :𝒞→𝒮et
morphism  of presheaves byFφ :FX →FY

.(Fφ)U =φ* :FX(U)=𝒮et(F(U), X)→𝒮et(F(U), Y)=FY(U)

 For an object  of , an element  of  belongs to(iii′￼) U 𝒞 x FX(U)
 if there exists  such that𝒟∩FX(U) R∈J(U)

 maps  into FX( f ) :FX(U)→FX(dom( f )) x 𝒟∩FX(dom( f ))

Condition  is of (2.2) is equivalent to the following condition if(iii)
we assume condition . (ii)

for any .f∈R

Proposition 2.3



Let  be a site,  a set and  a functor.(𝒞, J) X F :𝒞→𝒮et
(1) Let  and  be the-ological objects.(X, 𝒟) (Y, ℰ)

If the map  induced by a map (Fφ)U :FX(U)→FY(U) φ :X→Y

We denote this by . φ : (X, 𝒟)→ (Y, ℰ)

maps  into  for each ,𝒟∩FX(U) ℰ∩FY(U) U∈Ob𝒞
we call  a morphism of - -ological objects.φ F (𝒞, J)

(2) We define a category  of the-ological objects as𝒫F(𝒞, J)

and morphisms of  are morphism of the-ological 𝒫F(𝒞, J)
follows. Objects of  are the-ological objects𝒫F(𝒞, J)

objects. 

Definition 2.4



Let  be a morphism of the-ological objects.φ : (X, 𝒟)→ (Y, ℰ)
It follows from the definition of a morphism of the-ological
objects that  defines a map(Fφ)U :FX(U)→FY(U)

 which is natural in . Thus we(Fφ)U :F𝒟(U)→Fℰ(U) U∈Ob𝒞
have a morphism  of presheaves.Fφ :F𝒟 →Fℰ

For the-ologies  and  on , we say that  is finer than 𝒟 ℰ X 𝒟 ℰ
and that  is coarser than  if .ℰ 𝒟 𝒟⊂ℰ

For a the-ological object  and , we put(X, 𝒟) U∈Ob𝒞
. Then  defines a presheaf  on .F𝒟(U)=𝒟∩FX(U) U↦F𝒟(U) F𝒟 ℰ

Remark 2.5

Definition 2.6



Let  be a family of the-ologies on a set . Then,     is a(𝒟i)i∈I X 𝒟i

the-ology on  that is the finest the-ology among the-ologies onX
⋂
i∈I

 which are coarser than  for any .X 𝒟i i∈ I

Proposition 2.8

We put . It is clear that  is the𝒟coarse, X = FX(U) 𝒟coarse, X

coarsest the-ology on . For a map  and a the-ology X f :Y→X ℰ
on ,  is a morphism of the-ologies.Y f : (Y, ℰ)→ (X, 𝒟coarse, X)

Remark 2.7
∐

U∈Ob𝒞



For a set , we denote by  a subcategory of X 𝒫F(𝒞, J)X 𝒫F(𝒞, J)
consisting of objects of the form  and morphisms of the(X, 𝒟)

 is complete as an ordered set.𝒫F(𝒞, J)X

object of .𝒫F(𝒞, J)X

form . Then,  is regarded as anidX : (X, 𝒟)→ (X, ℰ) 𝒫F(𝒞, J)X

It follows from (2.7) that  is the maximum (terminal) (X, 𝒟coarse, X)

Corollary 2.9

ordered set of the-ologies on .X
We often denote by  an object  of  for short.𝒟 (X, 𝒟) 𝒫F(𝒞, J)X



.FX(g)(x)∈ 𝒮f for all g∈R.}
If we put  and ,𝒢(𝒮)= 𝒮(U) Σ={𝒟∈𝒫F(𝒞, J)X | 𝒟⊃𝒮}

Let  be a subset of         which contains .𝒮 FX(U) FX(1𝒞)∐
U∈Ob𝒞

For , define a subset  of  byf∈Mor𝒞 𝒮f FX(dom( f ))
.𝒮f =FX( f )(𝒮 ∩ FX(codom( f )))

For , we define a subset  of  byU∈Ob𝒞 𝒮(U) FX(U)

𝒮(U)={x∈FX(U) There exists R∈J(U) such that
⋃

f ∈Mor𝒞

∐
U∈Ob 𝒞

then we have . 𝒢(𝒮)=inf Σ∈𝒫F(𝒞, J)X

Proposition 2.10



FX(gi)(x)∈ 𝒮f for all i∈ I.}

FX(gi)(x)∈ 𝒟 for all i∈ I.}

coincides with the following set.

{x∈FX(U) There exists a covering (Ui
gi U)i∈I such that

⋃
f ∈Mor𝒞

(2) Let  be a non-empty subset of  and putΣ 𝒫F(𝒞, J)X
. Then  coincides with the following set.𝒮(Σ)= 𝒟 𝒮(Σ)(U)⋃

𝒟∈Σ

⋃
𝒟∈Σ

{x∈FX(U) There exists a covering (Ui
gi U)i∈I such that

Hence  holds.sup Σ=𝒢(𝒮(Σ))= 𝒮(Σ)(U)⋃
U∈ 𝒞

Remark 2.11
(1) For , the subset  of  defined in (2.10)U∈Ob𝒞 𝒮(U) FX(U)



For a subset  of        containing , we call 𝒮 FX(U) FX(1𝒞) 𝒢(𝒮)∐
U∈Ob𝒞

Let  be a site and  a set. We put (𝒞, J) X 𝒟disc, X = 𝒟⋂
𝒟∈Ob𝒫F(𝒞,J)X

For any map  and a the-ology  on ,f :X→Y ℰ Y
 is a morphism of the-ologies.f : (X, 𝒟disc, X)→ (Y, ℰ)

Definition 2.12

defined in (2.10) the the-ology generated by .𝒮

Definition 2.13

Remark 2.14

and call this the discrete the-ology on .  is the finestX 𝒟disc, X
the-ology on . X



 . Thus 𝒮const = (𝒮const)f 𝒟disc, X∩FX(U)=𝒟(𝒮const)∩FX(U)

(1) Since ,  contains the image of the map𝒟disc, X ⊃FX(1𝒞) 𝒟disc, X
 induced by the unique map FX(oU) :FX(1𝒞)→FX(U) oU :U→1𝒞

for any . Hence every constant map in  belongsU∈Ob𝒞 FX(U)

(2) Let  be the set of all constant maps in        . Then𝒮const FX(U)∐
U∈Ob 𝒞

⋃
f ∈Mor 𝒞

coincides with the following set.

to .𝒟disc, X

{x∈FX(U) | There exists a covering (Ui
gi U)i∈I such that

FX(gi)(x) is a contant map for all i∈ I.}

Remark 2.15



§3. Category of plotsF-
For a map  and , we define anf :X→Y (Y, ℰ)∈Ob 𝒫F(𝒞, J)

Proposition 3.1
For         f :X→Y (Y, ℰ)∈Ob 𝒫𝒞  ℰf

ℰf = (Ff)−1(ℰ∩FY(U))= {φ∈FX(U) | fφ∈ℰ∩FY(U)}∐
U∈Ob𝒞

∐
U∈Ob𝒞

Let  a family of the-ologies on a set , For a map(ℰi)i∈I Y
Proposition 3.2

,  holds.f :X→Y ( ℰi)f = ℰf
i⋂

i∈I
⋂
i∈I

the-ology  on  to be the coarsest the-ology such thatℰf X
 is a morphism of the-ologies.f : (X, ℰf)→ (Y, ℰ)



We define a forgetful functor  by Γ :𝒫F(𝒞, J)→𝒮et Γ(X, 𝒟)=X
for  and (X, 𝒟)∈Ob𝒫F(𝒞, J) Γ(φ : (X, 𝒟)→ (Y, ℰ))=(φ :X→Y)
for a morphism  in .φ : (X, 𝒟)→ (Y, ℰ) 𝒫F(𝒞, J)

for a map  and ,f :X→Y (X, 𝒟), (Y, ℰ)∈Ob 𝒫F(𝒞, J)

 is not empty if and only if 𝒫F(𝒞, J)f((X, 𝒟), (Y, ℰ)) 𝒟⊂ℰf

which is equivalent that  is not empty.𝒫F(𝒞, J)X((X, 𝒟), (X, ℰf))

It is clear that  is faithful. In other words, if we putΓ

 has at most one element. 𝒫F(𝒞, J)f((X, 𝒟), (Y, ℰ))

𝒫F(𝒞, J)f((X, 𝒟), (Y, ℰ))=Γ−1( f )∩𝒫F(𝒞, J)((X, 𝒟), (Y, ℰ))



Proposition 3.3
For maps ,  and an object  of ,f :X→Y g :W→X (Y, ℰ) 𝒫F(𝒞, J)Y

      fi ℰfg =(ℰf)g Γ :𝒫𝒞 𝒮

In         f : (X, ℰf)→ (Y, ℰ)
 whose target is . Hence the inverse image functorf :X→Y (Y, ℰ)

associated with  is given by  and f f*(Y, ℰ)=(X, ℰf)
f*:𝒫F(𝒞, J)Y →𝒫F(𝒞, J)X

.f*(idY : (Y, ℰ)→ (Y, 𝒢))=(idX : (X, ℰf)→ (X, 𝒢f))

It is clear that  holds, which implies .ℰfg =(ℰf)g ( fg)*=g* f*



For a map  and , we define af :X→Y (X, 𝒟)∈Ob 𝒫F(𝒞, J)
the-ology  on  to be the finest the-ology such that𝒟f Y

 is a morphism of the-ologies, that is,f : (X, 𝒟)→ (Y, 𝒟f)
, 𝒟  ⋂

ℰ∈Σ

.Σ={ℰ∈Ob 𝒫F(𝒞, J)Y | ℰ⊃ (Ff)U(𝒟∩FX(U))}∐
U∈Ob𝒞



If      𝒢𝒮 𝒮 𝒟 𝒢𝒮

Remark 3.4
For , the subset  of  defined in (2.9) is theU∈Ob𝒞 𝒮(U) FX(U)
set of elements  of  which satisfy the following conditionx FX(U)
(  ) if  is surjective.f :X→Y*

∐
U∈Ob𝒞

(  ) There exists  such that, for each , there existsR∈J(U) h∈R
 which satisfies .y∈𝒟∩FX(dom(h)) FY(h)(x)=(Ff)dom(h)(y)

*



Proposition 3.5
   fi Γ :𝒫𝒞 𝒮

For a map , define a functor  asf :X→Y f* :𝒫F(𝒞, J)X →𝒫F(𝒞, J)Y

follows. For , we put .(X, 𝒟)∈Ob𝒫F(𝒞, J)X f*(X, 𝒟)=(Y, 𝒟f)
If  satisfies , then (X, 𝒟), (X, 𝒟′￼)∈Ob𝒫F(𝒞, J)X 𝒟⊂𝒟′￼ 𝒟f ⊂𝒟′￼f
holds. Hence, for a morphism  in ,idX : (X, 𝒟)→ (X, 𝒟′￼) 𝒫F(𝒞, J)X

we put .f*(idX : (X, 𝒟)→ (X, 𝒟′￼))=(idY : (Y, 𝒟f)→ (Y, 𝒟′￼f))
It can be verified that  is not empty𝒫F(𝒞, J)Y( f*(X, 𝒟), (Y, ℰ))
if and only if  is not empty.𝒫F(𝒞, J)Y((X, 𝒟), f*(Y, ℰ))
This shows that  is a left adjoint of .f* f*



Let  be a prefibered category. If  has an initialp :ℱ→𝒞 ℱX
object for any object  of , then  has a left adjoint.X 𝒞 p

Proposition 3.6

Let  be a bifibered category. If  has a terminalp :ℱ→𝒞 ℱX
object for any object  of , then  has a right adjoint.X 𝒞 p

Corollary 3.7

 has left and right adjoints.Γ :𝒫F(𝒞, J)→𝒮et
Corollary 3.8



.𝒟 
If we put , then𝒮I ={ℰ∈Ob 𝒫F(𝒞, J)∐

j∈I
Xj

ℰ⊃ (𝒟j)ιj}

Put . Then,  is the finest the-ology such that𝒟I = 𝒟pri
i 𝒟I

Let  be the coarsest the-ology on      such that𝒟I Xj

⋂
j∈I

∏
j∈I

 is a morphism in  for any .pri :( Xj, 𝒟I)→ (Xi, 𝒟i) 𝒫F(𝒞, J) i∈ I

∐
j∈I

 is a morphism in  for any .ιi : (Xi, 𝒟i)→( Xj, 𝒟I) 𝒫F(𝒞, J) i∈ I

⋃
j∈I

⋂
ℰ∈𝒮I

and  the inclusion to the -th summand.ιi :Xi → Xj i

We denote by  the projection to the -th componentpri : Xj →Xi i
Let  be a family of objects of .{(Xi, 𝒟i)}i∈I 𝒫F(𝒞, J)

∏
j∈I

∐
j∈I

∐
j∈I



(1)      (( Xj, 𝒟   𝒟 {(Xi, 𝒟

(2)  is a coproduct of .((Xi, 𝒟i)
ιi ( Xj, 𝒟I))i∈I {(Xi, 𝒟i)}i∈I

Proposition 3.9
∏
j∈I

∐
j∈I

Let  be morphisms in . Then, f, g : (X, 𝒟)→ (Y, ℰ) 𝒫F(𝒞, J)
equalizers and coequalizers of  and  exist. f g

Proposition 3.10

In               Z i X f g
then  is an equalizer of  and  in .(Z, 𝒟i) i (X, 𝒟) f g 𝒫F(𝒞, J)
If  is a coequalizer of  and  in the category of sets,Y q W f g
then  is a coequalizer of  and  in .(Y, ℰ) q (W, ℰq) f g 𝒫F(𝒞, J)



§4. Fibered category of morphisms
For a category , let  be the category of morphisms in 𝒞 𝒞(2) 𝒞
defined as follows. 

 is a pair  of morphisms in F=(F ρ Y) ⟨ξ :E→F, f :X→Y⟩ 𝒞
which satisfies .ρξ= fπ
The composition of morphisms  and  is⟨ξ, f⟩ :E→F ⟨ζ, g⟩ :F→G
defined to be .⟨ζξ, gf⟩ :E→G

                                     X Y X Y Z

                                    E F E F Gξ

f
π ρ

ζ

χ
g

ξ

ρπ
f

Put  and a morphism from  toOb𝒞(2) =Mor 𝒞 E=(E π X)



Define a functor  by  and .℘ :𝒞(2) →𝒞 ℘(E π X)=X ℘(⟨ξ, f⟩)= f
For an object  of , we denote by  a subcategory of X 𝒞 𝒞(2)

X 𝒞(2)

given as follows.

Mor 𝒞(2)
X ={ξ∈Mor 𝒞(2) | ℘(ξ)= idX}

We mention that  is often denoted by  in literatures.𝒞(2)
X 𝒞/X

For a morphism  in , an object  of  and an objectf :X→Y 𝒞 E 𝒞(2)
X

 of , we denote by  the set of all morphismsF 𝒞(2)
Y 𝒞(2)

f (E, F)
 in  such that .ξ :E→F 𝒞(2) ℘(ξ)= f

Ob𝒞(2)
X ={E∈Ob 𝒞(2) | ℘(E)=X}



If  has finite limits,  is a fibered category as we𝒞 ℘ :𝒞(2) →𝒞
explain below.
For a morphism  in  and an object  of ,f :X→Y 𝒞 F=(F ρ Y) 𝒞(2)

Y
consider the following cartesian square in .𝒞

           X Yf
ρ

fρ
ρf

Proposition 4.1
 is a cartesian morphism, that is, for any object  of αf(F) G 𝒞(2)

X
the map  defined byαf(F)* :𝒞(2)

X (G, f*(F))→𝒞(2)
f (G, F)

 is bijective.αf(F)*(ξ)=αf(F)ξ

        F×Y X F

We put  and .f*(F)=(F×Y X
ρf X) αf(F)=⟨ fρ, f⟩ : f*(F)→F



For objects ,  of  and a morphism  in , letE F 𝒞(2)
Y φ :E→F 𝒞(2)

Y
 be the unique morphism in  that isf*(φ) : f*(E)→ f*(F) 𝒞(2)

X

mapped to a composition  by the bijectionf*(E)
αf(E)

E φ F

given in (4.1). Thus we have the inverse image functor

αf(F)* :𝒞(2)
X ( f*(E), f*(F))→𝒞(2)

f ( f*(E), F)

associated with a morphism  in . It follows from thef :X→Y 𝒞
definition of  that the bijection in (4.1) is natural in .f* F

f*:𝒞(2)
Y →𝒞(2)

X



For morphisms ,  in  and an object  of ,f :X→Y g :Z→X 𝒞 E 𝒞(2)
Y

let  be the unique morphism in cf,g(E) :g*( f*(E))→ ( fg)*(E) 𝒞(2)
Z

that is mapped to a composition g*( f*(E))
αg( f*(E))

f*(E)
αf(E)

E
by the following bijection given in (4.1).

αfg(E)* :𝒞(2)
Z (g*( f*(E)), ( fg)*(E))→𝒞(2)

fg (g*( f*(E)), E)

Proposition 4.2
 is an isomorphism in . Hence  is a fibered cf,g(E) 𝒞(2)

Z ℘ :𝒞(2) →𝒞
category.



For a morphism  in , define a functor  byf :X→Y 𝒞 f* :𝒞(2)
X →𝒞(2)

Y
 and  for anf*(E)=(E fρ Y) f*(⟨ξ, idX⟩)=⟨ξ, idY⟩ : f*(E)→ f*(F)

object  of  and a morphism  in .E=(E ρ X) 𝒞(2)
X ⟨ξ, idX⟩:E→F 𝒞(2)

X
Proposition 4.3

 is a left adjoint of .f* :𝒞(2)
X →𝒞(2)

Y f*:𝒞(2)
Y →𝒞(2)

X
Hence  is a bifibered category.℘ :𝒞(2) →𝒞

For an object  of  and an object  of , we define a mapE 𝒞(2)
X F 𝒞(2)

Y
 by , whichΦE,F :𝒞(2)

f (E, F)→𝒞(2)
Y ( f*(E), F) ΦE,F(⟨ξ, f⟩)=⟨ξ, idY⟩

is a natural bijection. It follows from (4.1) that we have a natural

bijection .ΦE,F αf(F)* :𝒞(2)
X (E, f*(F))→𝒞(2)

Y ( f*(E), F)



§5. Locally cartesian closedness
 is complete and cocomplete by (3.9) and (3.10), in𝒫F(𝒞, J)

particular  has finite limits.𝒫F(𝒞, J)
Hence we can consider the fibered category

of morphisms in  by (4.2).𝒫F(𝒞, J)
It follows from (4.3) that the inverse image functors of this
fibered category have left adjoints.

℘ :𝒫F(𝒞, J)(2) →𝒫F(𝒞, J)

We show that the inverse image functors also have right adjoints
below.



Let  be a morphism in  andφ : (X, 𝒟)→ (Y, ℱ) 𝒫F(𝒞, J)
 an object of .E=((E, ℰ) π (X, 𝒟)) 𝒫F(𝒞, J)(2)

For , we denote by  the inclusion map andy∈Y ιy :φ−1(y)→X
consider a the-ology  on .𝒟ιy φ−1(y)

We define a subset  of  byE(φ; y) 𝒫F(𝒞, J)((φ−1(y), 𝒟ιy), (E, ℰ))
E(φ; y)={α∈𝒫F(𝒞, J)((φ−1(y), 𝒟ιy), (E, ℰ)) | πα= ιy}

if  and  if .φ−1(y)≠∅ E(φ; y)=∅ φ−1(y)=∅

∐
y∈Y

Put  and define map  by E(φ)= E(φ; y) φ!E :E(φ)→Y φ!E(α)=y
if . Note that the image of  coincides with theα∈E(φ; y) φ!E
image of .φ



We consider the following cartesian square (  ) in .𝒮et*

(  )
                  X Y

φ̃E

φ̃!E φ!E
φ*

and  for .x∈φ−1(y) y∈Y
Then,  makes the following diagram commute.εφ

E εφ
E

π

X

          E(φ) ×Y X E(φ)

          E(φ) ×Y X E

φ̃!E

Define a map  by  if εφ
E :E(φ) ×Y X→E εφ

E(α, x)=α(x) α∈E(φ; y)



and  hold.𝒟φ̃!E ∩ℒφ̃E ⊂ℰεφ
E

Note that  if and only if  andℒ∈ΣE,φ φ!E : (E(φ), ℒ)→ (Y, ℱ)

 is not empty.ΣE,φ

Proposition 5.1

In fact, the discrete the-ology  on  belongs to .𝒟disc, E(φ) E(φ) ΣE,φ

 are morphisms in .εφ
E : (E(φ) ×Y X, 𝒟φ̃!E ∩ℒφ̃E)→ (E, ℰ) 𝒫F(𝒞, J)

Let  the set of all the-ologies  on  such that ΣE,φ ℒ E(φ) ℒ⊂ℱφ!E



For , we consider the following condition (LE) on anU∈Ob 𝒞
element  of .γ FE(φ)(U)

(LE) If , ,  and V, W∈Ob 𝒞 f∈𝒞(W, U) g∈𝒞(W, V) ψ∈𝒟∩FX(V)
satisfy , a compositionφψF(g)=φ!EγF( f )

belongs to  and a composition ℰ∩FE(W) F(U) γ E(φ) φ!E Y
belongs to .ℱ∩FY(U)

Define a set  of -parametrizations of a set  so that𝒟E,φ F E(φ)
 is a subset of  consisting of elements𝒟E,φ∩FE(φ)(U) FE(φ)(U)

which satisfy the above condition (LE) for any .U∈Ob 𝒞

F(W) (γF( f ), ψF(g)) E(φ) ×Y X
εφ

E E



Proposition 5.2

Proposition 5.3
     𝒟 ΣE,φ

Let ,  be objects ofE=((E, ℰ) π (X, 𝒟)) G=((G, 𝒢) ρ (X, 𝒟))
 and  a morphism in .𝒫F(𝒞, J)(2)

(X,𝒟) φ : (X, 𝒟)→ (Y, ℱ) 𝒫F(𝒞, J)
Let  be a morphism in .⟨ξ, idX⟩ :E→G 𝒫F(𝒞, J)(2)

(X,𝒟)
If  for , we have , hence .α∈E(φ; y) y∈Y ρξα=πα= ιy ξα∈G(φ; y)
Thus we can define a map  by .ξφ :E(φ)→G(φ) φ(ξ)(α)=ξα

     𝒟 E(φ)



We consider the following diagram whose outer trapezoid and
lower rectangle are cartesian. 

Since the right triangle of the above diagram is commutative, 

makes the above diagram commutative.
there exists unique map  thatξφ×YidX :E(φ) ×Y X→G(φ) ×Y X

                  X Y

         G(φ)×Y X G(φ)

                              E(φ)×Y X E(φ)φ̃E

φ̃!E

ξφ×YidX
ξφ

φ!E

φ̃G

φ̃!G φ!G
φ



Proposition 5.4
 is a morphism in  andξφ : (E(φ), 𝒟E,φ)→ (G(φ), 𝒟G,φ) 𝒫F(𝒞, J)

the following diagram is commutative.

               E(φ) ×Y X E

               G(φ) ×Y X G
εφ

G

ξ

εφ
E

ξφ×YidX



,  be morphisms in .⟨ξ, idX⟩ :E→G ⟨ζ, idX⟩ :G→H 𝒫F(𝒞, J)(2)
(X,𝒟)

For a morphism , it follows from the definitionφ : (X, 𝒟)→ (Y, ℱ)
of  that  coincides with a compositionξφ (ζξ)φ :E(φ)→H(φ)

.E(φ)
ξφ G(φ)

ζφ H(φ)
We also note that  coincides with the identity map of .(idE)φ E(φ)

Let , ,E=((E, ℰ) π (X, 𝒟)) G=((G, 𝒢) ρ (X, 𝒟))
 be objects of  andH = ((X, ℋ) χ (X, 𝒟)) 𝒫F(𝒞, J)(2)

(X,𝒟)

Remark 5.5



We define a functor  by puttingφ! :𝒫F(𝒞, J)(2)
(X,𝒟) →𝒫F(𝒞, J)(2)

(Y,ℰ)

for an object  of  and E=((E, ℰ) π (X, 𝒟)) 𝒫F(𝒞, J)(2)
(X,𝒟)

φ!(E)=((E(φ), 𝒟E,φ) φ!E (Y, ℱ))

φ!(⟨ξ, idX⟩)=⟨ξφ, idY⟩ :φ!(E)→φ!(G)
for a morphism  in .⟨ξ, idX⟩ :E→G 𝒫F(𝒞, J)(2)

(X,𝒟)

It follows from (5.3) and (5.4) that we have a natural
transformation  defined by εφ :φ*φ! → id𝒫F(𝒞,J)(2)

(X,𝒟)

.⟶ ((E, ℰ) π (X, 𝒟))
εφ

E =⟨εφ
E , idX⟩ :((E(φ) ×Y X, 𝒟φ̃E

E,φ∩𝒟φ̃!E) φ̃!E (X, 𝒟))



                 (X, 𝒟) (Y, ℱ)

For an object  of , we considerG=((G, 𝒢) ρ (Y, ℱ)) 𝒫F(𝒞, J)(2)
(Y,ℱ)

the following cartesian square in .𝒫F(𝒞, J)

φ
ρ

φρ

ρφ

We note that, for ,  is a subset ofy∈Y (X ×Y G)(φ; y)

satisfies .λ(φ−1(y))⊂ρ−1(y)

          (G ×Y X, 𝒢φρ∩𝒟ρφ) (G, 𝒢)

Then, we have .φ*(G)=(G ×Y X, 𝒢φρ∩𝒟ρφ)
ρφ (X, 𝒟))

𝒫F(𝒞, J)((φ−1(y), 𝒟ιy), (G ×Y X, 𝒢φρ∩𝒟ρφ))
consisting of elements of the form  such that (λ, ιy) λ :φ−1(y)→G



For , let us denote by  the constant mapv∈G cv :φ−1(ρ(v))→G
whose image is . Then we have {v} cv(φ−1(ρ(v)))={v}⊂ρ−1(ρ(v))

Then,  makes the following diagram commute.ηφ
G

Y

ηφ
G

φ!φ*(G)ρ

Proposition 5.6

which implies .(cv, ιρ(v))∈ (G ×Y X)(φ)
Define a map  by .ηφ

G :G→ (G ×Y X)(φ) ηφ
G(v)=(cv, ιρ(v))

     ηφ
G : (G, 𝒢    𝒟 𝒫𝒞

           G (G ×Y X)(φ)



            (X, 𝒟) (Y, ℱ)

            (X, 𝒟) (Y, ℱ)

For objects ,  ofE=((E, ℰ) π (Y, ℱ)) G=((G, 𝒢) ρ (Y, ℱ))
 and a morphism  in ,𝒫F(𝒞, J)(2)

(Y,ℱ) φ : (X, 𝒟)→ (Y, ℱ) 𝒫F(𝒞, J)
we consider the following cartesian squares in .𝒫F(𝒞, J)

φ
π

φπ

πφ

φ
ρ

φρ

ρφ

     (E ×Y X, ℰφπ∩𝒟πφ) (E, ℰ)

     (G×Y X, 𝒢φρ∩𝒟ρφ) (G, 𝒢)



Let  be a morphism in .⟨ζ, idY⟩ :E→G 𝒫F(𝒞, J)(2)
(Y,ℱ)

Since  holds, there exists unique morphismρζ=π

in  that makes the following diagram commutative.𝒫F(𝒞, J)

          X Yφ
ρ

φρ

ρφ
πφ π

φπ

ζ

The following result is easily verified from the definitions of ,ηφ
E

ζ×YidX : (E ×Y X, ℰφπ∩𝒟πφ)→ (G ×Y X, 𝒢φρ∩𝒟ρφ)

                               E ×Y X E

       G ×Y X G
ζ×YidX

  ηφ
G (ζ×YidX)φ



For a morphism ⟨ζ, idY⟩ : ((E, ℰ) π (Y, ℱ))→ ((G, 𝒢) ρ (Y, ℱ))
in , the following diagram is commutative.𝒫F(𝒞, J)(2)

(Y,ℱ)

Proposition 5.7

It follows from (5.6) and (5.7) that we have a natural
transformation  defined byηφ : id𝒫F(𝒞,J)(2)

(Y,ℱ)
→φ!φ*

for an object  of .G=((G, 𝒢) ρ (Y, ℱ)) 𝒫F(𝒞, J)(2)
(Y,ℱ)

          G (G ×Y X)(φ)

          E (E ×Y X)(φ)
ηφ

E

ηφ
G

ζ (ζ×YidX)φ

ηφ
G =⟨ηφ

G, idY⟩ : ((G, 𝒢) ρ (Y, ℱ))→ ((G ×Y X)(φ)
φ!φ*(G) (Y, ℱ))



Consider the following diagram, where the outer trapezoid and
the lower rectangle are cartesian.

Since the right triangle of the above diagram is commutative,
there exists unique map

that makes the above diagram commute.

                        X Y

         (G×Y X)(φ)×Y X (G×Y X)(φ)

                                                           G ×Y X G
φρ

ρφ

ηφ
G×YidX

ηφ
G

ρ

φφ!φ*(G)

φ̃!φ*(G) φ!φ*(G)
φ

ηφ
G×YidX :G×Y X → (G×Y X)(φ)×Y X



Lemma 5.8
For objects ,  ofE=((E, ℰ) π (Y, ℱ)) G=((G, 𝒢) ρ (Y, ℱ))

 and a morphism  in ,𝒫F(𝒞, J)(2)
(Y,ℱ) φ : (X, 𝒟)→ (Y, ℱ) 𝒫F(𝒞, J)

the following compositions are both identity maps. 

                  E(φ) (E(φ)×Y X)(φ) E(φ)
ηφ

φ!(E) (εφ
E)φ

εφ
φ*(G)                      G×Y X (G×Y X)(φ)×Y X G×Y X

ηφ
G×YidX



 is a right adjoint of the inverseφ! :𝒫F(𝒞, J)(2)
(X,𝒟) →𝒫F(𝒞, J)(2)

(Y,ℰ)

For an object  of  and anG=((G, 𝒢) ρ (Y, ℱ)) 𝒫F(𝒞, J)(2)
(Y,ℱ)

object  of , since compositionsE=((E, ℰ) π (X, 𝒟)) 𝒫F(𝒞, J)(2)
(X,𝒟)

are both identity morphisms by (5.8), we have the following result.

Hence  is locally cartesian closed.𝒫F(𝒞, J)
image functor .φ*:𝒫F(𝒞, J)(2)

(Y,𝒟) →𝒫F(𝒞, J)(2)
(X,ℰ)

Proposition 5.9

                   ,φ!(E) φ!φ*φ!(E) φ!(E)
ηφ

φ!(E) φ!(εφ
E)

                   φ*(G) φ*φ!φ*(G) φ*(G)
φ*(ηφ

G) εφ
φ*(G)



given  E × F=ρ*ρ*(E)

Remark 5.10 ([10], Proposition A.16.22)
Let ,  andE=((Y, ℰ) π (X, 𝒟)) F=((Z, ℱ) ρ (X, 𝒟))

 be objects of .G=((W, 𝒢) χ (X, 𝒟)) 𝒫F(𝒞, J)(2)
(X,𝒟)

It follows from (4.3) and (5.7) that there exist natural bijections

We note that the product  of  and  in  isE × F E F 𝒫F(𝒞, J)(2)
(X,𝒟)

.𝒫F(𝒞, J)(2)
(Z,ℱ)(ρ*(E), ρ*(G))→𝒫F(𝒞, J)(2)

(X,𝒟)(E, ρ!ρ*(G))

,𝒫F(𝒞, J)(2)
(X,𝒟)(ρ*ρ*(E), G)→𝒫F(𝒞, J)(2)

(Z,ℱ)(ρ*(E), ρ*(G))

This shows that is cartesian closed.𝒫F(𝒞, J)(2)
(X,𝒟)

.𝒫F(𝒞, J)(2)
(X,𝒟)(E × F, G)→𝒫F(𝒞, J)(2)

(X,𝒟)(E, GF)
Hence if we put , we have a natural bijectionGF =ρ!ρ*(G)



§6. Strong subobject classifier
Definition 6.1
Let  be a category.𝒞
(1) Two morphisms  and  in  are said to bep :X→Y i :Z→W 𝒞

orthogonal if the following left diagram is commutative, there
exits unique morphism  that makes the following rights :Y→Z
diagram commute.

u

p i
v

                         X Z X Z

                         Y W Y W

u

p i
v
s

If  and  are orthogonal, we denote this by .p i p ⊥ i



(2) For a class  of morphisms in , we putC 𝒞
,C⊥ ={i∈Mor 𝒞 | p ⊥ i if p∈C}
.⊥C={p∈Mor 𝒞 | p ⊥ i if i∈C}

(3) Let  be the class of all epimorphisms in . A monomorphismE 𝒞
 in  is called a strong monomorphism if  belongs to .i :Z→W 𝒞 i E⊥

(4) Let  be the class of all monomorphisms in . An epimorphismM 𝒞
 in  is called a strong epimorphism if  belongs to .p :X→Y 𝒞 p ⊥M



(2)            p :X→Y f, g :U→X p

Let  be a class of morphisms in .C 𝒞
(1) If  is a class of morphisms in  which contains , thenD 𝒞 C

 and .C⊥ ⊃D⊥ ⊥C⊃ ⊥D
(2)  and  hold.C⊂ ⊥(C⊥) C⊂ (⊥C)⊥

(3)  and  hold.(⊥(C⊥))⊥ =C⊥ ⊥((⊥C)⊥)= ⊥C

(1) If  is an equalizer of , then  is a strongi :Z→W f, g :W→V i
monomorphism.

epimorphism.

Proposition 6.2

Proposition 6.3



(  ) For each strong monomorphism  in , there existsσ :Y↣X 𝒞

Definition 6.4
Let  be a category with a terminal object .𝒞 1𝒞
If a morphism  satisfies the following condition, we callt :1𝒞 →Ω
 a strong subobject classifier of .t 𝒞
*

unique morphism  that makes the following squareϕσ :X→Ω
cartesian. oY

σ t
         Y 1𝒞

ϕσ         X Ω



         Y W          Y W

          X Z

Assume that the outer rectangle of the following left diagram is
Remark 6.5

cartesian. If  satisfies , then there exists uniqueh :V→X fh=gsh
morphism  that satisfies  by the assumption.k :V→Y σk=h

s
sσ

σ
f

g

          X Z

s
sσ

σ
f

g

V

h

shk

Hence if  is a monomorphism,  is an equalizer ofσ :Y→X σ
.f, gs :X→Z

It follows that if  has a strong subobject classifier, each strong𝒞
monomorphism           𝒞



A morphism  in  is a monomorphism ifi : (Y, ℰ)→ (X, 𝒟) 𝒫F(𝒞, J)
and only if  is injective.i :Y→X

Proposition 6.6

Proposition 6.7
Let  be a strong monomorphism in σ : (Y, ℱ)→ (X, 𝒟) 𝒫F(𝒞, J)
and denote by  the inclusion map.i :σ(Y)→X

This map gives an isomorphism  in .σ̃ : (Y, ℱ)→ (σ(Y), 𝒟i) 𝒫F(𝒞, J)
Then there is a surjection  which satisfies .σ̃ :Y→σ(Y) iσ̃=σ



         (Y, 𝒟σ) ({1}, 𝒟coarse,{1})

         (X, 𝒟) ({0,1}, 𝒟coarse,{0,1})

Let  be an inclusion map. Then,t :{1}→{0,1}
t : ({1}, 𝒟coarse,{1})→ ({0,1}, 𝒟coarse,{0,1})

is a morphism in . 𝒫F(𝒞, J)
Proposition 6.8
Let  be an object of  and  a subset of .(X, 𝒟) 𝒫F(𝒞, J) Y X
We denote by  the inclusion map and define a mapσ :Y→X

 by  .ϕσ :X→{0,1} ϕσ(x)={1 x∈Y
0 x∉Y

Then, the following diagram is a cartesian square in .𝒫F(𝒞, J)
oY

σ t
ϕσ



Remark 6.9
The morphism  is an equalizer ofσ : (Y, 𝒟σ)→ (X, 𝒟)

 and a compositionϕσ : (X, 𝒟)→ ({0,1}, 𝒟coarse,{0,1})
 by (6.5).(X, 𝒟) oX ({1}, 𝒟coarse,{1})

t ({0,1}, 𝒟coarse,{0,1})
In particular,  is a strong monomorphism inσ : (Y, 𝒟σ)→ (X, 𝒟)

 by (6.3).𝒫F(𝒞, J)

 is a strong subobjectt : ({1}, 𝒟coarse,{1})→ ({0,1}, 𝒟coarse,{0,1})
classifier in . 𝒫F(𝒞, J)

Proposition 6.10



By (3.9), (3.10), (5.9) and (6.10), we have the following result.

Theorem 6.11

Proposition 6.12

 is a quasi-topos.𝒫F(𝒞, J)

 is an epimorphism in  if and only ifπ : (X, 𝒟)→ (Y, ℰ) 𝒫F(𝒞, J)
 is surjective.π :X→Y



§7. Groupoids associated with epimorphisms
Let  be an object  such thatE=((E, ℰ) π (B, ℬ)) 𝒫F(𝒞, J)(2)

(B,ℬ)
 is an epimorphism. Then,  is surjective by (6.7), hence π π π−1(x)

consisting of elements which are isomorphisms for .x, y∈B
Let  be a subset of G1(E)(x, y) 𝒫F(𝒞, J)((π−1(x), ℰix), (π−1(y), ℰiy))

∐
x,y∈B

Put  and define maps , G1(E)= G1(E)(x, y) σE, τE :G1(E)→B
 and  by , ,ιE :G1(E)→G1(E) εE :B→G1(E) σE(φ)=x τE(φ)=y

 if  and .ιE(φ)=φ−1 φ∈G1(E)(x, y) εE(x)= idπ−1(x)

is not an empty set for any .x∈B
We denote by  the inclusion map.ix : π−1(x)→E



                            E×σE
B G1(E) G1(E) E×τE

B G1(E) G1(E)

         G1(E)×BG1(E) G1(E)

                 G1(E) B
pr1

pr2

σE
τE

Supppse that the following diagram is cartesian.

As a set,  is given byG1(E)×BG1(E)
.G1(E) ×B G1(E)={(φ, ψ)∈G1(E)×G1(E) | τE(φ)=σE(ψ)}

We define a map  by .μE :G1(E) ×B G1(E)→G1(E) μE(φ, ψ)=ψφ
We consider the following cartesian squares. 

                                                     E B E B
prσ

E σE
π

prσ
G1(E)

prτ
E τE

π

prτ
G1(E)



                    E B

          E ×σE
B G1(E) G1(E)

                                  E ×τE
B G1(E) G1(E)

Hence  and  are given as follows as sets.E ×σE
B G1(E) E ×τE

B G1(E)
,E ×σE

B G1(E)={(e, φ)∈E × G1(E) | π(e)=σE(φ)}
 E ×τE

B G1(E)={(e, φ)∈E × G1(E) | π(e)=τE(φ)}
There exists unique map idE ×BιE :E ×τE

B G1(E)→E ×σE
B G1(E)

that     

π

prσ
G1(E)

prσ
E

prτ
E τE

prτ
G1(E)

ιEidE×BιE

σE



We define a map  by .̂ξE :E ×σE
B G1(E)→E ̂ξE(e, φ)= iτE(φ)φ(e)

Let  the set of all the-ologies  on  which satisfyΣE ℒ G1(E)
,  and .ℰprσ

E∩ℒprσ
G1(E) ⊂ℰ ̂ξE ℰprτ

E∩ℒprτ
G1(E) ⊂ℰ ̂ξE(idE×BιE) ℒ⊂ℬσE∩ℬτE

We note that the  if and only if following maps areℒ∈ΣE
morphisms in .𝒫F(𝒞, J)

̂ξE :(E ×σE
B G1(E), ℰprσ

E∩ℒprσ
G1(E))→ (E, ℰ)

̂ξE(idE ×BιE) :(E ×τE
B G1(E), ℰprτ

E∩ℒprτ
G1(E))→ (E, ℰ)

σE, τE : (G1(E), ℒ)→ (B, ℬ)

 is not empty. In fact .ΣE (G1(E), 𝒟disc,G1(E))∈ΣE

Proposition 7.1



on an element  of .γ FG1(E)(U)
(G1) If , ,  and V, W∈Ob𝒞 f∈𝒞(W, U) g∈𝒞(W, V) λ∈ℰ∩FE(V)

satisfy , a compositionπλF(g)=σEγF( f )
F(W) (λF(g), γF( f )) E ×σE

B G1(E)
̂ξE E

belongs to .ℰ∩FE(W)
(G2) If , ,  and V, W∈Ob𝒞 f∈𝒞(W, U) g∈𝒞(W, V) λ∈ℰ∩FE(V)

satisfy , a compositionπλF(g)=τEγF( f )
F(W) (λF(g), ιEγF( f )) E ×σE

B G1(E)
̂ξE E

belongs to .ℰ∩FE(W)
(G3) Compositions  and F(U) γ G1(E) σE B F(U) γ G1(E) τE B

belong to .ℬ∩FB(U)

For , we consider the following conditions (G1), (G2), (G3)U∈Ob𝒞



Define a set  of -parametrizations of a set  so that𝒢E F G1(E)
 is a subset of  consisting of elements𝒢E∩FG1(E)(U) FG1(E)(U)

which satisfy the above conditions (G1), (G2) and (G3) for any
.U∈Ob𝒞



(G1’) If , ,  and V, W∈Ob 𝒞 f∈𝒞(W, U) g∈𝒞(W, V) λ∈ℰ∩FE(V)
satisfy , then  satisfiesπλF(g)=σEγF( f ) γ

.((λF(g), γF( f )) :F(W)→E ×σE
B G1(E))∈ℰ ̂ξE∩FE×σE

B G1(E)(W)
(G2’) If , ,  and V, W∈Ob 𝒞 f∈𝒞(W, U) g∈𝒞(W, V) λ∈ℰ∩FE(V)

satisfy , then  satisfiesπλF(g)=τEγF( f ) γ
.((λF(g), γF( f )) :F(W)→E ×τE

B G1(E))∈ℰ ̂ξE(idE×BιE)∩FE×τE
B G1(E)(W)

(G3’) γ∈ℬσE∩ℬτE∩FG1(E)(U)

The conditions (G1), (G2) and (G3) on  above areγ∈FG1(E)(U)
equivalent to the following conditions (G1’), (G2’) and (G3’),
respectively.

Remark 7.2



 is a the-ology on .𝒢E G1(E)
Proposition 7.3

Proposition 7.4
     𝒢 ΣE



We consider the following cartesian square.

         E×σE
B G1(E)×BG1(E) E×σE

B G1(E)

                       G1(E) B
pr3

pr12

σE

τEprσ
G1(E) (i)

That is,  is the following set.E×σE
B G1(E)×BG1(E)

{(e, φ, ψ)∈E×G1(E)×G1(E) | π(e)=σE(φ), τE(φ)=σE(ψ)}
It follows from the definition of  that the following diagram iŝξE
commutative.

          E×σE
B G1(E) E

             G1(E) B

̂ξE

π (ii)
τE

prσ
G1(E)



There exists unique map
̂ξE ×BidG1(E) :E×σE

B G1(E)×BG1(E)→E×σE
B G1(E)

that makes the following diagram commute by the commutativity
of diagrams (i) and (ii) above.

E×σE
B G1(E)×BG1(E)

           E×σE
B G1(E) G1(E)

                                     E×σE
B G1(E) E B

prσ
E σE

π

prσ
G1(E)

̂ξE

pr12

pr3̂ξE×BidG1(E)



                                    E×σE
B G1(E)×BG1(E) G1(E)×BG1(E)

idE ×BμE :E×σE
B G1(E)×BG1(E)→E×σE

B G1(E)
that makes the following diagram commute.

                 E×σE
B G1(E) G1(E) G1(E)

                                   E B

prσ
E σE

π

prσ
G1(E)

μE

prE

pr23

idE×BμE pr1

σE

We define maps  andpr23 :E×σE
B G1(E)×BG1(E)→G1(E)×BG1(E)

 by  and prE :E×σE
B G1(E)×BG1(E)→E pr23(e, φ, ψ)=(φ, ψ)

, respectively. Then, there exists unique mapprE(e, φ, ψ)=e



                                          G1(E)×BG1(E) G1(E)

Let  be unique map thatι(2)
E :G1(E) ×BG1(E)→G1(E) ×BG1(E)

makes the following diagram commute.

       G1(E)×BG1(E) G1(E)

                                                   G1(E) B

pr1

pr2

σE

τEιE

ιE

pr2

pr1

ι(2)
E

G1(E)
σE

τE

We       ι(2)
E (φ, ψ)∈G1(E) ×BG1(E) (ιE(ψ), ιE(φ))

It is easy to verify the following fact.



                       G1(E)×BG1(E) G1(E) E×σE
B G1(E) E

           E×σE
B G1(E)×BG1(E) E×σE

B G1(E)

Lemma 7.5
The following diagrams are commutative.

                     E×σE
B G1(E) E

idE×BμE

(idE, εEπ) idE

̂ξE×BidG1(E) ̂ξE

̂ξE

̂ξE

                            G1(E)×BG1(E) G1(E) EμE

μE
ι(2)
E ιE



of the groupoid  are morphisms in .(B, G1(E)) 𝒫F(𝒞, J)

Proposition 7.6
The structure maps

σE, τE : (G1(E), 𝒢E)→ (B, ℬ)
εE : (B, ℬ)→ (G1(E), 𝒢E)
μE :(G1(E)×BG1(E), 𝒢pr1

E ∩𝒢pr2
E )→ (G1(E), 𝒢E)

ιE : (G1(E), 𝒢E)→ (G1(E), 𝒢E)

Let  be an object of  suchE=((E, ℰ) π (B, ℬ)) 𝒫F(𝒞, J)(2)
(B,ℬ)

that  is an epimorphism. We call the groupoidπ
 in  the groupoid((B, ℬ), (G1(E), 𝒢E); σE, τE, εE, μE, ιE) 𝒫F(𝒞, J)

associated with  and denote this groupoid by .E G(E)

Definition 7.7



Example 7.8
We denote by  the unique morphismoX : (X, 𝒳)→ ({1}, 𝒟coarse,{1})
in  for an object  of . Since  is an𝒫F(𝒞, J) (X, 𝒳) 𝒫F(𝒞, J) oX
epimorphism, we can consider the groupoid  associated withG(OX)

. This groupoid OX =((X, 𝒳) oX ({1}, 𝒟coarse,{1})
G(OX)=(({1}, 𝒟coarse,{1}), (G1(OX), 𝒢OX

); σOX
, τOX

, εOX
, μOX

, ιOX
)

is described as follows. Put End(X, 𝒳)=𝒫F(𝒞, J)((X, 𝒳), (X, 𝒳))
and define a subset  of  byAut(X, 𝒳) End(X, 𝒳)

.Aut(X, 𝒳)={φ∈End(X, 𝒳) | φ is an isomorphism.}
Then,  is identified with  as a set.G1(OX) Aut(X, 𝒳)
The source  and the target  are the unique map .σOX

τOX
G1(OX)→{1}

The unit  maps  to .εOX
:{1}→G1(OX) 1 idX



The composition  maps  to μOX
:G1(OX)×G1(OX)→G1(OX) (φ, ψ) ψφ

and the inverse  maps  to .ιOX
:G1(OX)→G1(OX) φ φ−1

We define a map  by , thenαX :X×G1(OX)→X αX(x, φ)=φ(x)
the the-ology  on  is given as follows.𝒢OX

G1(OX)=Aut(X, 𝒳)
For ,  is a subset of  consistingU∈Ob𝒞 𝒢OX

∩FG1(OX)(U) FG1(OX)(U)
of elements  which satisfy the following condition (G).γ
(G) For , ,  and ,V, W∈Ob𝒞 f∈𝒞(W, U) g∈𝒞(W, V) λ∈𝒳∩FX(V)

the following compositions belong to .𝒳∩FX(W)

F(W)
(λF(g), ιOXγF( f ))

X×G1(OX) αX X

F(W) (λF(g), γF( f )) X×G1(OX) αX X



                  G G×G G

                                G×G×G G×G G×{1} G×G {1}×G

                                                      G×G G G G G

μ×idG

idX×μ
μ

ε×idG

μ

idG×ε

(idG, oG)
idG

μ
idG

(oG, idG)

(ι, idG)

                      {1} G {1}

(idG, ι)

oG

ε
μ

ε
oG

Let  be a group object in  with structure((G, 𝒢); ε, μ, ι) 𝒫F(𝒞, J)
morphisms ,  andε : ({1}, 𝒟disc,{1})→ (G, 𝒢) ι : (G, 𝒢)→ (G, 𝒢)

 in  which make theμ : (G×G, 𝒢p1∩𝒢p2)→ (G, 𝒢) 𝒫F(𝒞, J)
following diagrams commute. Here,  denotes thepi :G×G→G
projection onto the -th component for . i i=1,2



For an object  of , we define a groupoid  in(B, ℬ) 𝒫F(𝒞, J) GG,B
 as follows.𝒫F(𝒞, J)

Put  and let  and  beG1 =B×G×B σG,B, τG,B :G1 →B prG :G1 →G
the projections given by ,  andσG,B(x, g, y)=x τG,B(x, g, y)=y

. Define maps  by .prG(x, g, y)=g εG,B :B→G1 εG,B(x)=(x, ε(1), x)
Consider the following cartesian square.

         G1×BG1 G1

             G1 B
pr1

pr2

σG,BτG,B

Then  holds as a set.G1×BG1 ={((x, g, y), (z, h, w))∈G1×G1 | y=z}
Define maps  and  byμG,B :G1×BG1 →G1 ιG,B :G1 →G1

 and .μG,B((x, g, y), (z, h, w))=(x, μ(g, h), w) ιG,B(x, g, y)=(y, ι(g), x)



It is clear that  andσG,B, τG,B : (G1, ℬσG,B∩𝒢prG∩ℬτG,B)→ (B, ℬ)
 are morphisms in .prG : (G1, ℬσG,B∩𝒢prG∩ℬτG,B)→ (G, 𝒢) 𝒫F(𝒞, J)

Since  and the following diagram isσG,BεG,B =τG,BεG,B = idX
commutative, it follows that εG,B : (B, ℬ)→ (G1, ℬσG,B∩𝒢prG∩ℬτG,B)
is also a morphism in .𝒫F(𝒞, J)

         (B, ℬ) (G1, ℬσG,B∩𝒢prG∩ℬτG,B)

              ({1}, 𝒟disc,{1}) (G, 𝒢)
oB

εG,B

prG
ε



     　     G1×BG1 G×G

We note that  and  hold andσG,BμG,B =σG,Bpr1 τG,BμG,B =τG,Bpr2
that the following diagram commutes.

                  G1 G
μG,B

(prG, prG)

μ
prG

Since , ,  and  are morphisms in , itσG,B τG,B (prG, prG) μ 𝒫F(𝒞, J)
follows that
μG,B : (G1×BG1, (ℬσG,B∩𝒢prG∩ℬτG,B)pr1∩(ℬσG,B∩𝒢prG∩ℬτG,B)pr2)

→ (G1, ℬσG,B∩𝒢prG∩ℬτG,B)
is a morphism in .𝒫F(𝒞, J)



is    𝒫𝒞

We also have ,  and σG,BιG,B =τG,B τG,BιG,B =σG,B prGιG,B = ιprG
which imply that

ιG,B : (G1, ℬσG,B∩𝒢prG∩ℬτG,B)→ (G1, ℬσG,B∩𝒢prG∩ℬτG,B)
is a morphism in . It is easy to verify that𝒫F(𝒞, J)
((B, ℬ), (B×G×B, ℬσG,B∩𝒢prG∩ℬτG,B); σG,B, τG,B, εG,B, μG,B, ιG,B)

Definition 7.9
The groupoid

in  constructed above is called the trivial groupoid𝒫F(𝒞, J)
associated with  and .((G, 𝒢); ε, μ, ι) (B, ℬ)

((B, ℬ), (B×G×B, ℬσG,B∩𝒢prG∩ℬτG,B); σG,B, τG,B, εG,B, μG,B, ιG,B)



Proposition 7.10
The groupoid  inG(X)=((B, ℬ), (G1(X), 𝒢X); σX, τX, εX, μX, ιX)

 associated with  is isomorphic to the trivial groupoid𝒫F(𝒞, J) X
associated with  and .((G1(OX), 𝒢OX

); εOX
, μOX

, ιOX
) (B, ℬ)

Let  and  be objects of .(X, 𝒳) (B, ℬ) 𝒫F(𝒞, J)
Let us denote by  and  the projections.prX :X×B→X prB :X×B→B
Then we have an object  ofX=((X×B, 𝒳prX∩ℬprB) prB (B, ℬ))

.Epic(𝒫F(𝒞, J))
We also have a group object  in  withG1(OX)=Aut(X, 𝒳) 𝒫F(𝒞, J)
unit , product εOX

:{1}→G1(OX) μOX
:G1(OX)×G1(OX)→G1(OX)

and inverse  as we considered in (7.8).ιOX
:G1(OX)→G1(OX)



Let us denote by  a subcategory of Epic(𝒫F(𝒞, J)) 𝒫F(𝒞, J)(2)

whose objects are epimorphisms in  and morphisms are𝒫F(𝒞, J)
cartesian morphisms in the fibered category

    ℘ :𝒫𝒞  𝒫𝒞  𝒫𝒞

Let ,  be objects ofD=((D, 𝒟) ρ (A, 𝒜)) E=((E, ℰ) π (B, ℬ))
 and  a morphism in .Epic(𝒫F(𝒞, J)) ξ=⟨ξ, f⟩:D→E Epic(𝒫F(𝒞, J))

For  and , we denote by  and x∈A y∈B jx :ρ−1(x)→D iy :π−1(y)→E
the inclusion maps, respectively.

the right diagram commute. 

          ρ−1(x) π−1( f(x))

                D E
if(x)

ξ
jx

ξx
Then, we have unique map

 that makesξx :ρ−1(x)→π−1( f(x))



Lemma 7.11
     ξx : (ρ−1(x), 𝒟    𝒫𝒞

Remark 7.12.
We consider the following cartesian square. 

          A×BE E

             A B
π

f
πf

fπ

Since  is cartesian,  is anξ (ρ, ξ) : (D, 𝒟)→ (A×BE, 𝒜πf ∩ℰfπ)
isomorphism in . Put  then  satisfies 𝒫F(𝒞, J) ξf =(ρ, ξ) ξf πfξf = ρ
and . Thus we havefπξf =ξ

.𝒟=(𝒜πf ∩ℰfπ)ξf =𝒜πfξf ∩ℰfπξf =𝒜ρ∩ℰξ



By (7.11), we can define a bijection
ξx,y :G1(D)(x, y)→G1(E)( f(x), f(y))

by  for .ξx,y(φ)=ξyφ ξ−1
x x, y∈A

We also define a map  by  whereξ1 :G1(D)→G1(E) ξ1(φ)=ξx,y(φ)
 and .x=σD(φ) y=τD(φ)

Note that a pair  of maps is a morphism  of( f, ξ1) G(D)→G(E)
groupoids, that is, the following diagrams are commutative.
Here,  maps  toξ1 ×f ξ1 :G1(D) ×AG1(D)→G1(E) ×BG1(E) (φ, ψ)

.(ξ1(φ), ξ1(ψ))



                           A G1(D) A G1(D) G1(D) G1(D)×AG1(D) G1(D)

                            B G1(E) B G1(E) G1(E) G1(E)×BG1(E) G1(E)

τDσD

τEσE
ff ξ1 ξ1

εD

εE
ξ1

ιD

ιE μE

μD

ξ1×f ξ1 ξ1

Define a map  byξ×f ξ1 :D×σD
A G1(D)→E×σE

B G1(E)
.(ξ×f ξ1)(e, φ)=(ξ(e), ξ1(φ))

Then, the following diagram is commutative.

           D×σD
A G1(D) D

           E×σE
B G1(E) E

ξ×f ξ1 ̂ξE
ξ

̂ξD



 is a morphism in .ξ1 : (G1(D), 𝒢D)→ (G1(E), 𝒢E) 𝒫F(𝒞, J)

morphism of groupoids in .𝒫F(𝒞, J)
It follows that a pair of morphisms  is a( f, ξ1) :G(D)→G(E)

Lemma 7.13

We denote by  the category of groupopids inGrp(𝒫F(𝒞, J))
. That is, objects of  are groupopids in𝒫F(𝒞, J) Grp(𝒫F(𝒞, J))
 and morphisms of  are morphisms of𝒫F(𝒞, J) Grp(𝒫F(𝒞, J))

groupopids.



For an object  of , let E=((E, ℰ) π (B, ℬ)) Epic(𝒫F(𝒞, J)) Gr(E)
be the groupoid  associated with  as we defined in (7.7).G(E) E
For a morphism  in , we putξ=⟨ξ, f⟩ :D→E Epic(𝒫F(𝒞, J))

.Gr(ξ)=( f, ξ1) :G(D)→G(E)
Then  is a morphism in  by (7.13).Gr(ξ) Grp(𝒫F(𝒞, J))

Define a functor  as follows.Gr :Epic(𝒫F(𝒞, J))→Grp(𝒫F(𝒞, J))



§8. Fibrations

Let  be a groupoid in .G=((G0, 𝒢0), (G1, 𝒢1); σ, τ, ε, μ, ι) 𝒫F(𝒞, J)
Definition 8.1 ([4], 8.4, 8.8)

We denote by  the projections given byprσ, prτ :G0 × G0 →G0
 and .prσ(x, y)=x prτ(x, y)=y

If a map  given by  is(σ, τ) :G1 →G0 × G0 (σ, τ)(φ)=(σ(φ), τ(φ))
an epimorphism and the the-ology  on (𝒢1)(σ,τ) G0 × G0
coincides with , we say that  is fibrating.𝒢prσ

0 ∩𝒢prτ
0 G

Let  be an object of . If the groupoid E Epic(𝒫F(𝒞, J)) G(E)
associated with  (7.7) is fibrating, we call  a fibration.E E



Remark 8.2
If  is a fibration, since E=((E, ℰ) π (B, ℬ)) (σE, τE) :G1(E)→B×B
is surjective,  is not empty for any .G1(E)(x, y) x, y∈B
Hence fibers  of  are all isomorphic.(π−1(x), ℰix) π

Lemma 8.3
Let  and  be objects of .(X, 𝒳) (B, ℬ) 𝒫F(𝒞, J)
We denote the projections by  and .prX :X×B→X prB :X×B→B
Then  coincides with .ℬ (𝒳prX∩ℬprB)prB

Proposition 8.4
Let  be a morphism in .ξ :D→E Epic(𝒫F(𝒞, J))
If  is a fibration, so is .E D



Example 8.5
Let  be a group in  and  an object((G, 𝒢); ε, μ, ι) 𝒫F(𝒞, J) (B, ℬ)
of . Consider the trivial groupoid𝒫F(𝒞, J)
((B, ℬ), (B×G ×B, ℬσG,B∩ℬτG,B∩𝒢prG); σG,B, τG,B, εG,B, μG,B, ιG,B)
in  associated with  and .𝒫F(𝒞, J) ((G, 𝒢); ε, μ, ι) (B, ℬ)
We denote this groupoid by .GG,B
Since  is a projection, it follows from(σG,B, τG,B) :B×G×B→B×B
(8.3) that  is fibrating.GG,B
Hence  is a fibration by (7.10).X=((X×B, 𝒳prX∩ℬprB) prB (B, ℬ))
We call  a product fibration.X



Definition 8.6
Let  be a category with a terminal object .𝒞 1𝒞
For an object  of , we say that a functor  isU 𝒞 F :𝒞→𝒮et

-pointed if  is surjective.U F :𝒞(1𝒞, U)→𝒮et(F(1𝒞), F(U))
If  is -pointed for any object  of , we say that  is pointed.F U U 𝒞 F

Proposition 8.7
If a category  has a terminal object , then the functor𝒞 1𝒞

 defined by  andh1𝒞 :𝒞→𝒮et h1𝒞(U)=𝒞(1𝒞, U)
  h1𝒞    𝒞𝒞 𝒞𝒞



Definition 8.8
Let  be a site. For an object  of , we say that a functor(𝒞, J) U 𝒞

 is -local if  satisfies the following condition (L).F :𝒞→𝒮et U F
If  is -local for any object  of , we say that  is local.F U U 𝒞 F

(L) For an object  of  and a map , if thereV 𝒞 α :F(V)→F(U)
exists a covering  of  such that(Vi

fi V)i∈I V
F( fi)* :𝒮et(F(V), F(U))→𝒮et(F(Vi), F(U))

maps      α F :𝒞 𝒮
for any , then  belongs to the image ofi∈ I α

.F :𝒞(V, U)→𝒮et(F(V), F(U))



of , we define a subset  of        by𝒞 ℱU FF(U)(V)

Remark 8.9
Let  be a category and  a functor. For an object 𝒞 F :𝒞→𝒮et U

∐
V∈Ob𝒞

.ℱU = Im(F :𝒞(V, U)→𝒮et(F(V), F(U))=FF(U)(V))∐
V∈Ob𝒞

Then, it is easy to verify that  satisfies condition (ii) of (2.2).ℱU
(1) Assume that  has a terminal object . Since𝒞 1𝒞

,ℱU∩FF(U)(1𝒞)=Im(F :𝒞(1𝒞, U)→FF(U)(1𝒞))
 is -pointed if and only if  satisfies condition (i) of (2.2).F U ℱU

(2) For a site ,  is -local if and only if  satisfies(𝒞, J) F U ℱU
condition (iii) of (2.2).



For an object , a morphism  in  and ,V f :U→W 𝒞 φ∈ℱU∩FF(U)(V)
since there exists  such that , we haveg∈𝒞(V, U) F(g)=φ

.(FF( f ))V(φ)=F( f )φ=F( f )F(g)=F( fg)∈ℱU∩FF(W)(V)
It follows that  maps (FF( f ))V :FF(U)(V)→FF(W)(V) ℱU∩FF(U)(V)
into .ℱW∩FF(W)(V)

Define a functor  by  forF̌ :𝒞→𝒫F(𝒞, J) F̌(U)=(F(U), ℱU)
 and U∈Ob𝒞 F̌( f :U→W)=(F( f ) : (F(U), ℱU)→ (F(W), ℱW))

for a morphism  in . Then  holds.f :U→W 𝒞 ΓF̌=F

Thus  is a the-ology on  if and only if  is -pointed andℱU F(U) F U
-local. Assume that  is pointed and local below.U F



families  of open embeddings such that .(Ui
fi U)i∈I U= fi(Ui)

Example 8.10
Define a category  as follows. Objects of  are open sets of𝒞∞ 𝒞∞

 dimensional Euclidean space  for some . Morphisms ofn Rn n ≧ 0
 are -maps. For , let  be the set of 𝒞∞ C∞ U∈Ob𝒞∞ P∞(U)

It is easy to verify that  is a pretopology on .P∞ 𝒞∞

We give a Grothendieck topology  on  generated by .J∞ 𝒞∞ P∞

Then, the forgetful functor  is pointed and local.F :𝒞∞ →𝒮et
For a set , a the-ology on  is usually called a diffeology on X X X
and a the-ological object is called a diffeological space.

⋃
i∈I



Example 8.11
Let  be an algebraically closed field. We denote by  the k 𝒜ffk
category of affine varieties over . For , let k V∈Ob 𝒜ffk P𝒜ffk(V)

⋃
i∈I

be the set of families  of Zariski open embeddings(Vi
fi V)i∈I

such that . It is easy to verify that  is aV= fi(Vi) P𝒜ffk(V)
pretopology on . We give a Grothendieck topology  on𝒜ffk J𝒜ffk

 generated by .𝒜ffk P𝒜ffk(V)
Then, the forgetful functor  is pointed and local.F :𝒜ffk →𝒮et



Proposition 8.12
Let  be an object of . Suppose that  is(X, 𝒳) 𝒫F(𝒞, J) F :𝒞→𝒮et

-pointed and -local for an object  of .U U U 𝒞
Then, a map  is an -plot if and only ifφ :F(U)→X F

 is a morphism in .φ : (F(U), ℱU)→ (X, 𝒳) 𝒫F(𝒞, J)

For an object  of , the followingE=((E, ℰ) π (B, ℬ)) 𝒫F(𝒞, J)
Lemma 8.13

          (E×σE
B G1(E), ℰprσ

E∩𝒢prσ
G1(E)

E ) (E, ℰ)

                   (G1(E), 𝒢E) (B, ℬ)
π

τE

prσ
G1(E)

̂ξE

diagram in  is cartesian.𝒫F(𝒞, J)



Let  be a fibration. For , define a mapE=((E, ℰ) π (B, ℬ)) b∈B
 by . We denote by  theιb :B→B×B ιb(x)=(b, x) prBi :B×B→B

projection onto the -th component for .i i=1,2
Since  is a constant map and  is the identity map of ,prB1ιb prB2ιb B

 is a morphism in .ιb : (B, ℬ)→ (B×B, ℬprB1∩ℬprB2) 𝒫F(𝒞, J)
For  and , sinceU∈Ob𝒞 γ∈ℬ∩FB(U)

,(Fιb)U(γ)∈ℬprB1∩ℬprB2 =(𝒢E)(σE,τE)

it follows from (3.4) that there exists  such that, for eachR∈J(U)
, there exists  which satisfiesh∈R γh ∈𝒢E∩FG1(E)(dom(h))

.FB×B(h)((Fιb)U(γ))=(F(σE,τE))dom(h)(γh)



                   F(U) B B×B

For , since  belongs to  byu∈F(dom(h)) γh(u) G1(E)(b, γ(F(h)(u)))
the commutativity of the following diagram, we have

 for .π((γh(u))(e))=γ(F(h)(u)) e∈π−1(b)

                F(dom(h)) G1(E)
(σE, τE)

ιb
F(h)

γh

γ

We denote by  andprπ−1(b) :π−1(b)×F(dom(h))→π−1(b)
 the projections ontoprF(dom(h)) :π−1(b)×F(dom(h))→F(dom(h))

the first and second components, respectively.
We also denote by  the inclusion map.ib :π−1(b)→E



For , since  by the(e, u)∈π−1(b)×F(dom(h)) π(e)=b=σEγh(u)
commutativity of the above diagram, we have a map

.(ibprπ−1(b), γhprF(dom(h))) :π−1(b)×F(dom(h))→E×σE
B G1(E)

Let us denote by  a compositionγ̄h :π−1(b)×F(dom(h))→E

.π−1(b)×F(dom(h))
(ibprπ−1(b),γhprF(dom(h))) E×σE

B G1(E)
̂ξE E

Then  holds for .γ̄h(e, u)=(γh(u))(e) (e, u)∈π−1(b)×F(dom(h))

The following diagram is cartesian in the category of sets.
          π−1(b)×F(dom(h)) E

               F(dom(h)) B
π

γF(h)
prF(dom(h))

γ̄h

Lemma 8.14



Lemma 8.15
If  is pointed and local, the following diagram isF :𝒞→𝒮et
cartesian in .𝒫F(𝒞, J)

          (π−1(b)×F(dom(h)), (ℰib)prπ−1(b)∩ℱprF(dom(h))
dom(h) ) (E, ℰ)

                         (F(dom(h)), ℱdom(h)) (B, ℬ)
π

γF(h)
prF(dom(h))

γ̄h



Assume that the lower right rectangle of the following diagram is

π−1(b)×F(dom(h))

           F(U)×BE E

                             F(dom(h)) F(U) B
πγ

γ
π

γπ

F(h)

prF(dom(h))

γ̄h

̂γh

cartesian. Then, there exists unique map
̂γh :π−1(b)×F(dom(h))→F(U)×BE

that makes the following diagram commute.



Proposition 8.16
We assume that  is pointed and local. Consider objectsF :𝒞→𝒮et

γ*(E)=((F(U) ×B E, ℱπγ
U ∩ℰγπ)

πγ (F(U), ℱU))

G=((π−1(b)×F(dom(h)), (ℰib)prπ−1(b)∩ℱprF(dom(h))
dom(h) ) prF(dom(h))

(F(dom(h)), ℱdom(h)))
of . Then,  is cartesian𝒫F(𝒞, J) γh =⟨ ̂γh, F(h)⟩ :G→γ*(E)
morphism in .𝒫F(𝒞, J)(2)



For morphisms  in , we putζ1, ζ2 :D→E Epic(𝒫F(𝒞, J))
,  and D=((D, 𝒟) ρ (A, 𝒜)) E=((E, ℰ) π (B, ℬ)) ζk =⟨ζk, fk⟩

for . For  and , we denote by ,k=1,2 a∈A b∈B ja :ρ−1(a)→D
 the inclusion maps. It follows from (7.11) that theib :π−1(b)→E

morphisms  ( ) obtainedζk,x : (ρ−1(x), 𝒟jx)→ (π−1( fk(x)), ℰifk(x)) k=1,2
by restricting  are isomorphisms in . ζk : (D, 𝒟)→ (E, ℰ) 𝒫F(𝒞, J)
Thus we have the following isomorphism in .𝒫F(𝒞, J)

ζ2,xζ−1
1,x : (π−1( f1(x)), ℰif1(x))→ (π−1( f2(x)), ℰif2(x))

We define a map  by .ζ̃ :A→G1(E) ζ̃(x)=ζ2,xζ−1
1,x

Then,  and  hold.σEζ̃(x)= f1(x) τEζ̃(x)= f2(x)



                 A B×B
(σE, τE)

( f1, f2)

ζ̃
G1(E)

The following diagram is commutative.

Lemma 8.17
 is a morphism in .ζ̃ : (A, 𝒜)→ (G1(E), 𝒢E) 𝒫F(𝒞, J)



Proposition 8.18 ([4], 8.9)
We assume that  is pointed and local.F :𝒞→𝒮et
An object  of  is a fibrationE=((E, ℰ) π (B, ℬ)) Epic(𝒫F(𝒞, J))
if and only if the following condition (P) is satisfied.

(P) There exists an object  of  such that, for(T, 𝒯) 𝒫F(𝒞, J)
any  and , there exists a coveringU∈Ob𝒞 γ∈ℬ∩FB(U)

 of  such that the inverse image (Ui
fi U)i∈U U (γF( fi))*(E)

of  by  is isomorphic to a product fibrationE γF( fi) :F(Ui)→B
 for any .(prF(Ui) : (T×F(Ui), 𝒯prT∩ℱprF(Ui)

Ui
)→ (F(Ui), ℱUi

) i∈ I
Here  and  denoteprT :T×F(Ui)→T prF(Ui) :T×F(Ui)→F(Ui)
the 



§9. topologyF-
Let  be the category of topological spaces and continuous𝒯op
maps. We denote by  the forgetful functor.𝒰 :𝒯op→𝒮et
For a functor , we assume in this section that thereF :𝒞→𝒮et
exists a functor  which satisfies .F𝒯 :𝒞→𝒯op F=𝒰F𝒯

　　   　          　 𝒞 𝒮et

𝒯op

𝒰
F𝒯

F



It is easy to verify that  is a topology on .𝒪(X,𝒟) X
In fact,  is the coarsest topology on  such that𝒪(X,𝒟) X

 is continuous for any  and .α :F𝒯(U)→X U∈Ob𝒞 α∈𝒟∩FX(U)
We call  the -topology on  associated with .𝒪(X,𝒟) F X 𝒟

For an object  of , we define a set  of(X, 𝒟) 𝒫F(𝒞, J) 𝒪(X,𝒟)
subsets of  byX

.𝒪(X,𝒟) ={O⊂X | α−1(O)∈𝒪U if U∈Ob𝒞, α∈𝒟∩FX(U)}

Definition 9.1

We denote by  the sets of open sets of  for .𝒪U F𝒯(U) U∈Ob𝒞



Let  be a morphism in .φ : (X, 𝒟)→ (Y, ℰ) 𝒫F(𝒞, J)
For  and , , since O∈𝒪(Y,ℰ) U∈Ob𝒞 α∈𝒟∩FX(U) φα=(Fφ)U(α)
belongs to ,  holds.ℰ∩FY(U) α−1(φ−1(O))=(φα)−1(O)∈𝒪U
Hence we have  and φ−1(O)∈𝒪(X,𝒟) φ : (X, 𝒪(X,𝒟))→ (Y, 𝒪(Y,ℰ))
is a continuous map.
Define a functor  by 𝒯 :𝒫F(𝒞, J)→𝒯op 𝒯((X, 𝒟))=(X, 𝒪(X,𝒟))
and .𝒯(φ : (X, 𝒟)→ (Y, ℰ))=(φ : (X, 𝒪(X,𝒟))→ (Y, 𝒪(Y,ℰ)))
Definition 9.2
For a topological space , we define a set  by(X, 𝒪) 𝒟(X,𝒪)

.𝒟(X,𝒪) = {α∈FX(U) | α :F𝒯(U)→X is continuous.}
If  is a the-ology on , we call an element of  an𝒟(X,𝒪) X 𝒟(X,𝒪)
- -plot.F (X, 𝒪)

∐
U∈Ob𝒞



The following proposition gives a sufficient condition for 𝒟(X,𝒪)
being a the-ology on .X

Let  be a topological space. If the following condition (C)(X, 𝒪)
Proposition 9.3

is satisfied for , then  is a the-ology on .(X, 𝒪) 𝒟(X,𝒪) X
(C) For any , a map  is continuous if thereU∈Ob𝒞 α :F𝒯(U)→X

exists a covering  of  such that compositions(Ui
fi U)i∈I U

 are continuous for any .F𝒯(Ui)
F𝒯( fi) F𝒯(U) α X i∈ I



such that the map     induced by the familyF𝒯(Ui)→F𝒯(U)

Remark 9.4
We consider the following condition (Q) on .F𝒯 :𝒞→𝒯op
(Q) For any , there exists a covering  of U∈Ob𝒞 (Ui

fi U)i∈I U

 of maps is a quotient map.(F𝒯(Ui)
F𝒯( fi) F𝒯(U))i∈I

If the condition (Q) is satisfied, the condition (C) of (9.3) is
satisfied for any topological space .(X, 𝒪)

Let ,  and  be topological spaces.(X, 𝒪X) (Y, 𝒪Y) (Z, 𝒪Z)
For continuous maps  and , if  is af :X→Y g :Y→Z gf :X→Z
quotient map, so is .g

Lemma 9.5

∐
i∈I



∐
f∈R

∐
u∈R̄

Proposition 9.6
For an object  of , suppose that there exists a covering  ofU 𝒞 R

 such that the map  induced by theU ρ : F𝒯(dom( f ))→F𝒯(U)

family  of maps is a quotient map.(F𝒯(dom( f )) F𝒯( f )
F𝒯(U))f∈R

Let  be the sieve on  generated by . Then, the mapR̄ U R
ρ̄ : F𝒯(dom(u))→F𝒯(U)

 of maps is a quotient map.(F𝒯(dom(u)) F𝒯(u)
F𝒯(U))u∈R̄

Thus we have the following result.



∐
f∈R

Proposition 9.7
The condition (Q) in (9.4) is equivalent to the following condition.

(Q') For any , there exists  such that the mapU∈Ob𝒞 R∈J(U)
 induced by the familyF𝒯(dom( f ))→F𝒯(U)

 of maps is a quotient map.(F𝒯(dom( f )) F𝒯( f )
F𝒯(U))f∈R

Proposition 9.8
(1) For an object  of , we have .(X, 𝒟) 𝒫F(𝒞, J) 𝒟⊂𝒟(X,𝒪(X,𝒟))

(2) For a topological space ,  holds.(X, 𝒪) 𝒪⊂𝒪(X,𝒟(X,𝒪))



Assume that  is an object of  for any topological𝒟(X,𝒪) 𝒫F(𝒞, J)
space . Let  and  be topological spaces and(X, 𝒪) (X, 𝒪X) (Y, 𝒪Y)

 a continuous map.f :X→Y

Then  is a morphism in .f : (X, 𝒟(X,𝒪X))→ (Y, 𝒟(Y,𝒪Y)) 𝒫F(𝒞, J)
In fact, for  and , sinceU∈Ob𝒞 α∈𝒟∩FX(U)

(Ff)U(α)= fα :F𝒯(U)→Y
is continuous,  holds.(Ff)U(α)∈𝒟(Y,𝒪Y)∩FY(U)

Define a functor  by P : 𝒯op→𝒫F(𝒞, J) P((X, 𝒪))=(X, 𝒟(X,𝒪))
for an object  of  and(X, 𝒪) 𝒯op

P( f : (X, 𝒪X)→ (Y, 𝒪Y))=( f : (X, 𝒟(X,𝒪X))→ (Y, 𝒟(Y,𝒪Y)))
for a continuous map .f : (X, 𝒪X)→ (Y, 𝒪Y)



We remark that  and  hold and that both  andΓP=𝒰 𝒰𝒯=Γ P
are faithful.𝒯

Proposition 9.9
Suppose that  is an object of  for any(X, 𝒟(X,𝒪)) 𝒫F(𝒞, J)
topological space . Then,  is a right(X, 𝒪) P : 𝒯op→𝒫F(𝒞, J)
adjoint of .𝒯 :𝒫F(𝒞, J)→𝒯op

For a topological space  and a map , we put(Y, 𝒪Y) f :X→Y
.𝒪f ={O⊂X | O= f −1(V) for some V∈𝒪Y}

Then  is the coarsest topology on  such that  is a𝒪f X f :X→Y
continuous map.



Proposition 9.10
For a map  and an object  of , considerf :X→Y (Y, ℰ) 𝒫F(𝒞, J)
the - -ology  on . Then, the -topology  on F (𝒞, J) ℰf X F 𝒪(X,ℰf) X
associated with  is finer than .ℰf 𝒪f

(Y,ℰ)

For a topological space  and a map , we put(X, 𝒪X) f :X→Y

continuous map.

.𝒪f ={O⊂Y | f −1(O)∈𝒪X}
Then  is the finest topology on  such that  is a𝒪f Y f :X→Y



∐
f∈R

Proposition 9.11
For a map  and an object  of , considerf :X→Y (X, 𝒟) 𝒫F(𝒞, J)
the the-ology  on . Then, the -topology  on 𝒟f Y F 𝒪(Y,𝒟f) Y
associated with  is coarser than  .𝒟f (𝒪(X,𝒟))f

If  satisfies the following condition (Q''), F𝒯 :𝒞→𝒯op 𝒪(Y,𝒟f)
coincides with  .(𝒪(X,𝒟))f

(Q'') For any  and , the mapU∈Ob𝒞 R∈J(U)
F𝒯(dom( f ))→F𝒯(U)

induced by the family (F𝒯(dom(h)) F𝒯(h)
F𝒯(U))h∈R

of maps is a quotient map.
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