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&81. Recollections on Grothendieck site

We denote by der the category of sets and maps.
For a category &, we call a functor 6P — Set presheaf on 6.

For an object X of €, let hy: 6P — Set be a functor defined by

hy(U)=€¢(U, X) for an object U of € and
h(f:U=V)=(*:6(V,X)=>E(U,X))

for a morphism f:U—V in 6.

Here, 6 (U, X) denotes the set of morphisms in € from U to X.

We call Ay : 6P — Set the presheaf on € represented by X.

For a morphism @:X—Y in €, let h,:hy— hy be a natural
transformation defined by (%,),=¢:: € (U,X)—>E (U, Y).



Definition 1.1
Let € be a category.

(1) A full subcategory & of € is called a sieve if it satisfies the
following condition.

If Ue Ob® and G (U, V)£ for some VEObY, then U &€ ObY.
(2) For X€ Ob®, sieves of /X is called a sieve on X.

For set valued functors I, G: 6 — Set, if F(U) is a subset of G(U)
for any object U of & and the inclusion map i;;: F(U)— G(U)

defines a natural transformation i:F — G, we call F' a subfunctor
of G. If F is a subfunctor of G, we denote this by F CG.



Remark 1.2
For a sieve R is on X, ObR is a set of morphisms in & whose

targets are X.

If we put R(Y)={f:Y—=>X|f€ObR} for YEODLE, then R is a
subfunctor of the presheaf hy: 6P — Set represented by X.
Namely, R— R(-) gives a bijective correspondence between the

set of sieves on X and the set of subfunctors of /A,.
Thus we identify a sieve on X with a subfunctor of hy.

For a morphism f in a category &, let us denote by dom(f) the
source of f and codom(f) the target of /.



Definition 1.3
Let € be a category. For each X€ Ob®%, a set J(X) of sieves on X

is given. If the following conditions are satisfied, a correspondence
J: X+ J(X) is called a (Grothendieck) topology on 6. A category

G with a topology J is called a site which we denote by (6, J).
(T1) For any X€ Ob¥€, hyeJ(X).

(T2) For any X€Ob%¢, ReJ(X) and morphism f: Y — X of &,
a subfunctor hf_l(R) of hy defined below belongs to J(Y).

W (RYZ)=(g:Z— Y| [g€R(Z)
(T3) A sieve S on X belongs to J(X), if there exists Re€ J(X)
such that h7'(S) €J(dom(f)) for any fEODbR.



Proposition 1.4
Consider the following conditions on J.
(T3') A sieve S on X belongs to J(X), if there exists R€ J(X)
such that § is a subfunctor of R and hf_l(S)EJ(dom(f))

for feObR.
(T4) A sieve S on X belongs to J(X) if it has a subfunctor

which belongs to J(X).
(T5) Suppose that R€J(X) and that RfEJ(d()m(f)) is given

for each f€ODbR. Then, {fg|f€ObR, g€ Ob R/} € J(X).
(1) (T2) and (T3) imply (T4). (T1) and (T3) imply (T5).
(2) (T4) and (T5) imply (T3). (T3') and (T4) imply (T3).



For subfunctors G and H of a presheaf F on &, let us denote by
GNH a subfunctor of F defined by (GNH)(X)=G(X)NH(X).

Proposition 1.5
If R,5€J(X), then RNS € J(X).

Definition 1.6
Let J, J' be topologies on €. If J(X)CJ'(X) for any X€Ob €,

J' is said to be finer than J, or J be coarser than J'.
Hence the set of all topologies on € is an ordered set.



Let (J;).c; be a family of topologies on €. We set J(X)= Q,Ji(X)
for each X€Ob €, then J is a topology on € and J=1nf{J;|i€1}.

If T is the set of all topologies on € that are finer than every J,
then supiJ;|i€l}=1ntT.

A topology J on & given by J(X)=(the set of all sieves on X) is
the finest topology on €. On the other hand, a topology J given

by J(X)=1{hy} is the coarsest topology.



Proposition 1.7
For a set R of morphlsms in € with target X, we put

U Im(hf hdom( 1) — X)

fER
In other words, R is the set of all morphisms of the form fg such

that f€R, g&eMor € and codom(g)=dom(f).
Then, R is the smallest sieve containing R.

Definition 1.8
Let (6,J) be a site.

(1) For a set R of morphisms in € with target X, we call R the
sieve generated by K.

(2) A family of morphisms (f;: X.— X),; is called a covering of X
if the sieve generated by f.'s belongs to J(X).



Let € be a category. Suppose that, for each object X, a set P(X)

of families of morphisms of € with target X is given. Then,
there is the coarsest topology J» on € such that for each object

X, every element of P(X) is a covering. In fact, J, is the

intersection of all topologies satistying the above condition.

We call Jp the ftopology generated by P.



Definition 1.9
Let € be a category. For each X€Ob%, a set P(X) of families

of morphisms of G with target X is given. If the following
conditions (P1), (P2) and (P3) are satisfied, the correspondence
P: X~ P(X) is called a basis for a (Grothendieck) topology on €.

(P1) For any X€ Ob¥¢, {idy} € P(X).

(P2) If (f;:X.— X),.;€P(X), then for any morphism f: Y — X
in 6, there exists (&:Y;—=Y);cp €P(Y) such that for
each j€1', fg; factors through some f;.

(P3) If (f;: X, = X);.;€P(X) and (glj:leaXi)jeliEP(Xi) for
each 1€/ are given, then (fg;:: X;;— X); hex € P(X),
where K={(i,j)|i€l,JEL}.



Proposition 1.10

Let € be a category and J a topology on €. For each X€Ob¥,

let P(X) be the set of all coverings of X. Then P is a basis for a
topology.

Proposition 1.11

(1) Let P be a basis for a topology on € and J, the topology
generated by P. Then, we have

Jp(X)={RChy|RDS for someS€P(X)}.
(2) For a topology J on &, let P be as in (1.10). Then the topology
generated by P coincides with J.



We denote by € the category of presheaves on & below.

Proposition 1.12

Let S=(f;:X;— X),; be a family of morphisms in &

For each 1 €1, we regard f. as an element of S(Xi).

For a presheaf F' on ¢, define a map CD:Q%(S, F)—>EF(XI-) by
CID(gﬂ)z(gDXi(fi))iel. Then, @ is injective and its image consists of

families (x;);; which satisfy the following condition for any i,j €1
and any object Z of €.

“Iffl-u=]§-\/ for u:Z—X; and v:Z— X, then F(u)(xi):F(v)(xj).”



&2. Plots on a set

Definition 2.1
Let € be a category and F':6¢ — Set a functor.

For a set X, we define a presheaf Fy on € to be a composition
h

&P L SetP—%> Set.
Here we denote by FP: 6P — Set’ a functor defined by
FP(U)=F(U) for U Ob¥ and F°P(f)=F(f) for feMor 6.

An element of U](_)[b%FX(U) is called an F-parametrization of X.
=

We note that Fy is given by Fy(U)=3det(F(U),X) for U€Ob¥
and Fy(f)(@)=aF(f) for (f:U—=V)eMor € and a€ Fy(V).



Definition 2.2

Let (6,J) be a site, X a set and F': 6 — Set a functor.
Assume that € has a terminal object 1o, and that F(1y) consists

of a single element. If a subset & of UI(_)IbngX(U) satisfies the
=

following conditions, we call &4 a the-ology on X.

(1) 2D Fx(lg)

(i) For a morphism f: U— V in €, the map Fy(f): Fx(V)— Fy(U)
induced by f maps DNFy(V) into DNF(U).

(ii1) For an object U of ¢, an element x of Fy(U) belongs to
DNFy(U) if there exists a covering (f;: U;— U)..; such that

Fy(f.): Fx(U)—= F5x(U;) maps x into DNF(U.) for any i€1.



We call a pair (X, ) a the-ological object and call an element of
< an F-plot of (X, ).

Proposition 2.3
Condition (ii1) is of (2.2) is equivalent to the following condition if

we assume condition (i1).

(ii1") For an object U of €, an element x of Fy(U) belongs to
INF(U) if there exists R€J(U) such that

Fy(f): Fx(U)— Fy(dom(f)) maps x into I NFy(dom(f))
for any fER.

For a map @ :X—Y and a functor F': 6 — Set, we define a
morphism £ : Fy— Fy of presheaves by

(Fgg)U=q0>x< Fy(U)=3et(F(U),X)— det(F(U), Y)=Fy(U).



Definition 2.4
Let (6,J) be a site, X a set and F': 6 — Set a functor.
(1) Let (X, D) and (Y, &) be the-ological objects.
If the map (Fw)U:FX(U)—>FY(U) induced by a map ¢: X—=Y
maps DNFy(U) into ENFy(U) for each U€Ob¥,
we call @ a morphism of F-(¢,J)-ological objects.
We denote this by ¢ : (X, D) — (Y, &).
(2) We define a category &°.(6,J) of the-ological objects as

follows. Objects of & (€, J) are the-ological objects

and morphisms of S(€,J) are morphism of the-ological
objects.



For a the-ological object (X, J) and U€ Ob®%, we put
Fo,(U)=9NFy(U). Then U Fg(U) defines a presheaf Iy, on &.
Remark 2.5

Let ¢: (X, D)— (Y, &) be a morphism of the-ological objects.
It follows from the definition of a morphism of the-ological
objects that (F¢)U:FX(U)—>FY(U) defines a map

(F,)y:Fg(U) = Fe(U) which is natural in U€ Ob%. Thus we
have a morphism [ ,: I'q; = I of presheaves.

Definition 2.6

For the-ologies & and & on X, we say that O is finer than &
and that & is coarser than & if Y C&.



Remark 2.7

We put ‘@coarse,XzUE]a[ng Fy(U). It is clear that . ... x is the

coarsest the-ology on X. For a map f/: Y — X and a the-ology &
on Y, f:(Y, &)= (X, D purse x) 18 @ morphism of the-ologies.

Proposition 2.8
Let (D,).; be a family of the-ologies on a set X. Then, (1D is a

el

the-ology on X that is the finest the-ology among the-ologies on

X which are coarser than & for any i €1.



For a set X, we denote by &, (€, J)y a subcategory of &.(6,J)
consisting of objects of the form (X, ) and morphisms of the

form idy: (X, D) — (X, &). Then, (€, J)y is regarded as an
ordered set of the-ologies on X.

We often denote by & an object (X, ) of &.(€,J)y for short.

It follows from (2.7) that (X, ., x) is the maximum (terminal)
object of &L(G,J)y-

Corollary 2.9
P(E,J)y is complete as an ordered set.



Proposition 2.10

Let & be a subset of LI Fy(U) which contains Fy(1.,).
UeOb¥®%

For f€Mor@, define a subset &; of Fy(dom(f)) by

Sy=Fy(f)(S N Fy(codom(/))).
For U€ Ob¢, we define a subset &(U) of Fy(U) by

S(U)= {xEFX(U) ‘ There exists ReJ(U) such that
Fy(g)(x) € U Sr for all gER.}.

feMor¢

If we put £(S)= U SU) and T={DEeP(E,)) | DD S},

Ue0b ¢
then we have (&) =1nt 2 € Pu(E, J)y.



Remark 2.11

(1) For U€ODb®%, the subset &'(U) of Fy(U) defined in (2.10)
coincides with the following set.

{xEFX(U ) ‘ There exists a covering (U, 2U )iy Such that
Fy(g)(x) € U %Sf for all iEI.}

fEMor

(2) Let 2 be a non-empty subset of & (€,J)y and put
S(Z)=@U2@. Then & (2)(U) coincides with the following set.
=

{xEFX(U ) ‘ There exists a covering (U, 2U )iy Such that
FX(gi)(x)E@U D for all iEI.}
=)
Hence sup2X=56(8(2))= UU%CS) (2)(U) holds.



Definition 2.12
For a subset & of |l Fy(U) containing Fy(1,), we call E(S)

UeOb¢
defined in (2.10) the the-ology generated by &'

Definition 2.13

Let (6,J) be a site and X a set. We put ‘@diSC»X:g@EObQ . &,

and call this the discrete the-ology on X. ;.. y is the finest
the-ology on X.

Remark 2.14
For any map /: X — Y and a the-ology & on Y,

(X, Dyise x) = (Y, &) is a morphism of the-ologies.



Remark 2.15
(1) Since ;. xD Fx(1g), D5 x contains the image of the map

FX(OU)FX(lg) —)FX(U) iInduced by the Unique map OU: U— 1%
for any U€ Obé. Hence every constant map in Fy(U) belongs

fo 9disc X-
(2) Let &. .., be the set of all constant maps in U](_)[bchX(U). Then
CS(),‘onstz U ( onst)f Thus @dlSC XnFX(U) @( onst)nFX(U)

feMor €
coincides with the following set.

{xEFX(U) | There exists a covering (U, 5 U)..; such that

Fy(g.)(x) is a contant map for all i EI.}



§3. Category of I"-plots

For amap f:X—=Y and (Y, &) €0b P(€,J), we define an
the-ology & on X to be the coarsest the-ology such that
(X, &)= (Y,8) is a morphism of the-ologies.

Proposition 3.1
For amap f:X—=Y and (Y, &)€0Ob P .(€,J), &/ is as follows.

&= U (Ff)_l(gﬂFy(U))— Ll {(PEFx(U) | Jp € gﬂFy(U)}
UeOb¥é UeOb®

Proposition 3.2

Let (&)).c; a family of the-ologies on a set Y, For a map

f:X-Y, (ﬂ%)f—ﬂ%fholds

1€l €1



We define a forgetful functor I': P (€,J)— Set by 1'(X,D)=X
for (X,2)e0bP(€,J) and I'(¢: (X, D)= (Y,E))=(p:X—Y)
for a morphism @: (X, )= (Y, &) in P(E,J).

It is clear that | is faithful. In other words, if we put
FHE, NAX, D), (Y, &) =T (HNPAE,I)NX, D), (Y, &))

for amap f: X—Y and (X, 9), (Y, &) €0b P.(€,J),
PG, J)A(X, D), (Y, &)) has at most one element.

SP(6, J)A(X, D), (Y, &)) is not empty if and only if LD C &
which is equivalent that &.(€,J)((X, D), (X, &) is not empty.



Proposition 3.3
For maps f: X—Y, g:W— X and an object (Y, &) of SP(€,J)y,

&/8 = (&8 holds and [':P(€,J)— Set is a fibered category.

In fact, f: (X, &) — (Y, &) is unique cartesian morphism over a map
f:X—Y whose target is (Y, &). Hence the inverse image functor

P PAC, T)y— PG, )y
associated with f is given by f*(Y, &) =(X, &) and
FE(idy: (Y, &)= (Y, ©))=(idy: (X, &) — (X, &)).
It is clear that &8=(&')® holds, which implies (fg)*=g*f*.



For amap f: X—=Y and (X, 9)€0b P(E,J), we define a
the-ology & on Y to be the finest the-ology such that
(X, 2)-(Y, @f) is a morphism of the-ologies, that is,
D= [1&, where

&EX

2={&€0bP(C,N)y| ED I (F)y(DnFxU))}.

UeOb¥%



Remark 3.4
For U€Obé, the subset &'(U) of Fy(U) defined in (2.9) is the

set of elements x of Fy(U) which satisfy the following condition
(%) if /:X—Y is surjective.
(x) There exists ReJ(U) such that, for each h€R, there exists
yeEDNFy(dom(h)) which satisfies Fy(h)(x)=(Fy)gompm(V)-

If we put £(8)= Il &SU), we have @f=?(§).

UeOb¥



Proposition 3.5
[:9(€,J)— Set is a bifibered category.

For a map f: X —=Y, define a functor f.: (6, J)y— P(E,J)y as
follows. For (X, ) € ObF (6, J)x, we put f(X,D)=(Y, D).

If (X,9),(X,2)€0bP(€,J)y satishes D CYD’, then @fc QZJZ
holds. Hence, for a morphism idy: (X, ) — (X, D) in PP(E,J)y,
we put fi(idy: (X, D) — (X, D)) =(idy: (Y, @f) — (Y, QZ]Z))

It can be verified that &.(€,J)(f«(X, D), (Y, &)) is not empty
if and only if (€,J)y(X,9D),f*(Y, &)) is not empty.

This shows that f. is a left adjoint of f*.



Proposition 3.6
Let p:F — € be a prefibered category. If F has an initial

object for any object X of &, then p has a left adjoint.

Corollary 3.7
Let p:F — € be a bifibered category. If F has a terminal

object for any object X of €, then p has a right adjoint.

Corollary 3.8
[': P(€,J)— Set has left and right adjoints.



Let {(X;, D)) }.c; be a family of objects of (€, J).
We denote by pr;: HXJ-—>XZ- the projection to the i-th component

jel
and .: X.— |1 X; the inclusion fo the i-th summand.
jel
Put @' = ﬂl Di. Then, D" is the finest the-ology such that
jE

pr;: (HX], QZI)—> X, D) is a morphism in P(E€,J) for any iE1.
iel

Let & be the coarsest the-ology on [ X; such that
jel
L (X, D) — (HX], S’Z,) is a morphism in &P(€,J) for any i€1.
jel

If we put &= { &€ 0b P, J)1x | & U(@j)l}, ther
=N &. < ’

EES;



Proposition 3.9
(1) ((EX], QZI) = (X, @i))iel is a product of {(X;, D)},

(2) ((Xl-, 9 ) A (]EHIX], @I))iel is a coproduct of {(X;, D)) }r

Proposition 3.10
Let /,2:(X, D) — (Y, &) be morphisms in PP(E,J). Then,
equalizers and coequalizers of f and g exist.

In fact, if Z L Xis an equalizer of f and g in the category of sets,
then (Z, 2" = (X, D) is an equalizer of f and g in &P (6, J).

IfFYS Wis a coequalizer of f and g in the category of sets,
then (Y, &) KN (W, %q) is a coequalizer of f and g in PP (E, J).



§4. Fibered category of morphisms

For a category &, let €'* be the category of morphisms in €
defined as follows.

Put ObB'? =Mor € and a morphism from E=(E 5 X) to
F=FLY)isa pair (E:E—F,f:X—Y) of morphisms in ¢
which satisfies p&= fr.

The composition of morphisms (&, f):E—F and ({,g):F—>G is

defined to be ((&, 2f):E—G.
E—S.F E-—S,.F_-*.G

O [
X -y x—I{.y-$%.7



Define a functor g: €% - € by @(E > X)=X and (&, f))=Ff

For an object X of &, we denote by CE)((Z) a subcategory of €%
given as follows.

ObG'={E€O0b %" | go(E)=X}
Mor ‘5)22)= [(EeMor G2 | (&) =id, )
We mention that ?5)((2) is often denoted by /X in literatures.

For a morphism f: X — Y in €, an object E of %)((2) and an object
I’ of %I(/Z), we denote by ngfz)(E, I') the set of all morphisms
E:E—F in € such that g(&)=f.



If € has finite limits, g0: €'¥ = € is a fibered category as we

explain below.
For a morphism f:X— Y in € and an object F = (F5Y) of 9?;2),

consider the following cartesian square in 6.

F>IYX /N
P lﬂ
x—I1 Ly

We put f*(F) = (FXYX % X) and a(F)= (fp,f> f*(F)—F.

Proposition 4.1
a(F) is a cartesian morphism, that is, for any object G of %(2)

the map af(F)* (2)(G f*(F))—>C[€(2)(G I') defined by
a(F) G af(F)’g' is bijective.



For objects E, I of ‘[51(/2) and a morphism @ :E — F in %”1(/2), let

(@) :f*(E)— f*(F) be the unique morphism in G~ that is
(E)
mapped to a composition f*(E) T ESF by the bijection

&(F).: GP(f*(E).f*(F) > G (FH(E). F)
given in (4.1). Thus we have the inverse image functor
f5: 50 5 GO
associated with a morphism f: X— Y in €. It follows from the
definition of f* that the bijection in (4.1) is natural in F.



For morphisms f: X—Y, g:Z— X in € and an object E of %(2),

let cﬁg(E):g*(f*(E))e(fg)*(E) be the unique morphism in C(?(Zz)

. " @ (f*(E)) (E)
that is mapped to a composition g*(f*(F)) —— f[*(E) — E

by the following bijection given in (4.1).

@ (E).: EP(*(FHE)), (f)*(E)) > G2 (g*(f*(E)), E)

Proposition 4.2
¢s,(E) is an isomorphism in %22). Hence ¢0: 6 — € is a fibered

category.



For a morphism f: X— Y in €, define a Funcforﬁ:%)((z)e%l(,z) by
fUE)=(E L Y) and (& idy)) = (£, idy) : f.E) — f.(F) for an
object E=(E 5 X) of %J(f) and a morphism (&, idy): E — F in %)((2).
Proposition 4.3

ﬁk:%)((z)%%;z) is a left adjoint oFf*:%I(/Z)%%)((Z).

Hence @:%(2)_)% IS a bifibered category.

For an object E of ‘[5)((2) and an object F of €%, we define a map

Op p: G2(E, F)— G (f), F) by @y p({£.1))= (&, idy), which

is a natural bijection. It follows from (4.1) that we have a natural

bijection @y p a(F).: G, (E, f*(F))— G, (fE), F).



85. Locally cartesian closedness

SP(€,J) is complete and cocomplete by (3.9) and (3.10), in
particular &.(6,J) has finite limits.

Hence we can consider the fibered category
90 : PAC, ) - P(E,J])
of morphisms in &.(6,J) by (4.2).

It follows from (4.3) that the inverse image functors of this
hbered category have left adjoints.

We show that the inverse image functors also have right adjoints
below.



Let @ : (X, D)— (Y, F) be a morphism in &,(E€,J) and
E=((E,&) 5 (X,9)) an object of PPA(E,J)?.

For ye Y, we denote by ly:go_l(y)—>X the inclusion map and
consider a the-ology & on qp_l(y).

We define a subset E(¢;Vy) of ZA€,))(@p~'(y), DY), (E, &)) by
E(p;n)={ae P&, )) (¢~ (), D), (E, 8)) | na=1)
if 9~ '(y)#@ and E(p;y)=0 if 9~ (y)=2.

Put E(p)= L1 E(¢;y) and define map @;: E(p)—Y by @p(a)=y

yeyY

if a€L(@;y). Note that the image of @, coincides with the
image of @.



We consider the following cartesian square (*) in det.
E(p) Xy X —E— E(¢)
(%) l% l(P!E
X Y
Define a map elf:”:E((p) Xy X — E by elf:”(a, x)=a(x) if aeE(gp;y)
and xE@~(y) for yeY.

Then, €, makes the following diagram commute.

E !
E(p) Xy X—=— E

P

4




Let 2y , the set of all the-ologies £ on E(@) such that £ C F %

and PPN FPEC & hold.
Note that L €2y , if and only if ¢\g:(E(@), £)— (Y, F) and

81630 (E(@) Xy X, 9%03%) — (E, &) are morphisms in &, (6, J).

Proposition 5.1

2f , i1s not empty.

In fact, the discrete the-ology < ;. f(, on E(@) belongs to 2y .



For U€Ob &, we consider the following condition (LE) on an
element y of Fg (V).

(LE) If V, WeOb @, fEBG(W, U), g€ B(W, V) and wE DNF(V)

satisfy ouF(g)=@ryF(f), a composition

Fow) 28 ey x X £ E

belongs to ENF (W) and a composition F(U) % E(p) =3
belongs to FNFy(U).

CﬂvE

Define a set Y , of F-parametrizations of a set E(¢) so that
S’ZE,QDHFE(@(U) is a subset of Fp,(U) consisting of elements

which satisfy the above condition (LE) for any U€Ob €.



Proposition 5.2
QE@ is a the-ology on E(@).

Proposition 5.3
D, is maximum element of 2p .

Llet E=((E, &) 5 (X, D)), G=((G, %) 5 (X, D)) be objects of

P (B, J)g({@) and @: (X, D)= (Y, F) a morphism in PA(E,J).

Let (&, idy):E — G be a morphism in (6, J)g(),@).

If a€E(p;y) for yeY, we have pca=rna =1, hence ca€ G(¢;y).
Thus we can define a map ¢,: E(¢) = G(p) by ¢(&)(a)=ca.



We consider the following diagram whose outer trapezoid and
lower rectangle are cartesian.

Since the right triangle of the above diagram is commutative,
there exists unique map §¢XyidX:E(qﬂ) Xy X—= G(@p) Xy X that

makes the above diagram commutative.
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Remark 5.5
Let E=((E, %) 5 X, D)), G=(G, %) 5 (X, D)),

— (2)
= (X, #) 5 (X, 2)) be objects of P{(®, )7 a

<.»:, idy):E = G, (¢, idy) :G— H be morphisms in (6, J)gg o
For a morphism @ : (X, )— (Y, F), it follows from the definition
of §¢ that (Ccf)(p:E(gﬂ)—)H((p) coincides with a composition

S G,
E(p) = G(e) = H(p).
We also note that (idE)¢ coincides with the identity map of E(@).



We define a functor ¢ : Pp(E,J)y o, = PHE. J)y s by putting

P(E)=(Ep). D) (Y, %))

for an object E=((E, &) > (X, D)) of Fp(6, ])g()@)

qﬂ!(<5, ldX>) — <§ ) ldY> y §0y(E) — C”(G)

for a morphism (&, idy):E— G in &P(6, J)g()@).

It follows from (5.3) and (5.4) that we have a natural

transformation €”: ¢p*¢p, — id@w,f)gg@) defined by

o

el = (el idy): ((E@) xyX. 2% n27%) 2% (X, 2))



For an object G=((G, %) - (Y, F)) of P&, J)7., we consider

the following cartesian square in (6, J).
(G Xy X, ENDP0)—2_, (G, %)

o !

(X, D) —= (Y, F)
Then, we have ¢*(G)=(G Xy X, £ ND"») T (X, D)).

We note that, for yeY, (X Xy G)(@;y) is a subset of
PAE, D@~ (), D), (G Xy X, €/rN D))
consisting of elements of the form (4,1,) such that 1:¢0~'(y)= G

satisfies L@~ '(y) Cp~'(y).



For vE G, let us denote by cv:gﬂ_l(p(v))—>G the constant map
whose image is {v}. Then we have ¢ (¢ '(p(v)))={v} Cp~l(p(»))
which implies (c,, 1,,,) €(G Xy X)(@).

Define a map ng:G—>(G Xy X) (@) by ng(v)=(cv, L))

Then, 77, makes the following diagram commute.

;,140
G —— (G Xy X)(p)
P l‘ﬂzw*«;)
Y

Proposition 5.6
ng : (Ga cg) — ((G XYX)(¢), gw*(G),qﬂ) IS a morphism In ‘@F(%’ J)



For objects E=((E, &) 5 (Y, F)), G=((G, %) 5 (Y, F)) of
PHE, D)y g and a morphism ¢: (X, D)= (Y, F) in Fp(E,J),
we consider the following cartesian squares in (6, J).

(E Xy X, &N D) -L2.(E, &)

I, E

X, D)—— (Y, F)

(GXy X, €N Do) —L>(G, ©)

B I

X, D) —— (Y, F)




Let ((,idy):E — G be a morphism in &(6E, J)ggg).

Since p{=r holds, there exists unique morphism
CXyidy: (E Xy X, E"ND™) = (G Xy X, GYrNDFv)
in &(6,J) that makes the following diagram commutative.

E Xy X ‘r E
N4 Xyld /
‘G xy X—2, G
U
|7 lp
P
X Y

The following result is easily verified from the definitions of V]g,
N, and (EXyidy),,.



Proposition 5.7
For a morphism (£, idy): (E, &) 5 (Y, F)— (G, %) 5 (¥, F))
in P(€,J)\?)__, the following diagram is commutative.

(Y. F) v,
E—=— (E Xy X)(9)

[ |@xyidy),
G
G (G Xy X)(@)

It follows from (5.6) and (5.7) that we have a natural
transformation #%:idg & o — @™ defined by

(Y,#)
P1p* )

o=’ idy): (G, &) 5 (Y, F)) = (G Xy X)(9) — (¥, F))

for an object G=((G, %) 5 (Y, F)) of P&, )3,



Consider the following diagram, where the outer trapezoid and
the lower rectangle are cartesian.

G Xy X Y — G
“‘\\\}/]g)(yidx 0 ‘y
NGy XN @)Xy X—=(GXy X))
P

Since the right triangle of the above diagram is commutative,
there exists unique map

ﬂépxyidxt GXy X — (GXYX)(CB)XYX

that makes the above diagram commute.



Lemma 5.8
For objects E=((E, &) 5 (Y. %)), G=((G, %) 5 (Y, F)) of

PHE. )iy and a morphism @: (X, D) — (¥, F) in P(E,J),

the following compositions are both identity maps.

(B (£5),
E(p) (E(@p) Xy X)(@) E(p)

nyxyid e’
GXy X—E (G xy X)(0) Xy X—L9 G, X




For an object G=((G, %) > (Y, F)) of Pi(€,J)3), and an

object E=((E, &) 5 (X, D)) of SP(E, J)g()@), since compositions

(p Q”!(gw)
0 (E)— 2, 0% (E) 25, 4 (E),
@ ?) gq”*

0*(G) 6", p*,0*(G) -2 »*(G)

are both identity morphisms by (5.8), we have the following result.

Proposition 5.9
PAC, N2 = P(E€,))?_ is a right adjoint of the inverse

| (X,9) 2(Y ,6) ,
image functor ¢*: 2.(6, J)g;@) PGB, J)g)g%).

Hence & (6,J) is locally cartesian closed.



Remark 5.10 ([10] Proposition A.16.22)
let E=((Y,8) 5 (X, D)), F=(Z, %) LA (X,<)) and

G=((W,%) 5 (X, D)) be objects of PG, N
It follows from (4.3) and (5.7) that there exist natural bijections

PHE, D)} (PP *(E), G) > Fp(E, ) (p*(E), p*(G)),

PUE. DD (p*E). p*(G)) > PUE. 1), (E.pp*(G)).

We note that the product E X F of E and F in &,(6, J)g()@) IS
given by E X F=p.p*(E).

Hence if we put G =pp*(G), we have a natural bijection

PHE, N ) (EXF,G)—~ FP(E,))3), (E,G).

. 2) - .
This shows that &PL(6, ])(X,@)ls cartesian closed.



§6. Strong subobject classifier

Definition 6.1

Let G be a category.

(1) Two morphisms p:X—Y and i:Z— W in € are said to be
orthogonal if the following left diagram is commutative, there
exits unique morphism s: Y — Z that makes the following right
diagram commute.

X——7Z X——7Z
lp li lp S li
y—w  yow

If p and 1 are orthogonal, we denote this by p L 1.



(2) For a class C of morphisms in €, we put
Ct={ieMor¥|p LiifpeC},
*C={peMor€|p LiifieC).

(3) Let E be the class of all epimorphisms in €. A monomorphism

i:Z— Win € is called a strong monomorphism if i belongs to E-.
(4) Let M be the class of all monomorphisms in €. An epimorphism

p:X—Yin % is called a strong epimorphism if p belongs to ~M.



Proposition 6.2
Let C be a class of morphisms in 6.

(1) If D is a class of morphisms in 6 which contains C, then
C-D>D+ and *CD"D.

(2) CCH(CH) and CC(+C)* hold.

(3) (-(CH))*=C+ and ~((-C)*)="C hold.

Proposition 6.3

(1) If i:Z— W is an equalizer of f,g:W—V, then i is a strong
monomorphism.

(2) If p: X—Y is a coequalizer of f,g:U— X, then p is a strong
epimorphism.



Definition 6.4
Let 6 be a category with a terminal object 1.

If a morphism ¢: 1 — €2 satisfies the following condition, we call
! a strong subobject classifier of 6.

(*) For each strong monomorphism 6: Y>> X in €, there exists
unigue morphism ¢_: X — €2 that makes the following square

cartesian. o

bl

X —



Remark 6.5
Assume that the outer rectangle of the following left diagram is

cartesian. If 1.V — X satisfies fhi=gsh, then there exists unique
morphism k:V — Y that satisfies ck=h by the assumption.

Hence if 6:Y— X is a monomorphism, ¢ is an equalizer of
1,85 X—Z.

It follows that if € has a strong subobject classifier, each strong
monomorphism in € is an equalizer of a certain pair of morphisms.



Proposition 6.6
A morphism i: (Y, &)— (X, D) in P(E€,J) is a monomorphism if
and only if 1: Y — X is injective.

Proposition 6.7

Let 0: (Y, F)— (X, D) be a strong monomorphism in L,(E€,J)
and denote by i:0(Y)— X the inclusion map.

Then there is a surjection 6:Y — o(Y) which satisfies i6=o0.

This map gives an isomorphism &: (Y, %) — (6(Y), 2") in PA(C,J).



Let £:{1} — {0,1} be an inclusion map. Then,

L ({ 1 }’ gchaarse,{l}) — ({0’1 }’ @coarse,{(),l})
is a morphism in &(€,J).

Proposition 6.8
Let (X, D) be an object of P (€,J) and Y a subset of X.

We denote by ¢: Y — X the inclusion map and define a map

¢$.:X—1{0,1} by gb(,(x)={(1) i;?

Then, the following diagram is a cartesian square in (€, J).
(Y @G) ({1} 9(:Oarse,{l})

b, I

(X9 @)—0>({091 }9 @COCZFS&{O,I})



Remark 6.9
The morphism o: (Y, 2°)— (X, <) is an equalizer of

G5 (X, D)= ({0,1}, D yurse.10.11) and a composition
(X’ 9) _X) ({ 1 }9 @COCZI’SB,{I}) _t) ({O’l }’ @COCZFSG,{O,I}) by (6'5)'
In particular, 6: (Y, Y°)— (X, D) is a strong monomorphism in

SP(€,J) by (6.3).

Proposition 6.10
[ ({ | }, @coarse,{l}) —> ({0,1 }, @COCZFSQ,{OJ}) 1S a S'I'rOng SUbObJQC'I'

classifier in &P(6,J).



By (3.9), (3.10), (5.9) and (6.10), we have the following result.

Theorem 6.11
SP(€,J) is a quasi-topos.

Proposition 6.12
w:.(X,2)—= (Y, &) is an epimorphism in & (€,J) if and only if
w:X— Y is surjective.



§7. Groupoids associated with epimorphisms

Let E=((E, &) 5 (B, $)) be an object P(E, J)E? & Such that

7 is an epimorphism. Then, 7 is surjective by (6.7), hence 7~ (x)
is not an empty set for any x€Bb.

We denote by i, : 77 !(x) = E the inclusion map.

Let G,(E)(x, y) be a subset of (€, ))(n~!(x), &), (z~1(y), &Y))
consisting of elements which are isomorphisms for x,yEDb.
Put Gl(E)— H GI(E)(x, y) and define maps oy, 7 G (E) = B,

'E - Gl(E)_)G1(E) and &g : B— G(E) by og(@)=x, (@)=Y,
lE((p)=go_1 if peG(E)(x,y) and eg(x) =id -1y



Supppse that the following diagram is cartesian.
pI
G,(E)XzG,(E) ——G,(E)

lprl ) lGE

G\(E)————B
AS a Se'l', GI(E)XBGI(E) 1S given by
G(E) X G(E)= (9, p) EG(E)XG(E) | 7g(@) = 0(W) ]
We define a map pp: Gy(E) Xp G(E) = G((E) by ug(e,y)=yp.
We consider the following cartesian squares.

pre pr
Ex%G(E)—"*>G|(E)  EXEG(E)—*=>G,(E)
pr e P B
U U
E B E B




Hence E XPG|(E) and E X*G|(E) are given as follows as sets.
L XZEG1(E) ={(e,p) EEX G|(E) | n(e)=0g(9)},
L X;EG1(E) ={(e,p) EEX G(E) | n(e)=1g(p)}

There exists unique map idp Xpip: E X PG (E) — E X7PG|(E)

that makes the following diagram commute.

I.T
E X5 G (E) —a Gy(E)
\~\i EXBZE O ZE
~ pr
G,(E) Gl (E) /

g
|




We define a map &: E X% G(E)— E by Egle, p)=i, ,p(e).
Let 25 the set of all the-ologies £ on G{(E) which satisfy
LPIE A PPCE C Ele EPEA FPI6®  @ERidXsts) gand P C BOENBE.
We note that the & €2, if and only if following maps are
morphisms in (6, J).
Ep: (E X G(E), 8™ ingPaw) > (E, &)
Eplidy Xpip): (E XEG(E), "N L0 - (E, &)
o, T . (G((E), L) — (B, %)

Proposition 7.1
ZE IS not empfy In fact (GI(E)’ @diSC,Gl(E))EZE'



For U€ Ob¢, we consider the following conditions (Gl), (G2), (G3)
on an element y of F py(U).

(Gl) If V, WeOb¥, fe6(W,U), g€E(W,V) and A€ ENFL(V)

satisfy mAF(g)=oryF(f), a composition

Fow)y L) poor 6B 2 E

B
belongs to ENF(W).
(G2) If V, WeOb¥, fe6(W,U), g€E(W,V) and A€ ENFL(V)

satisfy wAF(g)=1ryF(f), a composition

A 1 . z
Fow)y L&) pon G (E) B

B
belongs to ENFL(W).
(G3) Compositions F(U) % G{(E) 35 B and F(U) % G(E) 5 B
belong to SBNFL(U).

A\



Define a set & of F'-parametrizations of a set G(E) so that
?EHFGI(E)(U) is a subset of FGl(E)(U) consisting of elements

which satisfy the above conditions (Gl), (G2) and (G3) for any
UeOb%.



Remark 7.2
The conditions (Gl), (G2) and (G3) on ;/EFGI(E)(U) above are

equivalent to the following conditions (G1'), (G2") and (G3’),
respectively.

(G1) If V, WeOb ¥, fe6(W,U), geE€(W,V) and L€ENFL(V)
satisfy mAF(g)=opyF(f), then y satisfies
((AF(g), YF(f)): F(W) — E X7 G|(E)) € N Fpyorg ) (W).
(G2) If V, WeOb ¥, fe6(W,U), g€E(W,V) and A€ ENFL(V)
satisfy nAF(g) =15yl (f), then y satisfies
((AF(8), YF(f)): F(W) — E X G|(E)) € & 25N Fpy g ) (W),
(G3') yERBENRBENF (£)(U)



Proposition 7.3
G 1 is a the-ology on G(E).

Proposition 7.4
G, is maximum element of 2.



We consider the following cartesian square.
Py

EXEG(E)XpG(E) EXEG\(E) |
lpr3 lTEPr(g;l(E) (l)
G, (E) B B

That is, EX.2G(E)XzG|(E) is the following set.

{(e,p, W) EEXG(E)XG|(E) | n(e)=0g(@), t5(p) =0op(y) ]

It follows from the definition of EE that the following diagram is
commutative.

EXG\(E)—2£—E
lprgl B lﬂ (i)
G(E)—E£ B




There exists unique map

Cr XBidGl(E) : EXZEGI(E)XBGl(E) —>E><ZEG1(E)
that makes the following diagram commute by the commutativity
of diagrams (i) and (ii) above.

EXGEGl(E) ?iBGl(E)
~~~~~~~~~~~ CEXBUAG,(E)
P12
EXEG\(E)



We define maps pro3: EXPG(E)XpG(E) = G(E)XgG,(E) and
pre: EXEG(E)XpG (E)— E by pras(e, ¢, w)=(¢,y) and
prz(e, @, w)=e, respectively. Then, there exists unique map
idp Xppg: EXFG(E)XgG(E) > EX*G/(E)
that makes the following diagram commute.

EX%G(E)XzG,(E) P23 G,(E)X,G,(E)

; ~ ) ‘y [prl
~~~~ P1G &)

* Ex%G,(E) G,(E) G, (E)

O
i N
/A

L B




Let 117 : G{(E) X3G(E)— G|(E) X3G,(E) be unique map that

makes the following diagram commute.

G(E)XzG,(E) al G,(E)

. @
~~~~~~~ l y

*G(E)X 3G (E)—2% G,(E)

pr 1
G(E)

We note that 1\”) maps (¢, y) € G|(E) X3G/(E) to (15(y), 15(9)).
It is easy to verify the following fact.




Lemma 7.5
The following diagrams are commutative.

d
EXG\(E)X G, (E)~E 2 Ex %G (E)
5E><BldG1(E) . [5 E
Ex“EGl(E) o E

G1(E)><BG1(E) G (k)

1)

G,(E) xBGl(E) G(E)  EX*G(E)—"—E




Proposition 7.6
The structure maps

o, T . (G(E), &) — (B, %)
e (B, B)— (G(E), Gy)
ug: (GIE)xG(E), 0'nEY7) — (G|(E), Tp)
i (G(E), %) — (G(E), &)
of the groupoid (B, G{(E)) are morphisms in &(E,J).

Definition 7.7
Let E=((E, &) S (B, B)) be an object of SP(E, NP such

GRS
that  i1s an epimorphism. We call the groupoid
(B, AB),(G{(E), &); 0, T, €p» UE» 1) In P(E,J) the groupoid
associated with I and denote this groupoid by G(E).



Example 7.8
We denote by ox: (X, )= ({1}, D ,u5e.(11) the unique morphism

in &(€,J) for an object (X, X) of P(€,J). Since oy is an
epimorphism, we can consider the groupoid G(0Oy) associated with

Oy=((X, X) = ({1}, Dypurse 111)- This groupoid
G(OX) — (({ 1 }9 @COCZFSE,{ 1 })9 (Gl (OX)9 S60)(); GOX’ TOX’ 80X’ //tOX9 ZOX)
is described as follows. Put End(X, 2)=2(€,J)(X, ), (X, X))
and define a subset Aut(X, X) of End(X, ) by
Aut(X, Z)={oe€End(X,X) | @ is an isomorphism.}.

Then, G{(Oy) is identified with Aut(X, X) as a set.
The source 0y and the target 7, are the unique map G(Oy) — {1}.

The unit g {1} = G(Oy) maps 1 to idy.



The COmPOSi'I'iOn //lOX: Gl(OX)XGl(OX) —> GI(OX) maps (qﬂ, l//) to W
and the inverse iy : G (Ox)— G(Ox) maps ¢ to ¢!
We define a map ay: XXG{(Oy)—= X by ay(x, )=@(x), then

the the-ology ?OX on G,(Oy)=Aut(X, X) is given as follows.

For Ue ObG, Gp NF; 0)(U) is a subset of F; o, (U) consisting
of elements y which satisfy the following condition (G).

(G) For V, WeOb¥, feEC(W,U), g€E(W,V) and A€ NF(V),

the following compositions belong to X NFy(W).

Fw) 229w G (0y) & X

AF( )JXF(f) Oy



Let ((G, &); €, u,1) be a group object in PP (€, J) with structure
morphisms &: ({1}, .11 (G, &), 1:(G, &) — (G, &) and
u:(GXG, NG - (G, ) in P(E€,J) which make the
following diagrams commute. Here, p;: GXG — G denotes the
projection onto the i-th component for i=1,2.

| r .
GXGXGLXY6, GG Gx(11-26%5, GG <296 (11 G
[idXX U l H I(idG’ OGO)Z l H °c(lO G’ idG)]
GXG————G G— g G

G (id;, 1) GxG (1, idG)G

o6 |/ o6

(1} ———G—"—{1}




For an object (B, %) of S(6,J), we define a groupoid Gg; j in
P(€,J) as follows.

Put G;=BXGXB and let 65 5,75 3:G; — B and pr;: G, — G be
the projections given by o g(x, g, ¥)=X, 75 (X, g, y)=y and
prg(x, g, y) =g. Define maps &5 5:B— Gy by £ p(x)=(x, e(1), x).

Consider the following cartesian square.
|

G, XpGy > G
lPl" 1 i lGG,B
G—> B

Then G X,G,={((x, g,V),(z, h,w))€G,XG, | y=z} holds as a set.
Define mClPS IuG,B ) Gl XBGl —> Gl and lG,B . Gl —> Gl by
te g((x, g, ¥), (2, h,w))=(x, (g, h), w) and 1 p(x, g, y)=(y, 1(g), X).



It is clear that oG p, 76 3 (G, BENGPNARBGE) — (B, AB) and
pre: (G, BosnNGP'oNnABcs) - (G, &) are morphisms in Pp(E,J).
Since 0 g€ p="175pEG = 1ldx and the following diagram is
commutative, it follows that &5 5: (B, %) = (G|, B8N GP N IB'GH)
is also a morphism in &(€,J).

(B, gg) SG,B (G19 %GG,BH Cgpl‘c;n ggTG,B)
lOB lPrG
({1}’@0{”6’,{1}) = (G9 S6)




We note that o gl g=0; gPT| and 7 gl p=T; gPro hold and
that the following diagram commutes.

G, %G~ 2P, 6o G

|He.5 o Iz
G, = G
Since 05 g, TG g, (PTG, PI'g) and p are morphisms in &p(6,J), it
follows that
Hep: (Gl X5 Gl? (B8N GP'eNABTcB)PiN (BN EP e NGB GB)P2)
— (G, B8N GP 6N TB'GB)
is a morphism in &.(6,J).




We GISO have UG BZGBZTG B TG BZGBZ GGB and pI’GlGBZ lpI‘G
which imply that

.- (G, BGBNGPNRBGB) = (G, BGENGP NIB'GB)
is a morphism in &(6€,J). It is easy to verify that
(B, $B), (BXGXB, BN GP'NIRB CE), 6 p, TG p» €6.8s KG.B> 1G.B)
is a groupoid in (6, J).

Definition 7.9

The groupoid

(B, $B),(BXGXB, B8N GY'NIBCE); 66 g, T B €G.8» HG.B> 1G.B)
in &.(6,J) constructed above is called the trivial groupoid
associated with ((G, &); €, u,1) and (B, A%).



Let (X, Z) and (B, %) be objects of L€, J).

Let us denote by pry: XXB — X and prp: XXB — B the projections.
Then we have an object X =((XXB, ZP'xN98P's) i (B, RB)) of
Ep1 (€, 1)).

We also have a group object G{(Oy)=Aut(X, X) in P(€,J) with
unit £ {1} - G,(0y), product Ho, G,(05)XG(0Oy) = G{(Oy)

and inverse 1 : G(Oy) = G(Oy) as we considered in (7.8).

Proposition 7.10

The groupoid G(X)=((B, B), (G(X), €x); 0, Ty, Ex» hx Lx) in
SP(€,J) associated with X is isomorphic to the trivial groupoid
associated with ((G(Oy), ?OX); 0,0 Mo, ZOX) and (B, A%).



Let us denote by Ep1 .(PP(€,J)) a subcategory of P (E,J )2
whose objects are epimorphisms in (¢, J) and morphisms are
cartesian morphisms in the fibered category

0 : PAC, ) = P(E,J) of morphisms in PP(E,J).

Let D=((D, 2) 5 (A, o)), E=((E, &) 5 (B, B)) be objects of
Epi (P#(€,J)) and E=(E,f): D — E a morphism in Epi (Z.(€, J)).
For x€A and yE B, we denote by jx:p_l(x) — D and iy:iz_l(y) — E
the Inclusion maps, respectively.

_ E, _
Then, we have unique map P 1(?6)—>7T l(f(x))
Ep~l(x)= 771 (f(x)) that makes ljx l’f(x)
X D é E

the right diagram commute.



Lemma /.11

5x:(p_1(x), D) = (7Y (A(x)), &) is an isomorphism in &L(E, J).

Remark 7.12.
We consider the following cartesian square.
Ax,E—Jr ,E
Il JU
lf f l
A B

Since € is cartesian, (p, £):(D, D)= (AXzE, AN&) is an
isomorphism in (€, J). Put £r=(p, ¢) then &, satisfies mc, = p
and f,cr=¢. Thus we have

D = (AN E)r = AN &l = AP N E°.



By (7.11), we can define a bijection

Sxy - G1ID)(x, y) = G (E)(f(x), ()

by £, (@p)=E, & for x,y EA.
We also define a map &,:G{(D)— G(E) by 51((p)=§x,y(§ﬂ) where

x=op(@) and y=1p(@).
Note that a pair (f, &) of maps is a morphism G(D)— G(E) of
groupoids, that is, the following diagrams are commutative.

Here, ¢ X; 6, :G1(D) X4 G (D) = G|(E) XgG(E) maps (¢, y) to
(51(@), &1 (W)).



A< G,(D)2> AL G,(D)-2-G,(D) G,(D)x,G,(D)X2-G, (D)
lfg l‘fl i lf 151 z 151 lfle51 151
B—G(E)—B—G/(E) = G|(E) G1(E)><BG1(E) G (E)
Define a mGP 5Xf51 DXADGl(D)—)EX;EGI(E) by
(X&), p) = (E(e), ().

Then, the following diagram is commutative.

DX’ G,(D) D,

| £x¢1 : ¢
EX?%G(E)—=——E




Lemma 7.13

¢ (GiD), &p)— (G((E), &) is a morphism in PP(E,J).

It follows that a pair of morphisms (f,&,):G(D)—G(E) is a
morphism of groupoids in &(E, J).

We denote by Grp(Z(€,J)) the category of groupopids in
SPA(€,J). That is, objects of Grp(Fu(€,J)) are groupopids in
SP(€,J) and morphisms of Grp(Zu(€,J)) are morphisms of

groupopids.



Define a functor Gr:Ep1 (P(€,J)) = Grp(P(E€,J)) as follows.

For an object E=((E, &) 5 (B, RB)) of Epi (P(E,J)), let Gr(E)
be the groupoid G(E) associated with E as we defined in (7.7).

For a morphism E=(&,f):D — E in Epi (%(€,J)), we put
Gr(é)=(/,5)):GID)—->G(E).
Then Gr(&€) is a morphism in Grp(Z(€,J)) by (7.13).



§8. Fibrations

Definition 8.1 ([4], 8.4, 8.8)

Let G=((Gy, G), (G, G );0,7,€,1,1) be a groupoid in (€, J).
We denote by pr_, pr.: G, X Gy, — G, the projections given by
pr(x,y)=x and pr(x,y)=y.

If a map (0,7):G;—= Gy X G, given by (0, 7)(@)=(c(p), 7(@)) is
an epimorphism and the the-ology (&), on Gy X G

coincides with & '"NET", we say that G is fibrating.

Let E be an object of Ep1 .(P(6,J)). If the groupoid G(E)
associated with E (7.7) is fibrating, we call £ a fibration.



Remark 8.2

IfE=((E, &) 5 (B, B)) is a fibration, since (o5, ;) : G,(E) = BXB
is surjective, G{(E)(x,y) is not empty for any x,yEB.

Hence fibers (71'_1()6), %iX) of 7 are all isomorphic.

Lemma 8.3
Let (X, Z) and (B, %) be objects of L€, J).

We denote the projections by pry: XXB — X and pry: XXbB — B.
Then & coincides with (XP'xN98P's)

prp°

Proposition 8.4
Let &:D — E be a morphism in Ep1 (% (6, J)).
If &£ is a fibration, so is D.



Example 8.5
Let ((G, &); e, u,1) be a group in PP (6€,J) and (B, ) an object

of &P.(€,J). Consider the trivial groupoid

(B, $),(BXG XB, BBNRBCENEGYS); 66 p, T B €6.8) KG.B> 1G.B)
in 9. (€,J) associated with ((G, &); &, u,1) and (B, RB).

We denote this groupoid by G p.

Since (0 g, T g) : BXGXB— BXB is a projection, it follows from
(8.3) that GG’B is fibrating.

Hence X =((XXB, ZP'xN9BP's) al (B, %)) is a fibration by (7.10).
We call X a product fibration.



Definition 8.6
Let € be a category with a terminal object 1.

For an object U of €, we say that a functor F': 6 — det is
U-pointed if F:6(1y, U)— Set(F(1g), F(U)) is surjective.
If I'is U-pointed for any object U of €, we say that I is pointed.

Proposition 8.7
If a category € has a terminal object 1, then the functor

h's: € — Set defined by hl‘g(U)=<€(1<-g, U) and
hie(f:U—-V)=(f.: €, U)— E (1, V)) is pointed.



Definition 8.8
Let (6¢,J) be a site. For an object U of &, we say that a functor

F .6 — Set is U-local if F satisfies the following condition (L).
If F'is U-local for any object U of €, we say that F'is local.

(L) For an object V of € and a map a:F(V)— F(U), if there

exists a covering (V, R V),cy of V such that

F(f)*:Set(F(V), F(U))— Set(F(V;), F(U))

maps a into the image of F:6(V,, U)— Set(F(V,), F(U))
for any 1€/, then a belongs to the image of
F.6(V,U)— Set(F(V), F(U)).



Remark 8.9
Let € be a category and F': ¢ — Set a functor. For an object U

of €, we define a subset F; of |] Fp (V) by
VeOb¥

Fy= U Im(F:E(V,U)— Set(F(V), F(U))=Fg (V).

VeOb®
Then, it is easy to verify that F; satisfies condition (ii) of (2.2).

(1) Assume that € has a terminal object 1. Since
gUﬂFF(U)(lg)zlm(F:%(l% U)*FF(U)(I%)),
F'is U-pointed if and only if &, satisfies condition (i) of (2.2).

(2) For a site (6¢,J), F'is U-local if and only if F;; satisfies
condition (iii) of (2.2).



Thus F#; is a the-ology on F(U) if and only if I is U-pointed and
U-local. Assume that £ is pointed and local below.

For an object V, a morphism f: U— Win € and ¢ € F,NFg ) (V),
since there exists g€ G (V, U) such that F(g)=¢q, we have
(FF(f))V((P) =F(No=F()Fg=F(fg)& gUnFF(W)(V)-

into FyNEFgy, (V).

Define a functor F:%%@F(%, J) by F(U)z(F(U), F ;) for
UcOb® and F(f:U— W)=(F(f):(F(U), F,)— (F(W), %))
for a morphism f: U— W in €. Then ['F=F holds.



Example 8.10

Define a category € as follows. Objects of G are open sets of
n dimensional Euclidean space R" for some n = 0. Morphisms of

G are C°°-maps For Ue ObE*™, let P_(U) be the set of
families (U, —> U)..; of open embeddings such that U= U f(U)).

€1

It is easy to verify that P_ is a pretopology on €*°.
We give a Grothendieck topology J, on €™ generated by P_..

Then, the forgetful functor F': 6% — det is pointed and local.
For a set X, a the-ology on X is usually called a diffeology on X

and a the-ological object is called a diffeological space.



Example 8.11
Let k be an algebraically closed field. We denote by Jff, the

category of affine varieties over k. For Ve Ob fj, let P (V)

be the set of families (V, i V);c; of Zariski open embeddings

such that V= Uf(V) It is easy to verify that P.(V) is a
pretopology on foﬁ{ We give a Grothendieck topology J . on

Aff, generated by ng]@(V)-
Then, the forgetful functor F: Jff, — det is pointed and local.



Proposition 8.12
Let (X, ) be an object of &.(6,J). Suppose that F: 6 — Set is

U-pointed and U-local for an object U of 6.

Then, a map @ :F(U)— X is an F-plot if and only if
p:(F(U), F)— (X, ) is a morphism in (6, J).

Lemma 8.13
For an object E=((E, &) S (B, %)) of SP(€,J), the following
diagram in &, (€, J) is cartesian.

A\

(EX%G,(E), ™G ") £ (E, &)

lprgl(m ) l”
(G(E), &) = (B, B)




Let E=((E, &) 5 (B, $)) be a fibration. For b€ B, define a map
l,: B— BXB by 1,(x)=(b, x). We denote by pry.: BXB— B the
projection onto the i-th component for i=1,2.

Since prp Y, is a constant map and pry,y, is the identity map of B,

1, (B, B)— (BXB, BP'51NABP'52) is a morphism in PP(E,J).
For U Ob% and ye ABNF,(U), since
(F,) (1) € BB =(Tp), .,
it follows from (3.4) that there exists RE€J(U) such that, for each
hER, there exists y,€ G§pNFg (dom(s)) which satisfies

Fpyg(W((F,) A1) =F (5, ) domn)(V1)-



For u€ F(dom(h)), since y,(u) belongs to G(E)(D, y(F'(h)(1))) by
the commutativity of the following diagram, we have
(7, (w))(€)) =y(F(h)(w)) for ecn™'(b).

F(dom(h))—"— G,(E)

[F(h) |(05- 7)
F(U)——B—" >BxB

We denote by pr i, 7~ (b)xF(dom(h)) =z~ (b) and
P pdomy - % (D)X F(dom(h)) » F(dom(h)) the projections onto

the first and second components, respectively.

We also denote by ib:ﬂ_l(b)—>E the inclusion map.



For (e,u)€n~ ' (b)XF(dom(h)), since m(e)=b=o0gy,(u) by the
commutativity of the above diagram, we have a map

(EpPL 11y VAP  Fedom@ny) - @ (D)X F(dom(h)) = EXG,(E).
Let us denote by ;7h:7r_1(b)><F (dom(h)) — E a composition

(ibprﬂ_l(b),}’hpl’ F(dom(h)))

7~ (b)x F(dom(h)) ——2"71 0 sk G (E) % E.

Then 7,(e, u)=(y,(u))(e) holds for (e, u) € = (b)x F(dom(h)).

Lemma 8.14
The following diagram is cartesian in the category of sets.

7~ (b)x F(dom(h)) —2—E

ler(dom(h))
F(dom(h))

yF(h) ll:




Lemma 8.15
If F':6 — det is pointed and local, the following diagram is

cartesian in &6, J). ]

(7~ (B)x F(dom(h)), (E")P'—'onF  rn) b (E, &)

lPl’ F(dom(h)) F(h lﬂ
(F(dom(h)), Fgomam) A (B, B)




Assume that the lower right rectangle of the following diagram is
cartesian. Then, there exists unique map

7, (b)x F(dom(h)) = F(U)X3zE
that makes the following diagram commute.

n—l(b)xF(dom(h))&

PT F(dom() ' RU )E;TBE v lfﬂ
F(h) F( U; 4 B

F(dom(h))




Proposition 8.16
We assume that F': 6 — det is pointed and local. Consider objects

r*(E)=((F(U) X3 E, F,/n&") 5 (F(U), %))
G = (7~ (b)x F(dom(h)), (&P~ e FE riman) THEm
(F(dom(h)), Fgommn))
of P(C,J). Then, v,=(¥;, F(h)):G— y*(E) is cartesian
morphism in P (€, J ).



For morphisms ;,5,:D— E in Ep1. (@F(C[g J)), we put
D=(D,2)5 (A, o)), E=((E, &) 5 (B, B)) and &,=({.f,)

for k=1,2. For a€A and b€ B, we denote by j_:p~'(a)— D,
ibiil'_l(b)—>E the inclusion maps. It follows from (7.11) that the

morphisms ¢ - (p~ (%), D) — (7 1(x)), %ifk@) (k=1,2) obtained
by restricting {,: (D, ) — (£, &) are isomorphisms in (€, J).
Thus we have the following isomorphism in (€, J).

0 (@ (i), E19) = (2~ (£(0)), E2w)
We define a map {,’:A—>G1(E) by 5(x)=§2,x§'1_’;.

Then, 6,C(x)= f;(x) and 7C(x)= f>(x) hold.



The following diagram is commutative.

G (E)

Lemma &8.17

~/

C: (A, d)— (G{(E), &) is a morphism in P(E,J).



Proposition 8.18 ([4], 8.9)
We assume that F': 6 — Set is pointed and local.

An object E=((E, &) 5 (B, B)) of Ep1 (P(€,J)) is a fibration
if and only if the following condition (P) is satisfied.

(P) There exists an object (T, ) of (€, J) such that, for
any U€0Ob€ and y€ BNFR(U), there exists a covering

(U, i U).ci; of U such that the inverse image (y/(f;))*(E)
of & by yI(f.): F(U,)— B is isomorphic to a product fibration
(Pt (TXF(U), I O‘PanPZPrF<U>)—>(F(U) Fy) for any i€

Here pr: TXF(U;)— T and er(U) I'XF(U,)— F(U,) denote
the projections.



§9. I-topology
Let Jop be the category of topological spaces and continuous
maps. We denote by % : Jop — Set the forgetful functor.

For a functor F': 6 — Set, we assume in this section that there
exists a functor Fo: 6 — Jop which satisfies F=%F .

.~ Jop
&"' F
24 Set




We denote by O, the sets of open sets of Fo(U) for U€ Ob¥.

Definition 9.1
For an object (X, ) of S(6,J), we define a set O, of
subsets of X by

Oxan={0CX|a ' (0)EO, if UEObE,ac DNFy(U)}.
It is easy to verify that Oy g is a topology on X.
In fact, Oy 4 is the coarsest topology on X such that

a:Fo(U)— X is continuous for any U€ObE and a€ D NF(U).
We call Oy ) the F-topology on X associated with .



Let @:(X,D)— (Y, &) be a morphism in P(E,J).

For O€ 0y and U€ObE, acDNFy(U), since pa=(F ) ()
belongs to ENFy(U), a Yo 1 (0)=(pa) ' (O)e O,; holds.
Hence we have ¢~ (0)E Oy g and @: (X, O(x 5) = (¥, Oy &)
IS @ continuous map.

Define a FUnC'I'Or gt@F(%, J)_)L%p by g((X, @)):(X, @(X,@))
and I (@ : (X, D)= (Y, E)=(¢: (X, O 5) = (Y, 0y))-

Definition 9.2
For a topological space (X, 0), we define a set &y ;) by

D x.0)= Ll (a€ly(U)|a:Fo(U)— X is continuous. }.

UeOb€&
If D x0)is a the-ology on X, we call an element of &y 4y an

F-(X, O)-plot.



The following proposition gives a sufficient condition for &y 4,
being a the-ology on X.

Proposition 9.3
Let (X, O) be a topological space. If the following condition (C)

is satisfied for (X, O), then &y 4 is a the-ology on X.

(C) For any U€Ob®, a map a:F4(U)— X is continuous if there

exists a covering (U, i U)..; of U such that compositions

F(f
F(U)) Al Fo(U) S X are continuous for any i €1.



Remark 9.4
We consider the following condition (Q) on Fg: 6 — Jop.

(Q) For any U€Ob%, there exists a covering (U, R U).c; of U
such that the map |l Fo-(U,) = Fo(U) induced by the family

i€l
F(f
(F;;(Ui) Uy F;;(U))iel of maps is a quotient map.

If the condition (Q) is satisfied, the condition (C) of (9.3) is
satisfied for any topological space (X, 0).

Lemma 9.5

Let (X, Oy), (Y, Oy) and (Z, ©0,) be topological spaces.

For continuous maps f:X—=Y and g:Y—=Z, if gf: X—>Zis a
quotient map, so Is g.



Proposition 9.6
For an object U of €, suppose that there exists a covering R of

U such that the map p: |l Fo-(dom(f))— Fo-(U) induced by the

fER

Fo
family (Fg(dom(f)) J_(fi Fy(U))feR of maps is a quotient map.

Let R be the sieve on U generated by R. Then, the map
p: L Fo-(dom(u)) — Fo(U)

UER
F 97(’4)

(Fg(dom(u)) <= Fo(U)) g of maps is a quotient map.

Thus we have the following result.



Proposition 9.7
The condition (Q) in (9.4) is equivalent to the following condition.
(Q') For any U€ Ob¥é, there exists R€J(U) such that the map

LI Fo-(dom(f)) = Fo(U) induced by the family

fER
Fo
(Fg(dom(f)) "_(fi Fy(U))feR of maps is a quotient map.

Proposition 9.8
(1) For an object (X, ) of &(€,J), we have U CQZ(X’@(X,@)).

(2) For a topological space (X, 0), OC @(X@(X,@)) holds.



Assume that D x ) is an object of F(€,J) for any topological
space (X, 0). Let (X, Oy) and (Y, Oy) be topological spaces and
f:X—=Y a continuous map.

Then f: (X, S’Z(X,@X))ﬁ(Y, Q(Y,@ﬂ) is a morphism in &.(6,J).

In fact, for UEObE and a€ D NFy(U), since
(Fyl)=fa:Fg(U)—Y

is continuous, (Ff)U(a)EQZ(Y,@Y)ﬂFY(U) holds.

Define a functor P: Jop — (6, J) by P((X, 0))=(X, D x )
for an object (X, O) of Jop and

P(f (Xa @X) — (Ya @Y)) — (f (X9 @(X,@X)) — (Ya @(Y,@Y)))
for a continuous map f: (X, Oy)— (Y, Oy).



We remark that I'P=% and %<9 =1 hold and that both P and
I are faithful.

Proposition 9.9
Suppose that (X, < p)) is an object of Pp(€,J) for any

topological space (X, 0). Then, P: Jop — S(€,J) is a right
adjoint of J : (€, J)— Jop.

For a topological space (Y, Oy) and a map f: X— Y, we put
O'={0cX|O0=fXV) for some V& Ov}.

Then O/ is the coarsest topology on X such that f:X—Y is a

continuous map.



Proposition 9.10
For a map f:X— Y and an object (Y, &) of &.(6,J), consider

the F-(¢, J)-ology & on X. Then, the F-topology O x «r, on X

associated with &’ is finer than @](CY ~

For a topological space (X, Oy) and a map f: X— Y, we put

O,={0CY|f'(0)eby}.
Then O, is the finest topology on Y such that f:X— Y is a
continuous map.



Proposition 9.11
For a map f:X— Y and an object (X, ) of P(€,J), consider

the the-ology &, on Y. Then, the F-topology @(Y,@f) on Y
associated with P, is coarser than (O o))

If F'o-:6 — Jop satisfies the following condition (Q"), @(Y@f)
coincides with (O )y

(Q") For any U€Ob% and ReJ(U), the map

f]e_llf{ Fg(dom(f))— Fo(U)

Fo(h
induced by the family (Fy(dom(h)) —2 Fo(U)) e

of maps is a quotient map.
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