A theory of plots

Shinshu Topology Seminar Kansai Algebraic Topology Seminar January 30, 2024

Atsushi Yamaguchi

Contents of this slide

- §1. Recollections on Grothendieck site
- §2. Plots on a set
- §3. Category of F-plots
- §4. Fibered category of morphisms
- §5. Locally cartesian closedness
- §6. Strong subobject classifier
- §7. Groupoids associated with epimorphisms
- §8. Fibrations
- §9. F-topology

§1. Recollections on Grothendieck site We denote by Set the category of sets and maps. $h_X(U) = \mathscr{C}(U, X)$ for an object U of \mathscr{C} and $h_X(f: U \to V) = (f^*: \mathscr{C}(V, X) \to \mathscr{C}(U, X))$ for a morphism $f: U \to V$ in \mathscr{C} . We call $h_X: \mathscr{C}^{op} \to \mathscr{S}et$ the presheaf on \mathscr{C} represented by X. For a morphism $\varphi: X \to Y$ in \mathscr{C} , let $h_{\varphi}: h_X \to h_Y$ be a natural

For a category C, we call a functor $C^{op} \rightarrow Set$ presheaf on C. For an object X of \mathscr{C} , let $h_X: \mathscr{C}^{op} \to \mathscr{S}et$ be a functor defined by

Here, $\mathcal{C}(U,X)$ denotes the set of morphisms in \mathcal{C} from U to X. transformation defined by $(h_{\varphi})_U = \varphi_* : \mathscr{C}(U, X) \to \mathscr{C}(U, Y).$

Definition 1.1 Let C be a category. (1) A full subcategory \mathcal{D} of \mathcal{C} is called a sieve if it satisfies the following condition. If $U \in Ob\mathscr{C}$ and $\mathscr{C}(U, V) \neq \emptyset$ for some $V \in Ob\mathscr{D}$, then $U \in Ob\mathscr{D}$. (2) For $X \in ObC$, sieves of C/X is called a sieve on X.

For set valued functors $F, G: \mathscr{C} \to \mathscr{Set}$, if F(U) is a subset of G(U)for any object U of C and the inclusion map $i_{II}: F(U) \rightarrow G(U)$ defines a natural transformation $i: F \to G$, we call F a subfunctor of G. If F is a subfunctor of G, we denote this by $F \subset G$.

Remark 1.2 For a sieve R is on X, ObR is a set of morphisms in C whose targets are X. subfunctor of the presheaf $h_X: \mathscr{C}^{op} \to \mathscr{S}et$ represented by X. set of sieves on X and the set of subfunctors of h_X . Thus we identify a sieve on X with a subfunctor of h_X .

source of f and codom(f) the target of f.

- If we put $R(Y) = \{f: Y \to X \mid f \in ObR\}$ for $Y \in ObC$, then R is a
- Namely, $R \mapsto R(-)$ gives a bijective correspondence between the
- For a morphism f in a category \mathcal{C} , let us denote by $\operatorname{dom}(f)$ the

Definition 1.3 (T1) For any $X \in Ob\mathscr{C}$, $h_X \in J(X)$. such that $h_f^{-1}(S) \in J(\operatorname{dom}(f))$ for any $f \in \operatorname{Ob} R$.

- Let \mathscr{C} be a category. For each $X \in Ob\mathscr{C}$, a set J(X) of sieves on Xis given. If the following conditions are satisfied, a correspondence $J: X \mapsto J(X)$ is called a (Grothendieck) topology on \mathscr{C} . A category C with a topology J is called a site which we denote by (C, J).
 - (T2) For any $X \in Ob\mathscr{C}$, $R \in J(X)$ and morphism $f: Y \to X$ of \mathscr{C} , a subfunctor $h_f^{-1}(R)$ of h_Y defined below belongs to J(Y). $h_f^{-1}(R)(Z) = \{g: Z \to Y \mid fg \in R(Z)\}$ (T3) A sieve S on X belongs to J(X), if there exists $R \in J(X)$

Proposition 1.4 Consider the following conditions on J. for $f \in Ob R$. (T4) A sieve S on X belongs to J(X) if it has a subfunctor which belongs to J(X). (1) (T2) and (T3) imply (T4). (T1) and (T3) imply (T5). (2) (T4) and (T5) imply (T3). (T3') and (T4) imply (T3).

- (T3') A sieve S on X belongs to J(X), if there exists $R \in J(X)$ such that S is a subfunctor of R and $h_f^{-1}(S) \in J(\operatorname{dom}(f))$
- (T5) Suppose that $R \in J(X)$ and that $R_f \in J(\operatorname{dom}(f))$ is given for each $f \in Ob R$. Then, $\{fg \mid f \in Ob R, g \in Ob R_f\} \in J(X)$.

Proposition 1.5 If $R, S \in J(X)$, then $R \cap S \in J(X)$.

Definition 1.6 J' is said to be finer than J, or J be coarser than J'. Hence the set of all topologies on \mathcal{C} is an ordered set.

For subfunctors G and H of a presheaf F on \mathcal{C} , let us denote by $G \cap H$ a subfunctor of F defined by $(G \cap H)(X) = G(X) \cap H(X)$.

Let J, J' be topologies on \mathscr{C} . If $J(X) \subset J'(X)$ for any $X \in Ob \mathscr{C}$,

Let $(J_i)_{i \in I}$ be a family of topologies on \mathscr{C} . We set $J(X) = \bigcap_{i \in I} J_i(X)$ for each $X \in Ob \mathscr{C}$, then J is a topology on \mathscr{C} and $J = \inf\{J_i \mid i \in I\}$. If T is the set of all topologies on \mathscr{C} that are finer than every J_i , then sup{ $J_i | i \in I$ } = inf T. A topology J on C given by J(X) = (the set of all sieves on X) is the finest topology on \mathscr{C} . On the other hand, a topology J given by $J(X) = \{h_X\}$ is the coarsest topology.

Proposition 1.7 For a set R of morphisms in C with target X, we put that $f \in R$, $g \in Mor \mathscr{C}$ and codom(g) = dom(f). Then, R is the smallest sieve containing R.

Definition 1.8 Let (\mathcal{C}, J) be a site. sieve generated by R. if the sieve generated by f_i 's belongs to J(X).

$\bar{R} = \bigcup \operatorname{Im}(h_f: h_{\operatorname{dom}(f)} \to h_X).$ In other words, \overline{R} is the set of all morphisms of the form fg such

(1) For a set R of morphisms in \mathscr{C} with target X, we call R the

(2) A family of morphisms $(f_i: X_i \to X)_{i \in I}$ is called a covering of X

Let C be a category. Suppose that, for each object X, a set P(X)of families of morphisms of \mathcal{C} with target X is given. Then, there is the coarsest topology J_P on $\mathscr C$ such that for each object X, every element of P(X) is a covering. In fact, J_P is the intersection of all topologies satisfying the above condition. We call J_P the topology generated by P.

Definition 1.9 of morphisms of \mathcal{C} with target X is given. If the following (P1) For any $X \in Ob\mathscr{C}$, $\{id_X\} \in P(X)$. each $j \in I'$, fg_i factors through some f_i . where $K = \{(i, j) | i \in I, j \in I_i\}.$

- Let \mathscr{C} be a category. For each $X \in Ob\mathscr{C}$, a set P(X) of families conditions (P1), (P2) and (P3) are satisfied, the correspondence $P: X \mapsto P(X)$ is called a basis for a (Grothendieck) topology on \mathcal{C} .
 - (P2) If $(f_i: X_i \to X)_{i \in I} \in P(X)$, then for any morphism $f: Y \to X$
 - in \mathscr{C} , there exists $(g_i: Y_i \to Y)_{i \in I'} \in P(Y)$ such that for
 - (P3) If $(f_i:X_i \to X)_{i \in I} \in P(X)$ and $(g_{ij}:X_{ij} \to X_i)_{j \in I_i} \in P(X_i)$ for
 - each $i \in I$ are given, then $(f_i g_{ij}: X_{ij} \to X)_{(i,j) \in K} \in P(X)$,

Proposition 1.10 topology.

Proposition 1.11

(1) Let P be a basis for a topology on \mathscr{C} and J_P the topology generated by P. Then, we have generated by P coincides with J.

Let C be a category and J a topology on C. For each $X \in ObC$, let P(X) be the set of all coverings of X. Then P is a basis for a

- $J_P(X) = \{ R \subset h_X \mid R \supset S \text{ for some } S \in P(X) \}.$
- (2) For a topology J on \mathcal{C} , let P be as in (1.10). Then the topology

We denote by \mathscr{C} the category of presheaves on \mathscr{C} below.

Proposition 1.12 Let $S = (f_i : X_i \to X)_{i \in I}$ be a family of morphisms in \mathscr{C} . For each $i \in I$, we regard f_i as an element of $S(X_i)$. and any object Z of C. "If $f_i u = f_i v$ for $u: Z \to X_i$ and

For a presheaf F on \mathscr{C} , define a map $\Phi: \widehat{\mathscr{C}}(\bar{S}, F) \to \prod_{i=1}^{i} F(X_i)$ by $\Phi(\varphi) = (\varphi_{X_i}(f_i))_{i \in I}$. Then, Φ is injective and its image consists of families $(x_i)_{i \in I}$ which satisfy the following condition for any $i, j \in I$

$$v: Z \to X_j$$
, then $F(u)(x_i) = F(v)(x_j)$

$\S2$. Plots on a set

Definition 2.1 Let \mathcal{C} be a category and $F: \mathcal{C} \rightarrow Set$ a functor.

Here we denote by $F^{op}: \mathscr{C}^{op} \to \mathscr{Set}^{op}$ a functor defined by An element of $\coprod_{U \in Ob\mathscr{C}} F_X(U)$ is called an *F*-parametrization of *X*.

We note that F_X is given by $F_X(U) = Set(F(U), X)$ for $U \in Ob\mathscr{C}$ and $F_X(f)(\alpha) = \alpha F(f)$ for $(f: U \to V) \in Mor \mathscr{C}$ and $\alpha \in F_X(V)$.

For a set X, we define a presheaf F_X on $\mathscr C$ to be a composition $\mathscr{C}^{op} \xrightarrow{F^{op}} \mathscr{S}et^{op} \xrightarrow{h_X} \mathscr{S}et.$ $F^{op}(U) = F(U)$ for $U \in Ob\mathscr{C}$ and $F^{op}(f) = F(f)$ for $f \in Mor\mathscr{C}$.

Definition 2.2 Let (\mathcal{C}, J) be a site, X a set and $F: \mathcal{C} \to \mathcal{S}et$ a functor. Assume that \mathscr{C} has a terminal object $1_{\mathscr{C}}$ and that $F(1_{\mathscr{C}})$ consists of a single element. If a subset ${\mathscr D}$ of $\coprod_{U\in \operatorname{Ob} \mathscr{C}} F_X(U)$ satisfies the following conditions, we call \mathcal{D} a the-ology on X. (i) $\mathscr{D} \supset F_X(1_{\mathscr{Q}})$ (ii) For a morphism $f: U \to V$ in \mathscr{C} , the map $F_X(f): F_X(V) \to F_X(U)$ induced by f maps $\mathscr{D} \cap F_X(V)$ into $\mathscr{D} \cap F_X(U)$. (iii) For an object U of \mathscr{C} , an element x of $F_X(U)$ belongs to $\mathscr{D} \cap F_X(U)$ if there exists a covering $(f_i : U_i \to U)_{i \in I}$ such that $F_X(f_i): F_X(U) \to F_X(U_i)$ maps x into $\mathcal{D} \cap F_X(U_i)$ for any $i \in I$.

We call a pair (X, \mathcal{D}) a the-ological object and call an element of \mathscr{D} an F-plot of (X, \mathscr{D}) .

Proposition 2.3 we assume condition (ii). $\mathscr{D} \cap F_X(U)$ if there exists $R \in J(U)$ such that for any $f \in R$.

For a map $\varphi: X \to Y$ and a functor $F: \mathscr{C} \to \mathscr{Set}$, we define a morphism $F_{\varphi}: F_X \to F_Y$ of presheaves by

Condition (iii) is of (2.2) is equivalent to the following condition if

(*iii'*) For an object U of \mathscr{C} , an element x of $F_X(U)$ belongs to $F_X(f): F_X(U) \to F_X(\operatorname{dom}(f)) \text{ maps } x \text{ into } \mathcal{D} \cap F_X(\operatorname{dom}(f))$

- $(F_{\omega})_{U} = \varphi_{*}: F_{X}(U) = \mathcal{S}et(F(U), X) \to \mathcal{S}et(F(U), Y) = F_{Y}(U).$

Definition 2.4 Let (\mathcal{C}, J) be a site, X a set and $F: \mathcal{C} \to Set$ a functor. (1) Let (X, \mathcal{D}) and (Y, \mathcal{E}) be the-ological objects. If the map $(F_{\varphi})_U: F_X(U) \to F_Y(U)$ induced by a map $\varphi: X \to Y$ maps $\mathscr{D} \cap F_X(U)$ into $\mathscr{E} \cap F_Y(U)$ for each $U \in Ob\mathscr{C}$, we call φ a morphism of $F_{-}(\mathcal{C}, J)_{-}$ ological objects. We denote this by $\varphi: (X, \mathscr{D}) \to (Y, \mathscr{E}).$ (2) We define a category $\mathscr{P}_F(\mathscr{C},J)$ of the-ological objects as follows. Objects of $\mathscr{P}_F(\mathscr{C}, J)$ are the-ological objects and morphisms of $\mathscr{P}_{F}(\mathscr{C},J)$ are morphism of the-ological objects.

For a the-ological object (X, \mathcal{D}) and $U \in Ob\mathcal{C}$, we put $F_{\mathcal{P}}(U) = \mathcal{D} \cap F_X(U)$. Then $U \mapsto F_{\mathcal{P}}(U)$ defines a presheaf $F_{\mathcal{P}}$ on \mathscr{E} .

Remark 2.5 Let $\varphi:(X,\mathscr{D}) \to (Y,\mathscr{E})$ be a morphism of the-ological objects. It follows from the definition of a morphism of the-ological objects that $(F_{\varphi})_U: F_X(U) \to F_Y(U)$ defines a map $(F_{\varphi})_U: F_{\mathscr{D}}(U) \to F_{\mathscr{C}}(U)$ which is natural in $U \in Ob\mathscr{C}$. Thus we have a morphism $F_{\varphi}: F_{\mathscr{D}} \to F_{\mathscr{C}}$ of presheaves.

Definition 2.6 and that \mathscr{E} is coarser than \mathscr{D} if $\mathscr{D} \subset \mathscr{E}$.

For the-ologies \mathcal{D} and \mathcal{E} on X, we say that \mathcal{D} is finer than \mathcal{E}

Remark 2.7 We put $\mathscr{D}_{coarse,X} = \prod_{U \in Ob\mathscr{C}} F_X(U)$. It is clear that $\mathscr{D}_{coarse,X}$ is the on $Y, f: (Y, \mathscr{E}) \to (X, \mathscr{D}_{coarse, X})$ is a morphism of the-ologies.

Proposition 2.8 X which are coarser than \mathcal{D}_i for any $i \in I$.

- coarsest the-ology on X. For a map $f: Y \to X$ and a the-ology \mathscr{E}

- Let $(\mathcal{D}_i)_{i \in I}$ be a family of the-ologies on a set X. Then, $\bigcap \mathcal{D}_i$ is a
- the-ology on X that is the finest the-ology among the-ologies on

For a set X, we denote by $\mathscr{P}_F(\mathscr{C},J)_X$ a subcategory of $\mathscr{P}_F(\mathscr{C},J)$ consisting of objects of the form (X, \mathcal{D}) and morphisms of the form $id_X:(X,\mathscr{D})\to (X,\mathscr{E})$. Then, $\mathscr{P}_F(\mathscr{C},J)_X$ is regarded as an ordered set of the-ologies on X. We often denote by \mathscr{D} an object (X, \mathscr{D}) of $\mathscr{P}_F(\mathscr{C}, J)_X$ for short. It follows from (2.7) that $(X, \mathscr{D}_{coarse, X})$ is the maximum (terminal) object of $\mathscr{P}_F(\mathscr{C},J)_X$.

Corollary 2.9 $\mathscr{P}_F(\mathscr{C},J)_X$ is complete as an ordered set.

Proposition 2.10 Let \mathscr{S} be a subset of $\coprod_{U \in Ob\mathscr{C}} F_X(U)$ which contains $F_X(1_{\mathscr{C}})$. For $f \in Mor \mathscr{C}$, define a subset \mathcal{S}_f of $F_X(\operatorname{dom}(f))$ by $\mathcal{S}_f = F_X(f)(\mathcal{S} \cap F_X(\operatorname{codom}(f))).$ For $U \in Ob\mathscr{C}$, we define a subset $\mathcal{S}(U)$ of $F_X(U)$ by $\mathcal{S}(U) = \left\{ x \in F_X(U) \mid \text{There exists } R \in J(U) \text{ such that} \right\}$ $F_X(g)(x) \in \bigcup_{f \in \operatorname{Mor}\mathscr{C}} \mathscr{S}_f \text{ for all } g \in R. \}.$ If we put $\mathscr{G}(\mathscr{S}) = \prod_{U \in Ob \,\mathscr{C}} \mathscr{S}(U)$ and $\Sigma = \{ \mathscr{D} \in \mathscr{P}_F(\mathscr{C}, J)_X \mid \mathscr{D} \supset \mathscr{S} \},\$ then we have $\mathscr{G}(\mathscr{S}) = \inf \Sigma \in \mathscr{P}_F(\mathscr{C}, J)_X$.

Remark 2.11 (1) For $U \in Ob\mathscr{C}$, the subset $\mathcal{S}(U)$ of $F_X(U)$ defined in (2.10) coincides with the following set. $\begin{cases} x \in F_X(U) \mid \text{There exists a covering } (U_i \xrightarrow{g_i} U)_{i \in I} \text{ such that} \\ F_X(g_i)(x) \in \bigcup_{f \in Mor\mathscr{C}} \mathscr{S}_f \text{ for all } i \in I. \end{cases} \end{cases}$

(2) Let Σ be a non-empty subset of $\mathscr{P}_F(\mathscr{C},J)_X$ and put

 $\begin{cases} x \in F_X(U) \mid \text{There exists a covering } (U_i \stackrel{g_i}{\to} U)_{i \in I} \text{ such that} \\ F_X(g_i)(x) \in \bigcup \mathcal{D} \text{ for all } i \in I. \end{cases}$ $\mathcal{D}\in\Sigma$ Hence $\sup \Sigma = \mathscr{G}(\mathscr{S}(\Sigma)) = \bigcup_{U \in \mathscr{C}} \mathscr{S}(\Sigma)(U)$ holds.

- $\mathcal{S}(\Sigma) = \bigcup \mathcal{D}$. Then $\mathcal{S}(\Sigma)(U)$ coincides with the following set.

Definition 2.12 For a subset S of $\prod F_X(U)$ containing $F_X(1_{\mathscr{C}})$, we call $\mathscr{G}(S)$ U∈Ob° defined in (2.10) the the-ology generated by \mathcal{S} .

Definition 2.13 the-ology on X.

Remark 2.14 For any map $f: X \to Y$ and a the-ology \mathscr{E} on Y, $f:(X, \mathscr{D}_{disc, X}) \to (Y, \mathscr{E})$ is a morphism of the-ologies.

Let (\mathscr{C}, J) be a site and X a set. We put $\mathscr{D}_{disc, X} = \bigcap_{\mathscr{D} \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)_{X}} \Im$ and call this the discrete the-ology on X. $\mathcal{D}_{disc, X}$ is the finest

Remark 2.15 (1) Since $\mathscr{D}_{disc, X} \supset F_X(1_{\mathscr{C}})$, $\mathscr{D}_{disc, X}$ contains the image of the map $F_X(o_U): F_X(1_{\mathscr{C}}) \to F_X(U)$ induced by the unique map $o_U: U \to 1_{\mathscr{C}}$ for any $U \in Ob\mathscr{C}$. Hence every constant map in $F_X(U)$ belongs to $\mathcal{D}_{disc, X}$. (2) Let S_{const} be the set of all constant maps in $\coprod_{U \in Ob \, \mathscr{C}} F_X(U)$. Then $\mathscr{S}_{const} = \bigcup_{f \in Mor \,\mathscr{C}} (\mathscr{S}_{const})_f. \text{ Thus } \mathscr{D}_{disc, X} \cap F_X(U) = \mathscr{D}(\mathscr{S}_{const}) \cap F_X(U)$ coincides with the following set. $\{x \in F_X(U) \mid \text{There exists a covering } (U_i \xrightarrow{g_i} U)_{i \in I} \text{ such that } \}$

 $F_X(g_i)(x)$ is a contant map for all $i \in I$.

§3. Category of F-plots For a map $f: X \to Y$ and $(Y, \mathscr{E}) \in Ob \mathscr{P}_F(\mathscr{C}, J)$, we define an the-ology \mathscr{E}^{f} on X to be the coarsest the-ology such that $f: (X, \mathscr{E}^f) \to (Y, \mathscr{E})$ is a morphism of the-ologies.

Proposition 3.1
For a map
$$f: X \to Y$$
 and $(Y, \mathscr{E}) \in \mathscr{E}^{f} = \coprod_{U \in \operatorname{Ob}\mathscr{C}} (F_{f})^{-1} (\mathscr{E} \cap F_{Y}(U)) =$

Proposition 3.2
Let
$$(\mathscr{C}_i)_{i \in I}$$
 a family of the-olog
 $f: X \to Y, \ (\bigcap_{i \in I} \mathscr{C}_i)^f = \bigcap_{i \in I} \mathscr{C}_i^f$ holds

$\in \operatorname{Ob} \mathscr{P}_F(\mathscr{C}, J), \mathscr{E}^f$ is as follows. $\prod_{U \in \mathsf{Ob}\mathscr{C}} \left\{ \varphi \in F_X(U) \mid f \varphi \in \mathscr{C} \cap F_Y(U) \right\}$

gies on a set Y. For a map

for a morphism $\varphi:(X, \mathscr{D}) \to (Y, \mathscr{E})$ in $\mathscr{P}_F(\mathscr{C}, J)$.

It is clear that Γ is faithful. In other words, if we put for a map $f: X \to Y$ and $(X, \mathcal{D}), (Y, \mathcal{E}) \in \operatorname{Ob} \mathcal{P}_F(\mathcal{C}, J),$ $\mathscr{P}_{F}(\mathscr{C},J)_{f}((X,\mathscr{D}),(Y,\mathscr{E}))$ has at most one element.

 $\mathscr{P}_{F}(\mathscr{C},J)_{f}((X,\mathscr{D}),(Y,\mathscr{E}))$ is not empty if and only if $\mathscr{D} \subset \mathscr{E}^{f}$ which is equivalent that $\mathscr{P}_F(\mathscr{C},J)_X((X,\mathscr{D}),(X,\mathscr{E}^f))$ is not empty.

We define a forgetful functor $\Gamma: \mathscr{P}_F(\mathscr{C}, J) \to \mathscr{S}et$ by $\Gamma(X, \mathscr{D}) = X$ for $(X, \mathscr{D}) \in \operatorname{Ob}\mathscr{P}_F(\mathscr{C}, J)$ and $\Gamma(\varphi: (X, \mathscr{D}) \to (Y, \mathscr{E})) = (\varphi: X \to Y)$

 $\mathscr{P}_{F}(\mathscr{C},J)_{f}((X,\mathscr{D}),(Y,\mathscr{E})) = \Gamma^{-1}(f) \cap \mathscr{P}_{F}(\mathscr{C},J)((X,\mathscr{D}),(Y,\mathscr{E}))$

Proposition 3.3
For maps
$$f: X \to Y$$
, $g: W \to X$ ar
 $\mathscr{E}^{fg} = (\mathscr{E}^f)^g$ holds and $\Gamma: \mathscr{P}_F(\mathscr{C}$

In fact, $f:(X, \mathscr{E}^f) \to (Y, \mathscr{E})$ is unique cartesian morphism over a map $f: X \to Y$ whose target is (Y, \mathscr{E}) . Hence the inverse image functor $f^*:\mathscr{P}_F(\mathscr{C},J)_V\to\mathscr{P}_F(\mathscr{C},J)_V$ associated with f is given by $f^*(Y, \mathscr{E}) = (X, \mathscr{E}^f)$ and $f^*(id_V:(Y,\mathscr{C})\to(Y,\mathscr{G}))=(id_V:(X,\mathscr{C}^f)\to(X,\mathscr{C}^f)).$ It is clear that $\mathscr{E}^{fg} = (\mathscr{E}^f)^g$ holds, which implies $(fg)^* = g^*f^*$.

nd an object (Y, \mathscr{E}) of $\mathscr{P}_F(\mathscr{C}, J)_{Y}$, $(J) \rightarrow Set$ is a fibered category.

For a map $f: X \to Y$ and $(X, \mathscr{D}) \in Ob \mathscr{P}_F(\mathscr{C}, J)$, we define a the-ology \mathscr{D}_f on Y to be the finest the-ology such that $f:(X,\mathscr{D}) \to (Y,\mathscr{D}_f)$ is a morphism of the-ologies, that is, $\mathcal{D}_{f} = \bigcap_{\mathscr{E} \in \Sigma} \mathscr{E}, \text{ where }$

$\Sigma = \Big\{ \mathscr{C} \in \operatorname{Ob} \mathscr{P}_F(\mathscr{C}, J)_Y \, | \, \mathscr{C} \supset \coprod_{U \in \operatorname{Ob} \mathscr{C}} (F_f)_U (\mathscr{D} \cap F_X(U)) \Big\}.$

Remark 3.4 For $U \in Ob\mathscr{C}$, the subset $\mathcal{S}(U)$ of $F_X(U)$ defined in (2.9) is the set of elements x of $F_X(U)$ which satisfy the following condition (*) if $f: X \rightarrow Y$ is surjective. (*) There exists $R \in J(U)$ such that, for each $h \in R$, there exists $y \in \mathcal{D} \cap F_X(\operatorname{dom}(h))$ which satisfies $F_Y(h)(x) = (F_f)_{\operatorname{dom}(h)}(y)$. If we put $\mathscr{G}(\mathscr{S}) = \prod_{U \in Ob\mathscr{C}} \mathscr{S}(U)$, we have $\mathscr{D}_f = \mathscr{G}(\mathscr{S})$.

Proposition 3.5 $\Gamma: \mathscr{P}_F(\mathscr{C}, J) \to \mathscr{Set}$ is a bifibered category.

we put $f_*(id_X: (X, \mathscr{D}) \to (X, \mathscr{D}')) = (id_Y: (Y, \mathscr{D}_f) \to (Y, \mathscr{D}_f)).$ if and only if $\mathscr{P}_F(\mathscr{C}, J)_Y((X, \mathscr{D}), f^*(Y, \mathscr{E}))$ is not empty. This shows that f_* is a left adjoint of f^* .

For a map $f: X \to Y$, define a functor $f_*: \mathscr{P}_F(\mathscr{C}, J)_X \to \mathscr{P}_F(\mathscr{C}, J)_Y$ as follows. For $(X, \mathscr{D}) \in \operatorname{Ob}\mathscr{P}_F(\mathscr{C}, J)_X$, we put $f_*(X, \mathscr{D}) = (Y, \mathscr{D}_f)$. If $(X, \mathscr{D}), (X, \mathscr{D}') \in \operatorname{Ob}\mathscr{P}_F(\mathscr{C}, J)_X$ satisfies $\mathscr{D} \subset \mathscr{D}'$, then $\mathscr{D}_f \subset \mathscr{D}'_f$ holds. Hence, for a morphism $id_X: (X, \mathscr{D}) \to (X, \mathscr{D}')$ in $\mathscr{P}_F(\mathscr{C}, J)_{X'}$ It can be verified that $\mathscr{P}_F(\mathscr{C},J)_V(f_*(X,\mathscr{D}),(Y,\mathscr{E}))$ is not empty

Proposition 3.6 Let $p: \mathcal{F} \to \mathcal{C}$ be a prefibered category. If \mathcal{F}_X has an initial object for any object X of \mathcal{C} , then p has a left adjoint.

Corollary 3.7 Let $p: \mathcal{F} \to \mathcal{C}$ be a bifibered category. If \mathcal{F}_X has a terminal object for any object X of \mathcal{C} , then p has a right adjoint.

Corollary 3.8 $\Gamma: \mathscr{P}_F(\mathscr{C}, J) \to \mathscr{Set}$ has left and right adjoints.

Let $\{(X_i, \mathcal{D}_i)\}_{i \in I}$ be a family of objects of $\mathcal{P}_F(\mathcal{C}, J)$. We denote by $\operatorname{pr}_i : \prod_{i \in I} X_i \to X_i$ the projection to the *i*-th component and $\iota_i: X_i \to \prod_{i \in I} X_i$ the inclusion to the *i*-th summand. Put $\mathscr{D}^{I} = \bigcap_{j \in I} \mathscr{D}_{i}^{\mathrm{pr}_{i}}$. Then, \mathscr{D}^{I} is the finest the-ology such that $\mathrm{pr}_{i} : \left(\prod_{j \in I} X_{j}, \mathscr{D}^{I}\right) \to (X_{i}, \mathscr{D}_{i})$ is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ for any $i \in I$. Let \mathscr{D}_I be the coarsest the-ology on $\prod_{i \in I} X_i$ such that If we put $\mathcal{S}_I = \left\{ \mathscr{C} \in \operatorname{Ob} \mathscr{P}_F(\mathscr{C}, J)_{\prod_{j \in I} X_j} \middle| \mathscr{C} \supset \bigcup_{j \in I} (\mathscr{D}_j)_{\iota_j} \right\}$, then $\mathcal{D}_I = \bigcap \mathcal{E}.$ $\mathscr{E}\in\mathscr{S}_{I}$

- $\iota_i: (X_i, \mathscr{D}_i) \to \left(\coprod_{i \in I} X_j, \mathscr{D}_I \right) \text{ is a morphism in } \mathscr{P}_F(\mathscr{C}, J) \text{ for any } i \in I.$

Proposition 3.9 (1) $\left(\left(\prod_{i\in I} X_{j}, \mathscr{D}^{I}\right) \xrightarrow{\mathrm{pr}_{i}} (X_{i}, \mathscr{D}_{i})\right)_{i\in I}$ is a product of $\{(X_{i}, \mathscr{D}_{i})\}_{i\in I}$. (2) $((X_i, \mathcal{D}_i) \xrightarrow{l_i} (\prod_{i \in I} X_j, \mathcal{D}_I))_{i \in I}$ is a coproduct of $\{(X_i, \mathcal{D}_i)\}_{i \in I}$.

Proposition 3.10 Let $f, g: (X, \mathscr{D}) \to (Y, \mathscr{E})$ be morphisms in $\mathscr{P}_F(\mathscr{C}, J)$. Then, equalizers and coequalizers of f and g exist.

In fact, if $Z \xrightarrow{i} X$ is an equalizer of f and g in the category of sets, If $Y \xrightarrow{q} W$ is a coequalizer of f and g in the category of sets,

- then $(Z, \mathcal{D}^i) \xrightarrow{\iota} (X, \mathcal{D})$ is an equalizer of f and g in $\mathscr{P}_F(\mathscr{C}, J)$. then $(Y, \mathscr{E}) \xrightarrow{q} (W, \mathscr{E}_q)$ is a coequalizer of f and g in $\mathscr{P}_F(\mathscr{C}, J)$.

§4. Fibered category of morphisms For a category C, let $C^{(2)}$ be the category of morphisms in Cdefined as follows. Put $Ob \mathscr{C}^{(2)} = Mor \mathscr{C}$ and a morphism from $E = (E \xrightarrow{\pi} X)$ to $F = (F \xrightarrow{\rho} Y)$ is a pair $\langle \xi : E \to F, f : X \to Y \rangle$ of morphisms in \mathscr{C} which satisfies $\rho\xi = f\pi$. The composition of morphisms $\langle \xi, f \rangle : E \to F$ and $\langle \zeta, g \rangle : F \to G$ is defined to be $\langle \zeta \xi, gf \rangle : E \to G$.

$$E \xrightarrow{\xi} F$$

$$\downarrow \pi \qquad \downarrow \rho \qquad \downarrow \rho$$

$$X \xrightarrow{f} Y$$

Define a functor $\wp: \mathscr{C}^{(2)} \to \mathscr{C}$ by $\wp(E \xrightarrow{\pi} X) = X$ and $\wp(\langle \xi, f \rangle) = f$. For an object X of \mathscr{C} , we denote by $\mathscr{C}_{Y}^{(2)}$ a subcategory of $\mathscr{C}^{(2)}$ given as follows. $Ob\mathscr{C}_{V}^{(2)} = \{ E \in Ob\mathscr{C}^{(2)} \mid \mathscr{O}(E) = X \}$ $\operatorname{Mor} \mathscr{C}_{X}^{(2)} = \{ \boldsymbol{\xi} \in \operatorname{Mor} \mathscr{C}^{(2)} \mid \mathscr{D}(\boldsymbol{\xi}) = id_{X} \}$ We mention that $\mathscr{C}_{V}^{(2)}$ is often denoted by \mathscr{C}/X in literatures. For a morphism $f: X \to Y$ in \mathscr{C} , an object E of $\mathscr{C}_V^{(2)}$ and an object F of $\mathscr{C}_Y^{(2)}$, we denote by $\mathscr{C}_f^{(2)}(E,F)$ the set of all morphisms

 $\boldsymbol{\xi}: E \to F$ in $\mathscr{C}^{(2)}$ such that $\mathscr{D}(\boldsymbol{\xi}) = f$.

If C has finite limits, $\wp: \mathcal{C}^{(2)} \to \mathcal{C}$ is a fibered category as we explain below. For a morphism $f: X \to Y$ in \mathscr{C} and an object $F = (F \xrightarrow{\rho} Y)$ of $\mathscr{C}_{v}^{(2)}$, consider the following cartesian square in C.

 $F \underset{V}{\times}_{Y} X \xrightarrow{f_{\rho}} F$ $\downarrow \rho_{f} \qquad \downarrow \rho_{f} \qquad \downarrow \rho$ $X \xrightarrow{f} Y$

We put $f^*(F) = (F \times_Y X \xrightarrow{\rho_f} X)$ and $\alpha_f(F) = \langle f_\rho, f \rangle : f^*(F) \to F$.

Proposition 4.1 $\alpha_f(F)$ is a cartesian morphism, that is, for any object G of $\mathscr{C}_X^{(2)}$ the map $\alpha_f(F)_*: \mathscr{C}_X^{(2)}(G, f^*(F)) \to \mathscr{C}_f^{(2)}(G, F)$ defined by $\alpha_f(F)_*(\xi) = \alpha_f(F)\xi$ is bijective.

 $f^*(\varphi): f^*(E) \to f^*(F)$ be the unique morphism in $\mathscr{C}^{(2)}_X$ that is mapped to a composition $f^*(E) \xrightarrow{\alpha_f(E)} E \xrightarrow{\varphi} F$ by the bijection given in (4.1). Thus we have the inverse image functor

definition of f^* that the bijection in (4.1) is natural in F.

For objects E, F of $\mathscr{C}_{V}^{(2)}$ and a morphism $\varphi: E \to F$ in $\mathscr{C}_{V}^{(2)}$, let $\alpha_f(F)_*: \mathscr{C}^{(2)}_X(f^*(E), f^*(F)) \to \mathscr{C}^{(2)}_f(f^*(E), F)$ $f^*: \mathscr{C}^{(2)}_{v} \to \mathscr{C}^{(2)}_{v}$ associated with a morphism $f: X \to Y$ in \mathscr{C} . It follows from the

by the following bijection given in (4.1).

Proposition 4.2 $c_{f,g}(E)$ is an isomorphism in $\mathscr{C}_7^{(2)}$. Hence $\mathscr{D}: \mathscr{C}^{(2)} \to \mathscr{C}$ is a fibered category.

 $\alpha_{fg}(E)_*: \mathscr{C}_{Z}^{(2)}(g^*(f^*(E)), (fg)^*(E)) \to \mathscr{C}_{fg}^{(2)}(g^*(f^*(E)), E)$

object $E = (E \xrightarrow{p} X)$ of $\mathscr{C}_X^{(2)}$ and a morphism $\langle \xi, id_X \rangle : E \to F$ in $\mathscr{C}_X^{(2)}$. Proposition 4.3 $f_*: \mathscr{C}_V^{(2)} \to \mathscr{C}_V^{(2)}$ is a left adjoint of $f^*: \mathscr{C}_V^{(2)} \to \mathscr{C}_V^{(2)}$. Hence $\wp: \mathscr{C}^{(2)} \to \mathscr{C}$ is a bifibered category. bijection $\Phi_{E,F} \alpha_f(F)_* : \mathscr{C}_X^{(2)}(E, f^*(F)) \to \mathscr{C}_Y^{(2)}(f_*(E), F).$

For a morphism $f: X \to Y$ in \mathscr{C} , define a functor $f_*: \mathscr{C}_X^{(2)} \to \mathscr{C}_Y^{(2)}$ by $f_*(E) = (E \xrightarrow{f\rho} Y) \text{ and } f_*(\langle \xi, id_X \rangle) = \langle \xi, id_Y \rangle : f_*(E) \to f_*(F) \text{ for an}$

For an object E of $\mathscr{C}_{X}^{(2)}$ and an object F of $\mathscr{C}_{Y}^{(2)}$, we define a map $\Phi_{E,F}: \mathscr{C}_{f}^{(2)}(E,F) \to \mathscr{C}_{Y}^{(2)}(f_{*}(E),F) \text{ by } \Phi_{E,F}(\langle \xi, f \rangle) = \langle \xi, id_{Y} \rangle, \text{ which}$ is a natural bijection. It follows from (4.1) that we have a natural

§5. Locally cartesian closedness $\mathscr{P}_{F}(\mathscr{C}, J)$ is complete and cocomplete by (3.9) and (3.10), in particular $\mathscr{P}_F(\mathscr{C}, J)$ has finite limits. Hence we can consider the fibered category of morphisms in $\mathscr{P}_F(\mathscr{C}, J)$ by (4.2). It follows from (4.3) that the inverse image functors of this fibered category have left adjoints. below.

- $\mathfrak{S}: \mathscr{P}_F(\mathscr{C}, J)^{(2)} \to \mathscr{P}_F(\mathscr{C}, J)$
- We show that the inverse image functors also have right adjoints

Let $\varphi: (X, \mathscr{D}) \to (Y, \mathscr{F})$ be a morphism in $\mathscr{P}_F(\mathscr{C}, J)$ and $E = ((E, \mathscr{E}) \xrightarrow{\pi} (X, \mathscr{D})) \text{ an object of } \mathscr{P}_F(\mathscr{C}, J)^{(2)}.$ For $y \in Y$, we denote by $\iota_y : \varphi^{-1}(y) \to X$ the inclusion map and consider a the-ology \mathcal{D}^{l_y} on $\varphi^{-1}(y)$. if $\varphi^{-1}(y) \neq \emptyset$ and $E(\varphi; y) = \emptyset$ if $\varphi^{-1}(y) = \emptyset$. Put $E(\varphi) = \coprod E(\varphi; y)$ and define map $\varphi_{!E}: E(\varphi) \to Y$ by $\varphi_{!E}(\alpha) = y$ if $\alpha \in E(\varphi; y)$. Note that the image of φ_{1E} coincides with the

image of φ .

- We define a subset $E(\varphi; y)$ of $\mathscr{P}_F(\mathscr{C}, J)((\varphi^{-1}(y), \mathscr{D}^{l_y}), (E, \mathscr{E}))$ by $E(\varphi; y) = \{ \alpha \in \mathscr{P}_F(\mathscr{C}, J)((\varphi^{-1}(y), \mathscr{D}^{l_y}), (E, \mathscr{E})) \mid \pi \alpha = l_y \}$

We consider the following cartesian square (*) in Set. $\begin{array}{c} (\star) \\ X \\ X \end{array} \xrightarrow{\varphi_{!E}} \\ \varphi \\ Y \\ \varphi_{!E} \\ \varphi \\ Y \end{array}$

and $x \in \varphi^{-1}(y)$ for $y \in Y$. Then, $\varepsilon_{F}^{\varphi}$ makes the following diagram commute.

Define a map $\varepsilon_{\mathbf{F}}^{\varphi}: E(\varphi) \times_{Y} X \to E$ by $\varepsilon_{\mathbf{F}}^{\varphi}(\alpha, x) = \alpha(x)$ if $\alpha \in E(\varphi; y)$

and $\mathscr{D}^{\varphi_{!E}} \cap \mathscr{L}^{\tilde{\varphi}_{E}} \subset \mathscr{E}^{\varepsilon_{E}} \mathsf{hold}.$ Proposition 5.1 $\Sigma_{E,\varphi}$ is not empty.

Let $\Sigma_{E,\varphi}$ the set of all the-ologies \mathscr{L} on $E(\varphi)$ such that $\mathscr{L} \subset \mathscr{F}^{\varphi_{!E}}$

Note that $\mathscr{L} \in \Sigma_{E,\varphi}$ if and only if $\varphi_{!E}: (E(\varphi), \mathscr{L}) \to (Y, \mathscr{F})$ and $\varepsilon_{F}^{\varphi}: (E(\varphi) \times_{Y} X, \mathscr{D}^{\varphi_{E}} \cap \mathscr{L}^{\tilde{\varphi}_{E}}) \to (E, \mathscr{E}) \text{ are morphisms in } \mathscr{P}_{F}(\mathscr{C}, J).$

In fact, the discrete the-ology $\mathscr{D}_{disc, E(\varphi)}$ on $E(\varphi)$ belongs to $\Sigma_{E, \varphi}$.

For $U \in Ob \mathscr{C}$, we consider the following condition (LE) on an element γ of $F_{E(\varphi)}(U)$.

(LE) If $V, W \in Ob \mathscr{C}, f \in \mathscr{C}(W,$ satisfy $\varphi \psi F(g) = \varphi_{1E} \gamma F(f)$ $F(W) = \frac{(\gamma F(f), \psi F(f))}{2}$ belongs to $\mathscr{E} \cap F_E(W)$ and belongs to $\mathcal{F} \cap F_V(U)$.

which satisfy the above condition (LE) for any $U \in Ob \mathscr{C}$.

U),
$$g \in \mathscr{C}(W, V)$$
 and $\psi \in \mathscr{D} \cap F_X(V)$
, a composition
 $(g)) \to E(\varphi) \times_Y X \xrightarrow{\varepsilon_E^{\varphi}} E$
a composition $F(U) \xrightarrow{\gamma} E(\varphi) \xrightarrow{\varphi_{!E}} Y$

Define a set $\mathscr{D}_{E, \varphi}$ of F-parametrizations of a set $E(\varphi)$ so that $\mathscr{D}_{E,\varphi} \cap F_{E(\varphi)}(U)$ is a subset of $F_{E(\varphi)}(U)$ consisting of elements

Proposition 5.2 $\mathscr{D}_{E,\varphi}$ is a the-ology on $E(\varphi)$.

Proposition 5.3

 $\mathscr{D}_{E,\varphi}$ is maximum element of $\Sigma_{E,\varphi}$.

Let $\langle \xi, id_X \rangle : E \to G$ be a morphism in $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(X, \mathscr{D})}$. Thus we can define a map $\xi_{\varphi}: E(\varphi) \to G(\varphi)$ by $\varphi(\xi)(\alpha) = \xi \alpha$.

Let $E = ((E, \mathscr{E}) \xrightarrow{\pi} (X, \mathscr{D})), G = ((G, \mathscr{G}) \xrightarrow{\rho} (X, \mathscr{D}))$ be objects of $\mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(X,\mathscr{D})}$ and $\varphi:(X,\mathscr{D}) \to (Y,\mathscr{F})$ a morphism in $\mathscr{P}_{F}(\mathscr{C},J)$. If $\alpha \in E(\varphi; y)$ for $y \in Y$, we have $\rho \xi \alpha = \pi \alpha = \iota_y$, hence $\xi \alpha \in G(\varphi; y)$.

lower rectangle are cartesian.

Since the right triangle of the above diagram is commutative, there exists unique map $\xi_{\varphi} \times_Y id_X : E(\varphi) \times_Y X \to G(\varphi) \times_Y X$ that makes the above diagram commutative.

We consider the following diagram whose outer trapezoid and

Proposition 5.4 $\xi_{\varphi}: (E(\varphi), \mathscr{D}_{E, \varphi}) \to (G(\varphi), \mathscr{D}_{G, \varphi}) \text{ is a morphism in } \mathscr{P}_{F}(\mathscr{C}, J) \text{ and }$ the following diagram is commutative.

 $E(\varphi) \times_Y X - \mathcal{E}_E^{\varphi}$

Remark 5.5 Let $E = ((E, \mathscr{E}) \xrightarrow{\pi} (X, \mathscr{D})), G = ((G, \mathscr{G}) \xrightarrow{\rho} (X, \mathscr{D})),$ $H = ((X, \mathscr{H}) \xrightarrow{\chi} (X, \mathscr{D}))$ be objects of $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(X, \mathscr{D})}$ and of ξ_{φ} that $(\zeta\xi)_{\varphi}: E(\varphi) \to H(\varphi)$ coincides with a composition $E(\varphi) \xrightarrow{\xi_{\varphi}} G(\varphi) \xrightarrow{\zeta_{\varphi}} H(\varphi).$

 $\langle \xi, id_X \rangle : E \to G, \langle \zeta, id_X \rangle : G \to H$ be morphisms in $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(X, \mathscr{D})}$. For a morphism $\varphi:(X,\mathscr{D}) \to (Y,\mathscr{F})$, it follows from the definition

We also note that $(id_E)_{\varphi}$ coincides with the identity map of $E(\varphi)$.

for an object $E = ((E, \mathscr{E}) \xrightarrow{\pi} (X, \mathscr{D}))$ of $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(X, \mathscr{D})}$ and for a morphism $\langle \xi, id_X \rangle : E \to G$ in $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(X, \mathscr{D})}$.

It follows from (5.3) and (5.4) that we have a natural transformation $\mathcal{E}^{\varphi}: \varphi^* \varphi_! \to id_{\mathscr{P}_F(\mathscr{C},J)^{(2)}_{(X,\mathscr{D})}}$ defined by

We define a functor $\varphi_! : \mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(X,\mathscr{D})} \to \mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(Y,\mathscr{E})}$ by putting $\varphi_!(E) = ((E(\varphi), \mathscr{D}_{E, \varphi}) \xrightarrow{\varphi_!_E} (Y, \mathscr{F}))$ $\varphi_!(\langle \xi, id_X \rangle) = \langle \xi_0, id_Y \rangle : \varphi_!(E) \to \varphi_!(G)$

 $\boldsymbol{\varepsilon}_{E}^{\varphi} = \langle \varepsilon_{E}^{\varphi}, id_{X} \rangle : \left(\left(E(\varphi) \times_{Y} X, \mathscr{D}_{E,\varphi}^{\tilde{\varphi}_{E}} \cap \mathscr{D}^{\widetilde{\varphi}_{!E}} \right) \xrightarrow{\widetilde{\varphi}_{!E}} (X, \mathscr{D}) \right)$ $\longrightarrow ((E, \mathscr{E}) \xrightarrow{\pi} (X, \mathscr{D})).$

For an object $G = ((G, \mathscr{G}) \xrightarrow{\rho} (Y, \mathscr{F}))$ of $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(Y, \mathscr{F})}$, we consider the following cartesian square in $\mathscr{P}_F(\mathscr{C}, J)$. $(G \times_{Y} X, \mathscr{G}^{\varphi_{\rho}} \cap \mathscr{D}^{\rho_{\varphi}}) \xrightarrow{\varphi_{\rho}} (G, \mathscr{G})$ $\begin{array}{c} \left| \begin{array}{c} \rho_{\varphi} \\ (X, \mathcal{D}) \end{array} \right| \xrightarrow{\varphi} (Y, \mathcal{F}) \end{array}$ Then, we have $\varphi^*(G) = (G \times_Y X, \mathscr{G}^{\varphi_{\rho}} \cap \mathscr{D}^{\rho_{\varphi}}) \xrightarrow{\rho_{\varphi}} (X, \mathscr{D}).$ We note that, for $y \in Y$, $(X \times_Y G)(\varphi; y)$ is a subset of $\mathscr{P}_{F}(\mathscr{C},J)((\varphi^{-1}(y),\mathscr{D}^{l_{y}}),(G\times_{V}X,\mathscr{G}^{\varphi}\cap\mathscr{D}^{\varphi}))$ consisting of elements of the form (λ, ι_y) such that $\lambda: \varphi^{-1}(y) \to G$ satisfies $\lambda(\varphi^{-1}(y)) \subset \rho^{-1}(y)$.

which implies $(c_v, \iota_{\rho(v)}) \in (G \times_Y X)(\varphi)$. Define a map $\eta_G^{\varphi}: G \to (G \times_Y X)(\varphi)$ by $\eta_G^{\varphi}(v) = (c_v, \iota_{\rho(v)}).$ Then, η_G^{φ} makes the following diagram commute.

Proposition 5.6 $\eta_{G}^{\varphi}: (G, \mathscr{G}) \to ((G \times_{Y} X)(\varphi), \mathscr{D}_{\varphi^{*}(G), \varphi}) \text{ is a morphism in } \mathscr{P}_{F}(\mathscr{C}, J).$

- For $v \in G$, let us denote by $c_v: \varphi^{-1}(\rho(v)) \to G$ the constant map whose image is $\{v\}$. Then we have $c_v(\varphi^{-1}(\rho(v))) = \{v\} \subset \rho^{-1}(\rho(v))$

 $G \xrightarrow{\eta_G^{\varphi}} (G \times_V X)(\varphi)$

we consider the following cartesian squares in $\mathscr{P}_F(\mathscr{C},J)$.

 $\begin{array}{c} \left| \pi_{\varphi} & \left| \pi \right| \\ (X, \mathcal{D}) \xrightarrow{\varphi} & (Y, \mathcal{F}) \end{array} \right. \end{array}$ ho_{arphi} $(X, \mathscr{D}) \xrightarrow{\varphi} (Y, \mathscr{F})$

 $(E \times_V X, \mathscr{E}^{\varphi_{\pi}} \cap \mathscr{D}^{\pi_{\varphi}}) \xrightarrow{\varphi_{\pi}} (E, \mathscr{E})$ $(G \times_Y X, \mathscr{G}^{\varphi_{\rho}} \cap \mathscr{D}^{\rho_{\varphi}}) \xrightarrow{\varphi_{\rho}} (G, \mathscr{G})$

For objects $E = ((E, \mathscr{E}) \xrightarrow{\pi} (Y, \mathscr{F})), G = ((G, \mathscr{G}) \xrightarrow{\rho} (Y, \mathscr{F}))$ of $\mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(Y,\mathscr{F})} \text{ and a morphism } \varphi:(X,\mathscr{D}) \to (Y,\mathscr{F}) \text{ in } \mathscr{P}_{F}(\mathscr{C},J),$

Let $\langle \zeta, id_Y \rangle : E \to G$ be a morphism in $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(Y \mathscr{F})}$. Since $\rho\zeta = \pi$ holds, there exists unique morphism

in $\mathscr{P}_F(\mathscr{C}, J)$ that makes the following diagram commutative.

The following result is easily verified from the definitions of η_{F}^{φ} , η_G^{φ} and $(\zeta \times_Y id_X)_{\varphi}$.

 $\zeta \times_{Y} id_{Y}: (E \times_{Y} X, \mathscr{E}^{\varphi_{\pi}} \cap \mathscr{D}^{\pi_{\varphi}}) \to (G \times_{Y} X, \mathscr{G}^{\varphi_{\rho}} \cap \mathscr{D}^{\rho_{\varphi}})$

It follows from (5.6) and (5.7) that we have a natural transformation $\eta^{\varphi}: id_{\mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(Y,\mathscr{F})}} \to \varphi_{!}\varphi^{*}$ defined by

for an object $G = ((G, \mathscr{G}) \xrightarrow{\rho} (Y, \mathscr{F}))$ of $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(Y, \mathscr{F})}$.

For a morphism $\langle \zeta, id_V \rangle : ((E, \mathscr{E}) \xrightarrow{\pi} (Y, \mathscr{F})) \to ((G, \mathscr{G}) \xrightarrow{\rho} (Y, \mathscr{F}))$

 $\begin{array}{ccc} & & & & \\ & & \zeta \times_Y id_X)_{\varphi} \\ & & & G \xrightarrow{\eta_G} & & (G \times_Y X)(\varphi) \end{array}$

 $\eta_{G}^{\varphi} = \langle \eta_{G}^{\varphi}, id_{Y} \rangle : ((G, \mathscr{G}) \xrightarrow{\rho} (Y, \mathscr{F})) \to ((G \times_{Y} X)(\varphi) \xrightarrow{\varphi_{!\varphi^{*}(G)}} (Y, \mathscr{F}))$

Consider the following diagram, where the outer trapezoid and the lower rectangle are cartesian.

 $G \times_{Y} X \xrightarrow{\eta_{G}^{\varphi} \times_{Y} id_{X}} (G \times_{Y} X)(\varphi) \times_{Y} X \xrightarrow{\Psi_{\varphi_{1_{\varphi}^{\ast}(G)}}} (G \times_{Y} X)(\varphi) \times_{Y} X \xrightarrow{\Psi_{Y}^{\ast}(G)}} (G \times_{Y} X)(\varphi) \times_{Y} X \xrightarrow{\Psi_{Y}^{\ast}(G \times_{Y} X)}} (G \times_{Y} X)(\varphi) \times_{Y} X \xrightarrow{\Psi_{Y}^{\ast}(G \times_{Y} X)}} (G \times_{Y} X)(\varphi) \times_{Y} X \xrightarrow{\Psi_{Y}^{\ast}(G \times_{Y} X)}} (G \times_{Y} X)(\varphi) \times_{Y} X \xrightarrow{\Psi_{Y}^{\ast}(G \times$

there exists unique map

that makes the above diagram commute.

Since the right triangle of the above diagram is commutative,

 $\eta_G^{\varphi} \times_Y id_X : G \times_Y X \to (G \times_Y X)(\varphi) \times_Y X$

 $\varphi_{!}(E) \xrightarrow{\eta_{\varphi_{!}(E)}^{\varphi}} \varphi_{!}(\varphi^{*}\varphi_{!}(E) \xrightarrow{\varphi_{!}(\varepsilon_{E}^{\varphi})} \varphi_{!}(E),$

For an object $G = ((G, \mathscr{G}) \xrightarrow{\rho} (Y, \mathscr{F}))$ of $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(Y, \mathscr{F})}$ and an object $E = ((E, \mathscr{E}) \xrightarrow{\pi} (X, \mathscr{D}))$ of $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(X, \mathscr{D})'}$, since compositions $\varphi^*(G) \xrightarrow{\varphi^*(\eta_G^{\varphi})} \varphi^*\varphi_1\varphi^*(G) \xrightarrow{\varepsilon_{\varphi^*(G)}^{\varphi}} \varphi^*(G)$

are both identity morphisms by (5.8), we have the following result.

Proposition 5.9
$$\begin{split} \varphi_{!} \colon \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)} &\to \mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{E})}^{(2)} \text{ is a right adjoint of the inverse} \\ \text{image functor } \varphi^{*} \colon \mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{D})}^{(2)} &\to \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{E})}^{(2)}. \end{split}$$
Hence $\mathscr{P}_F(\mathscr{C}, J)$ is locally cartesian closed.

Remark 5.10 ([10], Proposition A.16.22) Let $E = ((Y, \mathscr{E}) \xrightarrow{\pi} (X, \mathscr{D})), F = ((Z, \mathscr{F}) \xrightarrow{p} (X, \mathscr{D}))$ and $\overline{G} = ((W, \mathscr{G}) \xrightarrow{\chi} (X, \mathscr{D})) \text{ be objects of } \mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(X, \mathscr{D})}.$ It follows from (4.3) and (5.7) that there exist natural bijections $\mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(X,\mathscr{D})}(\rho_{*}\rho^{*}(E),G) \to \mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(Z,\mathscr{F})}(\rho^{*}(E),\rho^{*}(G)),$ $\mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(Z,\mathscr{F})}(\rho^{*}(E),\rho^{*}(G)) \to \mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(X,\mathscr{D})}(E,\rho_{!}\rho^{*}(G)).$ We note that the product E imes F of E and F in $\mathscr{P}_F(\mathscr{C},J)^{(2)}_{(X,\mathscr{D})}$ is given by $E \times F = \rho_* \rho^*(E)$. Hence if we put $G^F = \rho_1 \rho^*(G)$, we have a natural bijection $\mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(X,\mathscr{D})}(E\times F,G) \to \mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(X,\mathscr{D})}(E,G^{F}).$ This shows that $\mathscr{P}_{F}(\mathscr{C},J)^{(2)}_{(X,\mathscr{D})}$ is cartesian closed.

§6. Strong subobject classifier

Definition 6.1 Let C be a category. (1) Two morphisms $p: X \to Y$ and $i: Z \to W$ in \mathscr{C} are said to be diagram commute.

 $\begin{array}{ccc} & & & & \\ & & & \\ V & \longrightarrow & W \end{array}$

If p and i are orthogonal, we denote this by $p \perp i$.

orthogonal if the following left diagram is commutative, there exits unique morphism $s: Y \rightarrow Z$ that makes the following right

(2) For a class C of morphisms in C, we put $C^{\perp} = \{ i \in \operatorname{Mor} \mathscr{C} \mid p \perp i \text{ if } p \in C \},\$ $^{\perp}C = \{ p \in Mor \, \mathscr{C} \mid p \perp i \text{ if } i \in C \}.$ (3) Let E be the class of all epimorphisms in \mathscr{C} . A monomorphism $i: Z \to W$ in \mathscr{C} is called a strong monomorphism if i belongs to E^{\perp} . (4) Let M be the class of all monomorphisms in C. An epimorphism $p: X \to Y$ in \mathscr{C} is called a strong epimorphism if p belongs to ${}^{\perp}M$.

Proposition 6.2 Let C be a class of morphisms in C. (1) If D is a class of morphisms in \mathscr{C} which contains C, then $C^{\perp} \supset D^{\perp}$ and $^{\perp}C \supset ^{\perp}D$. (2) $C \subset (C^{\perp})$ and $C \subset ({}^{\perp}C)^{\perp}$ hold. (3) $(^{\perp}(C^{\perp}))^{\perp} = C^{\perp}$ and $^{\perp}((^{\perp}C)^{\perp}) = ^{\perp}C$ hold.

Proposition 6.3 monomorphism. (2) If $p: X \to Y$ is a coequalizer of $f, g: U \to X$, then p is a strong epimorphism.

(1) If $i: Z \to W$ is an equalizer of $f, g: W \to V$, then *i* is a strong

Definition 6.4 Let \mathscr{C} be a category with a terminal object $1_{\mathscr{C}}$. t a strong subobject classifier of C. cartesian.

- If a morphism $t: 1_{\mathscr{C}} \to \Omega$ satisfies the following condition, we call
 - (*) For each strong monomorphism $\sigma: Y \mapsto X$ in \mathscr{C} , there exists unique morphism $\phi_{\sigma}: X \to \Omega$ that makes the following square

$$\begin{array}{c} O_Y \\ \longrightarrow \\ 1_{\mathscr{C}} \\ \downarrow t \\ \downarrow t \\ \downarrow t \\ \swarrow \\ \mathbf{\Omega} \end{array}$$

 σ

Remark 6.5 Assume that the outer rectangle of the following left diagram is cartesian. If $h: V \rightarrow X$ satisfies fh = gsh, then there exists unique morphism $k: V \rightarrow Y$ that satisfies $\sigma k = h$ by the assumption.

Hence if $\sigma: Y \to X$ is a monomorphism, σ is an equalizer of $f, gs: X \rightarrow Z.$

It follows that if \mathscr{C} has a strong subobject classifier, each strong monomorphism in \mathscr{C} is an equalizer of a certain pair of morphisms.

Proposition 6.6 and only if $i: Y \rightarrow X$ is injective.

Proposition 6.7 Let $\sigma: (Y, \mathscr{F}) \to (X, \mathscr{D})$ be a strong monomorphism in $\mathscr{P}_F(\mathscr{C}, J)$ and denote by $i: \sigma(Y) \to X$ the inclusion map. Then there is a surjection $\tilde{\sigma}: Y \to \sigma(Y)$ which satisfies $i\tilde{\sigma} = \sigma$. This map gives an isomorphism $\tilde{\sigma}:(Y,\mathscr{F}) \to (\sigma(Y),\mathscr{D}^{l})$ in $\mathscr{P}_{F}(\mathscr{C},J)$.

A morphism $i:(Y, \mathscr{C}) \to (X, \mathscr{D})$ in $\mathscr{P}_F(\mathscr{C}, J)$ is a monomorphism if

Let $t: \{1\} \rightarrow \{0,1\}$ be an inclusion map. Then, $t: (\{1\}, \mathscr{D}_{coarse, \{1\}}) \rightarrow (\{0,1\}, \mathscr{D}_{coarse, \{0,1\}})$ is a morphism in $\mathscr{P}_F(\mathscr{C}, J)$. Proposition 6.8 Let (X, \mathcal{D}) be an object of $\mathcal{P}_F(\mathcal{C}, J)$ and Y a subset of X. We denote by $\sigma: Y \rightarrow X$ the inclusion map and define a map $\phi_{\sigma}: X \to \{0, 1\} \text{ by } \phi_{\sigma}(x) = \begin{cases} 1 & x \in Y \\ 0 & x \notin Y \end{cases}.$ Then, the following diagram is a cartesian square in $\mathscr{P}_F(\mathscr{C}, J)$. $(Y, \mathcal{D}^{\sigma}) \xrightarrow{O_Y} (\{1\}, \mathcal{D}_{coarse, \{1\}})$ $(X, \mathscr{D}) \xrightarrow{\phi_{\sigma}} (\{0, 1\}, \mathscr{D}_{coarse, \{0, 1\}})$

Remark 6.9 The morphism $\sigma: (Y, \mathcal{D}^{\sigma}) \to (X, \mathcal{D})$ is an equalizer of $\phi_{\sigma}: (X, \mathcal{D}) \to (\{0,1\}, \mathcal{D}_{coarse,\{0,1\}})$ and a composition $(X, \mathcal{D}) \xrightarrow{o_{\chi}} (\{1\}, \mathcal{D}_{coarse,\{1\}}) \xrightarrow{t} (\{0,1\}, \mathcal{D}_{coarse,\{0,1\}})$ by (6.5). In particular, $\sigma: (Y, \mathcal{D}^{\sigma}) \to (X, \mathcal{D})$ is a strong monomorphism in $\mathcal{P}_{F}(\mathcal{C}, J)$ by (6.3).

Proposition 6.10 $t:(\{1\}, \mathscr{D}_{coarse,\{1\}}) \rightarrow (\{0,1\}, \mathscr{Q})$ classifier in $\mathscr{P}_F(\mathscr{C}, J)$.

$t: (\{1\}, \mathscr{D}_{coarse, \{1\}}) \rightarrow (\{0, 1\}, \mathscr{D}_{coarse, \{0, 1\}}) \text{ is a strong subobject}$

By (3.9), (3.10), (5.9) and (6.10), we have the following result.

Theorem 6.11 $\mathscr{P}_F(\mathscr{C},J)$ is a quasi-topos.

Proposition 6.12 $\pi: (X, \mathscr{D}) \to (Y, \mathscr{E})$ is an epimorphism in $\mathscr{P}_F(\mathscr{C}, J)$ if and only if $\pi: X \to Y$ is surjective.

§7. Groupoids associated with epimorphisms is not an empty set for any $x \in B$. We denote by $i_x : \pi^{-1}(x) \to E$ the inclusion map. consisting of elements which are isomorphisms for $x, y \in B$. Put $G_1(E) = \prod_{x \in B} G_1(E)(x, y)$ and define maps $\sigma_E, \tau_E: G_1(E) \to B$, $\iota_{E}: \overline{G_{1}(E)} \to \overline{G_{1}(E)} \text{ and } \varepsilon_{E}: B \to \overline{G_{1}(E)} \text{ by } \sigma_{E}(\varphi) = x, \ \tau_{E}(\varphi) = y,$ $\iota_{\underline{E}}(\varphi) = \varphi^{-1} \text{ if } \varphi \in G_1(\underline{E})(x, y) \text{ and } \varepsilon_{\underline{E}}(x) = id_{\pi^{-1}(x)}.$

- Let $E = ((E, \mathscr{E}) \xrightarrow{\pi} (B, \mathscr{B}))$ be an object $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(B, \mathscr{B})}$ such that π is an epimorphism. Then, π is surjective by (6.7), hence $\pi^{-1}(x)$
- Let $G_1(E)(x, y)$ be a subset of $\mathscr{P}_F(\mathscr{C}, J)((\pi^{-1}(x), \mathscr{E}^{i_x}), (\pi^{-1}(y), \mathscr{E}^{i_y}))$

Suppose that the following diagram is cartesian. $G_1(E) \times_R G_1(E) \xrightarrow{\operatorname{pr}_2} G_1(E)$ As a set, $G_1(E) \times_R G_1(E)$ is given by $G_1(E) \times_R G_1(E) = \{(\varphi, \psi) \in G_1(E) \times G_1(E) \mid \tau_E(\varphi) = \sigma_E(\psi)\}.$ We define a map $\mu_E: G_1(E) \times_R G_1(E) \to G_1(E)$ by $\mu_E(\varphi, \psi) = \psi \varphi$. We consider the following cartesian squares. $E \times_{R}^{\sigma_{E}} G_{1}(E) \xrightarrow{\mathrm{pr}_{G_{1}}^{\sigma}(E)} G_{1}(E)$ pr_E^{σ} $\mathcal{\Pi}$

Hence $E \times_R^{\sigma_E} G_1(E)$ and $E \times_R^{\tau_E} G_1(E)$ are given as follows as sets. $E \times_{R}^{\sigma_{E}} G_{1}(E) = \{(e, \varphi) \in E \times G_{1}(E) \mid \pi(e) = \sigma_{E}(\varphi)\},\$ $E \times_{R}^{\tau_{E}} G_{1}(E) = \{(e, \varphi) \in E \times G_{1}(E) \mid \pi(e) = \tau_{E}(\varphi)\}$ There exists unique map $id_E \times_B \iota_E : E \times_R^{\tau_E} G_1(E) \to E \times_R^{\sigma_E} G_1(E)$ that makes the following diagram commute.

 $\operatorname{pr}_{G_1(E)}^{\tau}$ $E \times_{R}^{\tau_{E}} G_{1}(E)$ $G_1(E)$ $\begin{array}{c} & & & id_E \times_B \iota_E \\ & & & & id_E \times_B \iota_E \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

We define a map $\hat{\xi}_E : E \times_R^{\sigma_E} G_1(E) \to E$ by $\hat{\xi}_E(e, \varphi) = i_{\tau_E(\varphi)} \varphi(e)$. Let Σ_E the set of all the-ologies \mathscr{L} on $G_1(E)$ which satisfy We note that the $\mathscr{L} \in \Sigma_E$ if and only if following maps are morphisms in $\mathscr{P}_F(\mathscr{C}, J)$. $\sigma_E, \tau_E: (G_1(E), \mathscr{L}) \to (B, \mathscr{B})$ Proposition 7.1

 Σ_E is not empty. In fact $(G_1(E), \mathcal{D}_{disc, G_1(E)}) \in \Sigma_E$.

 $\mathscr{E}^{\mathrm{pr}_{E}^{\sigma}} \cap \mathscr{L}^{\mathrm{pr}_{G_{1}}^{\sigma}(E)} \subset \mathscr{E}^{\hat{\xi}_{E}}, \ \mathscr{E}^{\mathrm{pr}_{E}^{\tau}} \cap \mathscr{L}^{\mathrm{pr}_{G_{1}}^{\tau}(E)} \subset \mathscr{E}^{\hat{\xi}_{E}}(id_{E} \times_{B^{l_{E}}}) \text{ and } \mathscr{L} \subset \mathscr{B}^{\sigma_{E}} \cap \mathscr{B}^{\tau_{E}}.$

 $\hat{\xi}_{E}: \left(E \times_{R}^{\sigma_{E}} G_{1}(E), \mathscr{E}^{\mathrm{pr}_{E}^{\sigma}} \cap \mathscr{L}^{\mathrm{pr}_{G_{1}}^{\sigma}(E)}\right) \to (E, \mathscr{E})$ $\hat{\xi}_{E}(id_{E} \times_{B} \iota_{E}) : (E \times_{R}^{\tau_{E}} G_{1}(E), \mathscr{E}^{\mathrm{pr}_{E}^{\tau}} \cap \mathscr{L}^{\mathrm{pr}_{G_{1}}^{\tau}(E)}) \to (E, \mathscr{E})$

For $U \in Ob\mathscr{C}$, we consider the following conditions (G1), (G2), (G3) on an element γ of $F_{G_1(E)}(U)$. (G1) If $V, W \in Ob\mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\lambda \in \mathscr{E} \cap F_E(V)$ satisfy $\pi\lambda F(g) = \sigma_F \gamma F(f)$, a composition $F(W) = \frac{(\lambda F(g), \gamma F(f))}{(\lambda F(g), \gamma F(f))}$ belongs to $\mathscr{E} \cap F_F(W)$. (G2) If $V, W \in Ob\mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\lambda \in \mathscr{E} \cap F_E(V)$ satisfy $\pi\lambda F(g) = \tau_F \gamma F(f)$, a composition $F(W) = \frac{(\lambda F(g), \iota_E \gamma F(f))}{(\lambda F(g), \iota_E \gamma F(f))}$ belongs to $\mathscr{E} \cap F_E(W)$. (G3) Compositions $F(U) \xrightarrow{\gamma} G_1(E) \xrightarrow{\sigma_E} B$ and $F(U) \xrightarrow{\gamma} G_1(E) \xrightarrow{\tau_E} B$ belong to $\mathscr{B} \cap F_{\mathcal{B}}(U)$.

$$\stackrel{))}{\rightarrow} E \times_{B}^{\sigma_{E}} G_{1}(E) \stackrel{\xi_{E}}{\rightarrow} E$$

$$\xrightarrow{f}{\to} E \times_{B}^{\sigma_{E}} G_{1}(E) \xrightarrow{\varsigma_{E}} E$$

 $U \in Ob \mathscr{C}$.

Define a set \mathscr{G}_E of F-parametrizations of a set $G_1(E)$ so that $\mathscr{G}_E \cap F_{G_1(E)}(U)$ is a subset of $F_{G_1(E)}(U)$ consisting of elements which satisfy the above conditions (G1), (G2) and (G3) for any

Remark 7.2 The conditions (G1), (G2) and (G3) on $\gamma \in F_{G_1(E)}(U)$ above are equivalent to the following conditions (G1'), (G2') and (G3'), respectively. (G1') If $V, W \in Ob \mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\lambda \in \mathscr{E} \cap F_E(V)$ satisfy $\pi\lambda F(g) = \sigma_F \gamma F(f)$, then γ satisfies $((\lambda F(g), \gamma F(f)): F(W) \to E \times_{R}^{\sigma_{E}} G_{1}(E)) \in \mathscr{E}^{\xi_{E}} \cap F_{E \times_{R}^{\sigma_{E}} G_{1}(E)}(W).$ (G2') If $V, W \in Ob \mathcal{C}, f \in \mathcal{C}(W, U), g \in \mathcal{C}(W, V)$ and $\lambda \in \mathcal{E} \cap F_F(V)$ satisfy $\pi\lambda F(g) = \tau_F \gamma F(f)$, then γ satisfies $((\lambda F(g), \gamma F(f)): F(W) \to E \times_B^{\tau_E} G_1(E)) \in \mathscr{E}^{\hat{\xi}_E(id_E \times_B l_E)} \cap F_{E \times_B^{\tau_E} G_1(E)}(W).$ $(\mathsf{G3'}) \gamma \in \mathscr{B}^{\sigma_E} \cap \mathscr{B}^{\tau_E} \cap F_{G_1(E)}(U)$

Proposition 7.3 \mathscr{G}_E is a the-ology on $G_1(E)$.

Proposition 7.4 \mathscr{G}_E is maximum element of Σ_E .

We consider the following cartesian square. That is, $E \times_{R}^{\sigma_{E}} G_{1}(E) \times_{B} G_{1}(E)$ is the following set. commutative.

 $\{(e, \varphi, \psi) \in E \times G_1(E) \times G_1(E) \mid \pi(e) = \sigma_E(\varphi), \tau_E(\varphi) = \sigma_E(\psi)\}$ It follows from the definition of $\hat{\xi}_E$ that the following diagram is

(ii)

There exists unique map

that makes the following diagram commute by the commutativity of diagrams (i) and (ii) above.

 $E \times_{\mathbf{D}}^{\sigma_{E}}$

B

 $E \times_{B}^{\sigma_{E}} G_{1}(E) \times_{B} G_{1}(E)$

 pr_{12}

 $\hat{\xi}_{E} \times_{B} id_{G_{1}(E)} : E \times_{R}^{\sigma_{E}} G_{1}(E) \times_{B} G_{1}(E) \to E \times_{R}^{\sigma_{E}} G_{1}(E)$

 $\operatorname{pr}_E: E \times_R^{\sigma_E} G_1(E) \times_B G_1(E) \to E \text{ by } \operatorname{pr}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) \text{ and } E \in \mathcal{F}_{23}(e, \varphi, \psi) = (\varphi, \psi) = (\varphi,$ $pr_E(e, \phi, \psi) = e$, respectively. Then, there exists unique map that makes the following diagram commute. $E \times_{R}^{\sigma_{E}} G_{1}(E) \times_{B} G_{1}(E) - \cdots$ $id_E \times_B \mu_E$ pr_E^{σ}

Lemma 7.5 The following diagrams are commutative. $E \times_{B}^{\sigma_{E}} G_{1}(E) \times_{B}^{} G_{1}(E) \xrightarrow{id_{E} \times_{B} \mu_{E}} E \times_{B}^{\sigma_{E}} G_{1}(E)$ $\begin{aligned} & \hat{\xi}_E \times_B id_{G_1(E)} \\ & E \times_B^{\sigma_E} G_1(E) \end{aligned} \quad \hat{\xi}_E \end{aligned}$ $\hat{\xi}_{E}$ $G_1(E) \times_B G_1(E) \xrightarrow{\mu_E} G_1(E)$ Ľ $(id_E, \varepsilon_E \pi)$ $E \times_{B}^{\sigma_E} G_1(E)$ $\int_{E}^{l_{E}^{(2)}} \int_{\mu_{E}}^{\mu_{E}} \int_{G_{1}(E)}^{\mu_{E}} G_{1}(E) \xrightarrow{\mu_{E}} G_{1}(E)$ ξ_E

Proposition 7.6 The structure maps $\sigma_E, \tau_E: (G_1(E), \mathscr{G}_E) \to (E)$ $\varepsilon_E: (B, \mathscr{B}) \to (G_1(E))$ $\mu_{\boldsymbol{E}}: (G_1(\boldsymbol{E}) \times_{\boldsymbol{B}} G_1(\boldsymbol{E}))$ $l_E: (G_1(E), \mathscr{G}_E) \to (G_1(E), \mathscr{G}_E) \to (G_1(E), \mathscr{G}_E)$ of the groupoid $(B, G_1(E))$ are

Definition 7.7 Let $E = ((E, \mathscr{E}) \xrightarrow{\pi} (B, \mathscr{B}))$ be an object of $\mathscr{P}_F(\mathscr{C}, J)^{(2)}_{(B, \mathscr{B})}$ such that π is an epimorphism. We call the groupoid associated with E and denote this groupoid by G(E).

$$\begin{array}{l} \mathcal{B}, \mathcal{B} \\ \mathcal{O}, \mathcal{G}_{E} \\ \mathcal{O}, \mathcal{G}_{E}^{\mathrm{pr}_{1}} \cap \mathcal{G}_{E}^{\mathrm{pr}_{2}} \end{pmatrix} \to (G_{1}(E), \mathcal{G}_{E}) \\ \mathcal{O}_{1}(E), \mathcal{G}_{E} \\ \end{array}$$

$$\begin{array}{l} \mathcal{O}_{1}(E), \mathcal{G}_{E} \\ \mathcal{O}_{1}(E), \mathcal{G}_{E} \end{pmatrix} \\ \end{array}$$

 $((B, \mathscr{B}), (G_1(E), \mathscr{G}_E); \sigma_E, \tau_E, \varepsilon_E, \mu_E, \iota_E)$ in $\mathscr{P}_F(\mathscr{C}, J)$ the groupoid

Example 7.8 in $\mathscr{P}_F(\mathscr{C}, J)$ for an object (X, \mathscr{X}) of $\mathscr{P}_F(\mathscr{C}, J)$. Since o_X is an $O_X = ((X, \mathcal{X}) \xrightarrow{O_X} (\{1\}, \mathscr{D}_{coarse, \{1\}}).$ This groupoid and define a subset $Aut(X, \mathcal{X})$ of $End(X, \mathcal{X})$ by Then, $G_1(O_X)$ is identified with $Aut(X, \mathcal{X})$ as a set. The unit ε_{O_Y} : $\{1\} \rightarrow G_1(O_X)$ maps 1 to id_X .

We denote by $o_X: (X, \mathcal{X}) \to (\{1\}, \mathscr{D}_{coarse, \{1\}})$ the unique morphism epimorphism, we can consider the groupoid $G(O_X)$ associated with $G(O_X) = (\{1\}, \mathscr{D}_{coarse, \{1\}}), (G_1(O_X), \mathscr{G}_{O_Y}); \sigma_{O_Y}, \tau_{O_Y}, \varepsilon_{O_Y}, \mu_{O_Y}, \iota_{O_Y})$ is described as follows. Put $\operatorname{End}(X, \mathcal{X}) = \mathscr{P}_F(\mathscr{C}, J)((X, \mathcal{X}), (X, \mathcal{X}))$ Aut(X, \mathcal{X}) = { $\varphi \in End(X, \mathcal{X}) | \varphi$ is an isomorphism.} The source σ_{O_X} and the target τ_{O_Y} are the unique map $G_1(O_X) \rightarrow \{1\}$.

The composition μ_{O_X} : $G_1(O_X) \times G_1(O_X) \to G_1(O_X)$ maps (φ, ψ) to $\psi\varphi$ and the inverse $\iota_{O_Y}: G_1(O_X) \to G_1(O_X)$ maps φ to φ^{-1} . We define a map $\alpha_X: X \times G_1(O_X) \to X$ by $\alpha_X(x, \varphi) = \varphi(x)$, then the the-ology \mathscr{G}_{O_X} on $G_1(O_X) = \operatorname{Aut}(X, \mathscr{X})$ is given as follows. For $U \in Ob\mathscr{C}$, $\mathscr{G}_{O_X} \cap F_{G_1(O_X)}(U)$ is a subset of $F_{G_1(O_X)}(U)$ consisting of elements γ which satisfy the following condition (G). (G) For $V, W \in Ob\mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\lambda \in \mathscr{X} \cap F_X(V)$, the following compositions belong to $\mathcal{X} \cap F_X(W)$. $F(W) \xrightarrow{(\lambda F(g), \gamma F(f))} X \times G_1(O_X) \xrightarrow{\alpha_X} X$ $F(W) \xrightarrow{\left(\lambda F(g), \iota_{O_X} \gamma F(f)\right)} X \times G_1(O_X) \xrightarrow{\alpha_X} X$

 $\mu: (G \times G, \mathscr{G}^{p_1} \cap \mathscr{G}^{p_2}) \to (G, \mathscr{G}) \text{ in } \mathscr{P}_F(\mathscr{C}, J) \text{ which make the}$ following diagrams commute. Here, $p_i: G \times G \rightarrow G$ denotes the projection onto the *i*-th component for i=1,2. ${\cal E}$

Let $((G, \mathcal{G}); \varepsilon, \mu, \iota)$ be a group object in $\mathcal{P}_F(\mathcal{C}, J)$ with structure morphisms $\varepsilon:(\{1\}, \mathscr{D}_{disc,\{1\}}) \to (G, \mathscr{G}), \iota:(G, \mathscr{G}) \to (G, \mathscr{G})$ and $G \times G \times G \xrightarrow{\mu \times id_G} G \times G \longrightarrow G \times \{1\} \xrightarrow{id_G \times \varepsilon} G \times G \xleftarrow{\varepsilon \times id_G} \{1\} \times G$ $\begin{array}{cccc} & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$ $G \xrightarrow{(id_G, l)} G \times G \xleftarrow{(l, id_G)} G$ $|O_G|$ ${\cal E}$

For an object (B, \mathscr{B}) of $\mathscr{P}_F(\mathscr{C}, J)$, we define a groupoid $G_{G,B}$ in $\mathscr{P}_F(\mathscr{C},J)$ as follows. Put $G_1 = B \times G \times B$ and let $\sigma_{G,B}$ the projections given by $\sigma_{G,B}(x)$ $pr_G(x, g, y) = g$. Define maps ε_G Consider the following cartesia $G_1 \times_R G_1$ pr₁ G_1 G,BR Then $G_1 \times_B G_1 = \{(x, g, y), (z, h, w)\} \in G_1 \times G_1 \mid y = z\}$ holds as a set. Define maps $\mu_{G,B}: G_1 \times_B G_1 \to G_1$ and $\iota_{G,B}: G_1 \to G_1$ by $\mu_{G,B}((x, g, y), (z, h, w)) = (x, \mu(g, h), w) \text{ and } \iota_{G,B}(x, g, y) = (y, \iota(g), x).$

$$\tau_{G,B}: G_1 \to B \text{ and } \operatorname{pr}_G: G_1 \to G \text{ be}$$

$$(x, g, y) = x, \ \tau_{G,B}(x, g, y) = y \text{ and}$$

$$(x, g) = y \text{ and}$$

$$(x, g) = (x, e(1), x)$$

It is clear that $\sigma_{G,B}, \tau_{G,B}: (G_1, \mathscr{B}^{\sigma_{G,B}} \cap \mathscr{G}^{\operatorname{pr}_G} \cap \mathscr{B}^{\tau_{G,B}}) \to (B, \mathscr{B})$ and $\mathrm{pr}_G: (G_1, \mathscr{B}^{\sigma_{G,B}} \cap \mathscr{G}^{\mathrm{pr}_G} \cap \mathscr{B}^{\tau_{G,B}}) \to (G, \mathscr{G}) \text{ are morphisms in } \mathscr{P}_F(\mathscr{C}, J).$ Since $\sigma_{G,B} \varepsilon_{G,B} = \tau_{G,B} \varepsilon_{G,B} = id_X$ and the following diagram is commutative, it follows that $\varepsilon_{G,B}: (B, \mathscr{B}) \to (G_1, \mathscr{B}^{\sigma_{G,B}} \cap \mathscr{G}^{\mathrm{pr}_G} \cap \mathscr{B}^{\tau_{G,B}})$ is also a morphism in $\mathscr{P}_F(\mathscr{C},J)$.

$$(B, \mathscr{B}) \xrightarrow{\mathcal{E}_{G,B}} ($$
$$\downarrow o_B$$
$$(\{1\}, \mathscr{D}_{disc,\{1\}}) \longrightarrow$$

$(G_1, \mathscr{B}^{\sigma_{G,B}} \cap \mathscr{G}^{\operatorname{pr}_G} \cap \mathscr{B}^{\tau_{G,B}})$ $\overset{\mathcal{E}}{\longrightarrow} (G, \mathscr{G})$

that the following diagram commutes. Since $\sigma_{G,B}$, $\tau_{G,B}$, $(\mathrm{pr}_G, \mathrm{pr}_G)$ and μ are morphisms in $\mathscr{P}_F(\mathscr{C}, J)$, it follows that $\rightarrow (G_1, \mathscr{B}^{\sigma_{G,B}} \cap \mathscr{G}^{\mathrm{pr}_G} \cap \mathscr{B}^{\tau_{G,B}})$ is a morphism in $\mathscr{P}_F(\mathscr{C},J)$.

We note that $\sigma_{G,B}\mu_{G,B} = \sigma_{G,B}pr_1$ and $\tau_{G,B}\mu_{G,B} = \tau_{G,B}pr_2$ hold and $G_1 \times_B G_1 \xrightarrow{(\operatorname{pr}_G, \operatorname{pr}_G)} G \times G$

 $\mu_{G,B}: (G_1 \times_B G_1, (\mathscr{B}^{\sigma_{G,B}} \cap \mathscr{G}^{\operatorname{pr}_G} \cap \mathscr{B}^{\tau_{G,B}})^{\operatorname{pr}_1} \cap (\mathscr{B}^{\sigma_{G,B}} \cap \mathscr{G}^{\operatorname{pr}_G} \cap \mathscr{B}^{\tau_{G,B}})^{\operatorname{pr}_2})$

We also have $\sigma_{G,B}\iota_{G,B} = \tau_{G,B}$, $\tau_{G,B}\iota_{G,B} = \sigma_{G,B}$ and $\text{pr}_{G,B} = \iota_{F}$ which imply that is a morphism in $\mathscr{P}_F(\mathscr{C},J)$. It is easy to verify that $((B,\mathscr{B}),(B\times G\times B,\mathscr{B}^{\sigma_{G,B}}\cap \mathscr{G}^{\mathrm{pr}_{G}}\cap \mathscr{B}^{\tau_{G,B}});\sigma_{G,B},\tau_{G,B},\varepsilon_{G,B},\mu_{G,B},\iota_{G,B})$ is a groupoid in $\mathscr{P}_F(\mathscr{C},J)$. Definition 7.9 The groupoid $((B,\mathscr{B}),(B\times G\times B,\mathscr{B}^{\sigma_{G,B}}\cap \mathscr{G}^{\mathrm{pr}_{G}}\cap \mathscr{B}^{\tau_{G,B}});\sigma_{G,B},\tau_{G,B},\varepsilon_{G,B},\mu_{G,B},\iota_{G,B})$ in $\mathscr{P}_F(\mathscr{C}, J)$ constructed above is called the trivial groupoid associated with $((G, \mathcal{G}); \varepsilon, \mu, \iota)$ and (B, \mathcal{B}) .

 $l_{G,B}: (G_1, \mathscr{B}^{\sigma_{G,B}} \cap \mathscr{G}^{\mathrm{pr}_G} \cap \mathscr{B}^{\tau_{G,B}}) \to (G_1, \mathscr{B}^{\sigma_{G,B}} \cap \mathscr{G}^{\mathrm{pr}_G} \cap \mathscr{B}^{\tau_{G,B}})$

Let (X, \mathcal{X}) and (B, \mathcal{B}) be objects of $\mathcal{P}_F(\mathcal{C}, J)$. Let us denote by $pr_X: X \times B \to X$ and $pr_B: X \times B \to B$ the projections. Then we have an object $X = ((X \times B, \mathscr{X}^{\operatorname{pr}_X} \cap \mathscr{B}^{\operatorname{pr}_B}) \xrightarrow{\operatorname{pr}_B} (B, \mathscr{B}))$ of Epi $(\mathscr{P}_F(\mathscr{C},J)).$ We also have a group object $G_1(O_X) = \operatorname{Aut}(X, \mathscr{X})$ in $\mathscr{P}_F(\mathscr{C}, J)$ with unit ε_{O_X} : {1} $\rightarrow G_1(O_X)$, product μ_{O_X} : $G_1(O_X) \times G_1(O_X) \to G_1(O_X)$ and inverse $\iota_{O_X}: G_1(O_X) \to G_1(O_X)$ as we considered in (7.8).

Proposition 7.10 The groupoid $G(X) = ((B, \mathcal{B}), ($ $\mathscr{P}_F(\mathscr{C},J)$ associated with X is associated with $((G_1(O_X), \mathcal{G}_{O_Y}))$

$$G_1(X), \mathscr{G}_X); \sigma_X, \tau_X, \varepsilon_X, \mu_X, \iota_X)$$
 in
isomorphic to the trivial groupoid
; $\varepsilon_{O_X}, \mu_{O_X}, \iota_{O_X})$ and (B, \mathscr{B}) .

Let us denote by $\operatorname{Epi}_{\mathcal{C}}(\mathscr{P}_{F}(\mathscr{C},J))$ a subcategory of $\mathscr{P}_{F}(\mathscr{C},J)^{(2)}$ whose objects are epimorphisms in $\mathscr{P}_F(\mathscr{C},J)$ and morphisms are cartesian morphisms in the fibered category $\mathscr{D}: \mathscr{P}_F(\mathscr{C}, J)^{(2)} \to \mathscr{P}_F(\mathscr{C}, J) \text{ of morphisms in } \mathscr{P}_F(\mathscr{C}, J).$

Let $D = ((D, \mathscr{D}) \xrightarrow{\rho} (A, \mathscr{A})), E = ((E, \mathscr{E}) \xrightarrow{\pi} (B, \mathscr{B}))$ be objects of $\operatorname{Epi}_{\mathcal{C}}(\mathscr{P}_{F}(\mathscr{C},J))$ and $\boldsymbol{\xi} = \langle \boldsymbol{\xi},f \rangle : \boldsymbol{D} \to \boldsymbol{E}$ a morphism in $\operatorname{Epi}_{\mathcal{C}}(\mathscr{P}_{F}(\mathscr{C},J)).$ For $x \in A$ and $y \in B$, we denote by $j_x : \rho^{-1}(x) \to D$ and $i_y : \pi^{-1}(y) \to E$ the inclusion maps, respectively.

Then, we have unique map $\xi_x: \rho^{-1}(x) \to \pi^{-1}(f(x))$ that makes the right diagram commute.

Lemma 7.11 $\xi_{x}: (\rho^{-1}(x), \mathscr{D}^{j_{x}}) \to (\pi^{-1}(f(x)), \mathscr{E}^{i_{f(x)}}) \text{ is an isomorphism in } \mathscr{P}_{F}(\mathscr{C}, J).$

Remark 7.12. We consider the following cartesian square. $A \times_B E \xrightarrow{f_\pi} E$

and $f_{\pi}\xi_{f} = \xi$. Thus we have

Since $\boldsymbol{\xi}$ is cartesian, $(\rho, \boldsymbol{\xi}): (D, \mathcal{D}) \to (A \times_{B} E, \mathcal{A}^{\pi_{f}} \cap \mathcal{E}^{f_{\pi}})$ is an isomorphism in $\mathscr{P}_F(\mathscr{C}, J)$. Put $\xi_f = (\rho, \xi)$ then ξ_f satisfies $\pi_f \xi_f = \rho$

 $\mathscr{D} = (\mathscr{A}^{\pi_f} \cap \mathscr{E}^{f_{\pi}})^{\xi_f} = \mathscr{A}^{\pi_f \xi_f} \cap \mathscr{E}^{f_{\pi} \xi_f} = \mathscr{A}^{\rho} \cap \mathscr{E}^{\xi}.$

By (7.11), we can define a bijection by $\xi_{x,y}(\varphi) = \xi_y \varphi \xi_x^{-1}$ for $x, y \in A$. $x = \sigma_D(\varphi)$ and $y = \tau_D(\varphi)$. groupoids, that is, the following diagrams are commutative. Here, $\xi_1 \times_f \xi_1 : G_1(D) \times_A G_1(D) \to G_1(E) \times_B G_1(E)$ maps (φ, ψ) to $(\xi_1(\varphi),\xi_1(\psi)).$

$\xi_{x,y}: G_1(D)(x,y) \to G_1(E)(f(x),f(y))$

We also define a map $\xi_1: G_1(D) \to G_1(E)$ by $\xi_1(\varphi) = \overline{\xi_{x,y}}(\varphi)$ where

Note that a pair (f, ξ_1) of maps is a morphism $G(D) \rightarrow G(E)$ of

 $A \xleftarrow{\sigma_{D}} G_{1}(D) \xrightarrow{\tau_{D}} A \xrightarrow{\varepsilon_{D}} G_{1}(D) \xrightarrow{\iota_{D}} G_{1}(D) \xrightarrow{\iota_{D}} G_{1}(D) \xrightarrow{\iota_{D}} G_{1}(D) \xrightarrow{\iota_{D}} G_{1}(D) \xrightarrow{\mu_{D}} G_{1}(D)$

Define a map $\xi \times_f \xi_1 : D \times_A^{\sigma_D} G_1(D) \to E \times_R^{\sigma_E} G_1(E)$ by

Then, the following diagram is commutative.

$(\xi \times_f \xi_1)(e, \varphi) = (\xi(e), \xi_1(\varphi)).$

Lemma 7.13 $\xi_1: (G_1(D), \mathscr{G}_D) \to (G_1(E), \mathscr{G}_E) \text{ is a morphism in } \mathscr{P}_F(\mathscr{C}, J).$ It follows that a pair of morphisms $(f, \xi_1): G(D) \rightarrow G(E)$ is a morphism of groupoids in $\mathscr{P}_F(\mathscr{C}, J)$.

We denote by $Grp(\mathscr{P}_F(\mathscr{C},J))$ the category of groupopids in $\mathscr{P}_F(\mathscr{C},J)$ and morphisms of $\operatorname{Grp}(\mathscr{P}_F(\mathscr{C},J))$ are morphisms of groupopids.

 $\mathscr{P}_F(\mathscr{C},J)$. That is, objects of $\operatorname{Grp}(\mathscr{P}_F(\mathscr{C},J))$ are groupopids in

Define a functor $\operatorname{Gr}:\operatorname{Epi}_{\mathcal{C}}(\mathscr{P}_{F}(\mathscr{C},J)) \to \operatorname{Grp}(\mathscr{P}_{F}(\mathscr{C},J))$ as follows. For an object $E = ((E, \mathscr{C}) \xrightarrow{\pi} (B, \mathscr{D}))$ of $\operatorname{Epi}_{\mathcal{C}}(\mathscr{P}_{F}(\mathscr{C}, J))$, let $\operatorname{Gr}(E)$ be the groupoid G(E) associated with E as we defined in (7.7). For a morphism $\boldsymbol{\xi} = \langle \boldsymbol{\xi}, f \rangle : \boldsymbol{D} \to \boldsymbol{E}$ in $\operatorname{Epi}_{\mathcal{C}}(\mathscr{P}_{F}(\mathscr{C}, J))$, we put $\operatorname{Gr}(\boldsymbol{\xi}) = (f, \xi_1) : G(D) \to G(E).$ Then $Gr(\xi)$ is a morphism in $Grp(\mathscr{P}_F(\mathscr{C}, J))$ by (7.13).

§8. Fibrations

Definition 8.1 ([4], 8.4, 8.8)Let $G = ((G_0, \mathscr{G}_0), (G_1, \mathscr{G}_1); \sigma, \tau, \varepsilon, \mu, \iota)$ be a groupoid in $\mathscr{P}_F(\mathscr{C}, J)$. We denote by $\operatorname{pr}_{\sigma}$, $\operatorname{pr}_{\tau}: G_0 \times G_0 \to G_0$ the projections given by $\operatorname{pr}_{\sigma}(x, y) = x$ and $\operatorname{pr}_{\tau}(x, y) = y$. If a map $(\sigma, \tau): G_1 \to G_0 \times G_0$ given by $(\sigma, \tau)(\varphi) = (\sigma(\varphi), \tau(\varphi))$ is an epimorphism and the the-ology $(\mathcal{G}_1)_{(\sigma,\tau)}$ on $G_0 \times G_0$ coincides with $\mathscr{G}_0^{\mathrm{pr}_{\sigma}} \cap \mathscr{G}_0^{\mathrm{pr}_{\tau}}$, we say that G is fibrating. Let E be an object of $\operatorname{Epi}_{\mathcal{C}}(\mathscr{P}_{F}(\mathscr{C},J))$. If the groupoid G(E)associated with E(7.7) is fibrating, we call E a fibration.

Remark 8.2 If $E = ((E, \mathscr{E}) \xrightarrow{\pi} (B, \mathscr{B}))$ is a fibration, since $(\sigma_E, \tau_E) : G_1(E) \to B \times B$ is surjective, $G_1(E)(x, y)$ is not empty for any $x, y \in B$. Hence fibers $(\pi^{-1}(x), \mathscr{E}^{i_x})$ of π are all isomorphic.

Lemma 8.3 Let (X, \mathcal{X}) and (B, \mathcal{B}) be obje We denote the projections by p Then \mathscr{B} coincides with $(\mathscr{X}^{\operatorname{pr}_X} \cap$

Proposition 8.4 Let $\xi: D \to E$ be a morphism in $\operatorname{Epi}_{\mathcal{C}}(\mathscr{P}_F(\mathscr{C}, J)).$ If E is a fibration, so is D.

cts of
$$\mathscr{P}_F(\mathscr{C}, J)$$
.
or_X: X × B → X and pr_B: X × B → B
 $\mathscr{B}^{\operatorname{pr}_B})_{\operatorname{pr}_B}$.

Example 8.5 of $\mathscr{P}_F(\mathscr{C}, J)$. Consider the trivial groupoid $((B,\mathscr{B}), (B \times G \times B, \mathscr{B}^{\sigma_{G,B}} \cap \mathscr{B}^{\tau_{G,B}} \cap \mathscr{G}^{\mathrm{pr}_{G}}); \sigma_{G,B}, \tau_{G,B}, \varepsilon_{G,B}, \mu_{G,B}, \iota_{G,B})$ in $\mathscr{P}_{F}(\mathscr{C}, J)$ associated with $((G, \mathscr{G}); \varepsilon, \mu, \iota)$ and (B, \mathscr{B}) . We denote this groupoid by $G_{G,B}$. (8.3) that $G_{G,B}$ is fibrating. We call X a product fibration.

- Let $((G, \mathcal{G}); \varepsilon, \mu, \iota)$ be a group in $\mathcal{P}_F(\mathcal{C}, J)$ and (B, \mathcal{B}) an object
- Since $(\sigma_{G,B}, \tau_{G,B}): B \times G \times B \to B \times B$ is a projection, it follows from
- Hence $X = ((X \times B, \mathcal{X}^{\operatorname{pr}_X} \cap \mathscr{B}^{\operatorname{pr}_B}) \xrightarrow{\operatorname{pr}_B} (B, \mathscr{B}))$ is a fibration by (7.10).

Definition 8.6 Let \mathcal{C} be a category with a terminal object $1_{\mathscr{C}}$. For an object U of C, we say that a functor $F: C \to Set$ is U-pointed if $F: \mathscr{C}(1_{\mathscr{C}}, U) \to \mathscr{Set}(F(1_{\mathscr{C}}), F(U))$ is surjective. If F is U-pointed for any object U of \mathcal{C} , we say that F is pointed.

Proposition 8.7 If a category \mathscr{C} has a terminal object $1_{\mathscr{C}}$, then the functor $h^{1_{\mathscr{C}}}: \mathscr{C} \to \mathscr{Set}$ defined by $h^{1_{\mathscr{C}}}(U) = \mathscr{C}(1_{\mathscr{C}}, U)$ and $h^{1_{\mathscr{C}}}(f: U \to V) = (f_*: \mathscr{C}(1_{\mathscr{C}}, U) \to \mathscr{C}(1_{\mathscr{C}}, V))$ is pointed.

Definition 8.8 exists a covering $(V_i \xrightarrow{f_i} V)_{i \in I}$ of V such that for any $i \in I$, then α belongs to the image of

Let (\mathcal{C}, J) be a site. For an object U of \mathcal{C} , we say that a functor $F: \mathscr{C} \to Set$ is U-local if F satisfies the following condition (L). If F is U-local for any object U of \mathcal{C} , we say that F is local. (L) For an object V of \mathscr{C} and a map $\alpha: F(V) \to F(U)$, if there $F(f_i)^* : Set(F(V), F(U)) \rightarrow Set(F(V_i), F(U))$ maps α into the image of $F: \mathscr{C}(V_i, U) \to \mathscr{S}et(F(V_i), F(U))$ $\overline{F}: \mathscr{C}(V, U) \to \mathscr{Set}(F(V), F(U)).$

Remark 8.9 of \mathscr{C} , we define a subset \mathscr{F}_U of $\coprod F_{F(U)}(V)$ by

V∈Ob€ (1) Assume that \mathscr{C} has a terminal object $1_{\mathscr{C}}$. Since (2) For a site (\mathcal{C}, J) , F is U-local if and only if \mathcal{F}_U satisfies condition (iii) of (2.2).

Let \mathcal{C} be a category and $F: \mathcal{C} \to \mathcal{S}et$ a functor. For an object UV∈Ob% $\mathscr{F}_U = \coprod \operatorname{Im}(F:\mathscr{C}(V,U) \to \mathscr{Set}(F(V),F(U)) = F_{F(U)}(V)).$ Then, it is easy to verify that \mathcal{F}_{U} satisfies condition (ii) of (2.2). $\mathscr{F}_U \cap F_{F(U)}(1_{\mathscr{C}}) = \operatorname{Im}(F:\mathscr{C}(1_{\mathscr{C}}, U) \to F_{F(U)}(1_{\mathscr{C}})),$ F is U-pointed if and only if \mathcal{F}_U satisfies condition (i) of (2.2).

Thus \mathscr{F}_U is a the-ology on F(U) if and only if F is U-pointed and U-local. Assume that F is pointed and local below. For an object V, a morphism $f: U \to W$ in \mathscr{C} and $\varphi \in \mathscr{F}_U \cap F_{F(U)}(V)$, since there exists $g \in \mathscr{C}(V, U)$ such that $F(g) = \varphi$, we have $(F_{F(f)})_V(\varphi) = F(f)\varphi = F(f)F(g) = F(fg) \in \mathscr{F}_U \cap F_{F(W)}(V).$ It follows that $(F_{F(f)})_V: F_{F(U)}(V) \to F_{F(W)}(V)$ maps $\mathscr{F}_U \cap F_{F(U)}(V)$ into $\mathscr{F}_W \cap F_{F(W)}(V)$.

for a morphism $f: U \to W$ in \mathscr{C} . Then $\Gamma \check{F} = F$ holds.

Define a functor $\check{F}: \mathscr{C} \to \mathscr{P}_F(\mathscr{C}, J)$ by $\check{F}(U) = (F(U), \mathscr{F}_U)$ for $U \in Ob\mathscr{C} \text{ and } \check{F}(f: U \to W) = (F(f): (F(U), \mathscr{F}_U) \to (F(W), \mathscr{F}_W))$

Example 8.10 \mathscr{C}^{∞} are C^{∞} -maps. For $U \in \operatorname{Ob} \mathscr{C}^{\infty}$, let $P_{\infty}(U)$ be the set of It is easy to verify that P_∞ is a pretopology on $\mathscr{C}^\infty.$ Then, the forgetful functor $F: \mathscr{C}^{\infty} \to \mathcal{S}et$ is pointed and local. and a the-ological object is called a diffeological space.

Define a category \mathscr{C}^{∞} as follows. Objects of \mathscr{C}^{∞} are open sets of n dimensional Euclidean space \mathbb{R}^n for some $n \ge 0$. Morphisms of families $(U_i \xrightarrow{J_i} U)_{i \in I}$ of open embeddings such that $U = \bigcup_{i \in I} f_i(U_i)$. We give a Grothendieck topology J_{∞} on \mathscr{C}^{∞} generated by P_{∞} . For a set X, a the-ology on X is usually called a diffeology on X

Example 8.11 Let k be an algebraically closed field. We denote by $\mathscr{A}ff_k$ the such that $V = \bigcup_{i \in I} f_i(V_i)$. It is easy to verify that $P_{Aff_k}(V)$ is a pretopology on $\mathscr{A}\!\mathit{ff}_k$. We give a Grothendieck topology $J_{\mathscr{A}\!\mathit{ff}_k}$ on $\mathscr{A}ff_k$ generated by $P_{\mathscr{A}ff_k}(V)$.

category of affine varieties over k. For $V \in Ob \mathscr{A}ff_k$, let $P_{\mathscr{A}ff_k}(V)$ be the set of families $(V_i \xrightarrow{f_i} V)_{i \in I}$ of Zariski open embeddings

Then, the forgetful functor $F: \mathscr{A}ff_k \to \mathscr{S}et$ is pointed and local.

Proposition 8.12 Let (X, \mathcal{X}) be an object of $\mathscr{P}_F(\mathscr{C}, J)$. Suppose that $F: \mathscr{C} \to \mathscr{S}et$ is U-pointed and U-local for an object U of C. Then, a map $\varphi: F(U) \to X$ is an *F*-plot if and only if $\varphi: (F(U), \mathscr{F}_U) \to (X, \mathscr{X})$ is a morphism in $\mathscr{P}_F(\mathscr{C}, J)$.

Lemma 8.13 For an object $E = ((E, \mathscr{C}) \xrightarrow{\pi} (B, \mathscr{B}))$ of $\mathscr{P}_F(\mathscr{C}, J)$, the following diagram in $\mathscr{P}_F(\mathscr{C}, J)$ is cartesian. nro $\int_{\mathbf{V}} \mathbf{F}^{\mathbf{G}_{1}(E)} (\mathbf{E}) \cdot (\mathbf{G}_{1}(\mathbf{E}), \mathcal{G}_{\mathbf{E}}) \cdot \mathbf{G}_{\mathbf{E}}$

 $\left(E \times_{B}^{\sigma_{E}} G_{1}(E), \mathscr{E}^{\mathrm{pr}_{E}^{\sigma}} \cap \mathscr{G}_{E}^{\mathrm{pr}_{G_{1}(E)}^{\sigma}}\right) \xrightarrow{\hat{\xi}_{E}} (E, \mathscr{E})$ π au_E (B, \mathscr{B})

projection onto the *i*-th component for i=1,2. $\iota_{h}: (B, \mathscr{B}) \to (B \times B, \mathscr{B}^{\mathrm{pr}_{B1}} \cap \mathscr{B}^{\mathrm{pr}_{B2}})$ is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$. For $U \in Ob\mathscr{C}$ and $\gamma \in \mathscr{B} \cap F_{\mathcal{B}}(U)$, since $h \in R$, there exists $\gamma_h \in \mathscr{G}_E \cap F_{G_1(E)}(\operatorname{dom}(h))$ which satisfies

- Let $E = ((E, \mathscr{E}) \xrightarrow{\pi} (B, \mathscr{B}))$ be a fibration. For $b \in B$, define a map $\iota_h: B \to B \times B$ by $\iota_h(x) = (b, x)$. We denote by $\operatorname{pr}_{Bi}: B \times B \to B$ the
- Since $pr_{B1}l_b$ is a constant map and $pr_{B2}l_b$ is the identity map of B,

 - $(F_{l_b})_U(\gamma) \in \mathscr{B}^{\mathrm{pr}_{B_1}} \cap \mathscr{B}^{\mathrm{pr}_{B_2}} = (\mathscr{G}_E)_{(\sigma_E, \tau_E)'}$
- it follows from (3.4) that there exists $R \in J(U)$ such that, for each
 - $F_{B\times B}(h)((F_{l_h})_U(\gamma)) = (F_{(\sigma_F,\tau_F)})_{\operatorname{dom}(h)}(\gamma_h).$

the commutativity of the following diagram, we have $\pi((\gamma_h(u))(e)) = \gamma(F(h)(u)) \text{ for } e \in \pi^{-1}(b).$ $F(\operatorname{dom}(h)) \xrightarrow{\gamma_{h}} G_{1}(E)$ $\downarrow F(h) \qquad \qquad \downarrow (\sigma_{E}, \tau_{E})$ $F(U) \xrightarrow{\gamma} B \xrightarrow{l_{b}} B \times B$

We denote by $\operatorname{pr}_{\pi^{-1}(b)}: \pi^{-1}(b) \times F(\operatorname{dom}(h)) \to \pi^{-1}(b)$ and the first and second components, respectively. We also denote by $i_b: \pi^{-1}(b) \to E$ the inclusion map.

- For $u \in F(\operatorname{dom}(h))$, since $\gamma_h(u)$ belongs to $G_1(E)(b, \gamma(F(h)(u)))$ by
- $\operatorname{pr}_{F(\operatorname{dom}(h))}: \pi^{-1}(b) \times F(\operatorname{dom}(h)) \to F(\operatorname{dom}(h))$ the projections onto

For $(e, u) \in \pi^{-1}(b) \times F(\operatorname{dom}(h))$, since $\pi(e) = b = \sigma_E \gamma_h(u)$ by the commutativity of the above diagram, we have a map $(i_b \operatorname{pr}_{\pi^{-1}(b)}, \gamma_h \operatorname{pr}_{F(\operatorname{dom}(h))}): \pi^{-1}(b) \times F(\operatorname{dom}(h)) \to E \times_B^{\sigma_E} G_1(E).$ Let us denote by $\bar{\gamma}_h: \pi^{-1}(b) \times F(\operatorname{dom}(h)) \to E$ a composition $\pi^{-1}(b) \times F(\operatorname{dom}(h)) \xrightarrow{(i_b \operatorname{pr}_{\pi^{-1}(b)}, \gamma_h \operatorname{pr}_{F(\operatorname{dom}(h))})} E \times_R^{\sigma_E} G_1(E) \xrightarrow{\hat{\xi}_E} E.$ Then $\overline{\gamma}_h(e, u) = (\gamma_h(u))(e)$ holds for $(e, u) \in \pi^{-1}(b) \times F(\operatorname{dom}(h))$. Lemma 8.14 The following diagram is cartesian in the category of sets. $\pi^{-1}(b) \times F(dom$ $\int F(dom(h))$

$$\begin{array}{c} n(h)) & \xrightarrow{\gamma_h} & E \\ p(h)) & & & & & & & \\ \gamma F(h) & & & & & \\ \gamma F(h) & & & & & \\ \end{pmatrix} \end{array}$$

Lemma 8.15 If $F: \mathscr{C} \to \mathscr{Set}$ is pointed and local, the following diagram is cartesian in $\mathscr{P}_F(\mathscr{C}, J)$. $(\pi^{-1}(b) \times F(\operatorname{dom}(h)), (\mathscr{E}^{i_b})^{\operatorname{pr}})$ pr_{F(dom} $(F(\operatorname{dom}(h)), \mathcal{F}_{\operatorname{dom}})$

$$\begin{array}{c} \stackrel{r_{\pi^{-1}(b)}}{\longrightarrow} \cap \mathscr{F}_{dom(h)}^{\operatorname{pr}_{F(dom(h))}}) & \xrightarrow{\overline{\gamma}_{h}} \to (E, \mathscr{E}) \\ \stackrel{(h))}{\longrightarrow} \stackrel{(h))}{\longrightarrow} \stackrel{\gamma F(h)}{\longrightarrow} \stackrel{(E, \mathscr{E})}{\longrightarrow} (B, \mathscr{B}) \end{array}$$

Assume that the lower right rectangle of the following diagram is cartesian. Then, there exists unique map $\hat{\gamma}_h: \pi^{-1}(b) \times F(\operatorname{dom}(h)) \to F(U) \times_B E$ that makes the following diagram commute. $\pi^{-1}(b) \times F(\operatorname{dom}(h))$ γ_h

Proposition 8.16 We assume that $F: \mathscr{C} \to \mathscr{Set}$ is pointed and local. Consider objects $\gamma^*(E) = ((F(U) \times_B E, \mathscr{F}_U^{\pi_{\gamma}} \cap \mathscr{E}^{\gamma_{\pi}}) \xrightarrow{\pi_{\gamma}} (F(U), \mathscr{F}_U))$ $G = \left(\left(\pi^{-1}(b) \times F(\operatorname{dom}(h)), (\mathscr{E}^{i_b})^{\operatorname{pr}_{\pi^{-1}(b)}} \cap \mathscr{F}_{\operatorname{dom}(h)}^{\operatorname{pr}_{F(\operatorname{dom}(h))}} \right) \xrightarrow{\operatorname{pr}_{F(\operatorname{dom}(h))}}$ $(F(\operatorname{dom}(h)), \mathcal{F}_{\operatorname{dom}(h)}))$ of $\mathscr{P}_F(\mathscr{C}, J)$. Then, $\gamma_h = \langle \hat{\gamma}_h, F(h) \rangle : G \to \gamma^*(E)$ is cartesian morphism in $\mathscr{P}_F(\mathscr{C},J)^{(2)}$.

For morphisms $\zeta_1, \zeta_2: D \to E$ in $\operatorname{Epi}_C(\mathscr{P}_F(\mathscr{C}, J))$, we put for k=1,2. For $a \in A$ and $b \in B$, we denote by $j_a: \rho^{-1}(a) \to D$, Thus we have the following isomorphism in $\mathscr{P}_F(\mathscr{C}, J)$. We define a map $\tilde{\zeta}: A \to G_1(E)$ by $\tilde{\zeta}(x) = \zeta_{2,x} \zeta_{1,x}^{-1}$. Then, $\sigma_E \tilde{\zeta}(x) = f_1(x)$ and $\tau_E \tilde{\zeta}(x) = f_2(x)$ hold.

 $\boldsymbol{D} = ((D, \mathscr{D}) \xrightarrow{\rho} (A, \mathscr{A})), \boldsymbol{E} = ((E, \mathscr{E}) \xrightarrow{\pi} (B, \mathscr{B})) \text{ and } \boldsymbol{\zeta}_k = \langle \boldsymbol{\zeta}_k, f_k \rangle$ $i_b: \pi^{-1}(b) \to E$ the inclusion maps. It follows from (7.11) that the morphisms $\zeta_{k,x}: (\rho^{-1}(x), \mathscr{D}^{j_x}) \to (\pi^{-1}(f_k(x)), \mathscr{E}^{l_{f_k(x)}})$ (k=1,2) obtained by restricting $\zeta_k: (D, \mathscr{D}) \to (E, \mathscr{E})$ are isomorphisms in $\mathscr{P}_F(\mathscr{C}, J)$. $\zeta_{2,x}\zeta_{1,x}^{-1}:(\pi^{-1}(f_1(x)),\mathscr{E}^{i_{f_1(x)}}) \to (\pi^{-1}(f_2(x)),\mathscr{E}^{i_{f_2(x)}})$

The following diagram is commutative.

Lemma 8.17 $\tilde{\zeta}: (A, \mathscr{A}) \to (G_1(E), \mathscr{G}_E)$ is a morphism in $\mathscr{P}_F(\mathscr{C}, J)$.

 $\begin{array}{c} \xi \\ \zeta \\ (f_1, f_2) \end{array} \xrightarrow{G_1(E)} \\ (\sigma_E, \tau_E) \\ B \times B \end{array}$

Proposition 8.18 ([4], 8.9) We assume that $F: \mathscr{C} \to Set$ is pointed and local. if and only if the following condition (P) is satisfied. $(U_i \xrightarrow{f_i} U)_{i \in U}$ of U such that the inverse image $(\gamma F(f_i))^*(E)$ the projections.

An object $E = ((E, \mathscr{E}) \xrightarrow{\pi} (B, \mathscr{B}))$ of $\operatorname{Epi}_{\mathcal{C}}(\mathscr{P}_{F}(\mathscr{C}, J))$ is a fibration

(P) There exists an object (T, \mathcal{T}) of $\mathscr{P}_F(\mathscr{C}, J)$ such that, for any $U \in Ob\mathscr{C}$ and $\gamma \in \mathscr{B} \cap F_B(U)$, there exists a covering

of E by $\gamma F(f_i): F(U_i) \rightarrow B$ is isomorphic to a product fibration $(\operatorname{pr}_{F(U_i)}: (T \times F(U_i), \mathscr{T}^{\operatorname{pr}_T} \cap \mathscr{F}_{U_i}^{\operatorname{pr}_F(U_i)}) \to (F(U_i), \mathscr{F}_{U_i}) \text{ for any } i \in I.$ Here $\operatorname{pr}_T: T \times F(U_i) \to T$ and $\operatorname{pr}_{F(U_i)}: T \times F(U_i) \to F(U_i)$ denote

§9. F-topology

maps. We denote by $\mathcal{U}: \mathcal{T}op \to \mathcal{S}et$ the forgetful functor. For a functor $F: \mathscr{C} \to \mathscr{Set}$, we assume in this section that there exists a functor $F_{\mathcal{T}}: \mathscr{C} \to \mathcal{T}op$ which satisfies $F = \mathscr{U}F_{\mathcal{T}}$.

Let Top be the category of topological spaces and continuous

Definition 9.1 For an object (X, \mathscr{D}) of $\mathscr{P}_F(\mathscr{C}, J)$, we define a set $\mathscr{O}_{(X, \mathscr{D})}$ of subsets of X by It is easy to verify that $\mathcal{O}_{(X,\mathcal{D})}$ is a topology on X. In fact, $\mathcal{O}_{(X,\mathcal{D})}$ is the coarsest topology on X such that We call $\mathcal{O}_{(X,\mathcal{D})}$ the *F*-topology on *X* associated with \mathcal{D} .

We denote by \mathcal{O}_U the sets of open sets of $F_{\mathcal{T}}(U)$ for $U \in Ob\mathscr{C}$.

- $\mathscr{O}_{(X,\mathscr{D})} = \{ O \subset X \mid \alpha^{-1}(O) \in \mathscr{O}_U \text{ if } U \in Ob\mathscr{C}, \alpha \in \mathscr{D} \cap F_X(U) \}.$ $\alpha: F_{\mathcal{T}}(U) \to X$ is continuous for any $U \in Ob\mathscr{C}$ and $\alpha \in \mathscr{D} \cap F_X(U)$.

Let $\varphi:(X, \mathscr{D}) \to (Y, \mathscr{E})$ be a morphism in $\mathscr{P}_F(\mathscr{C}, J)$. belongs to $\mathscr{E} \cap F_Y(U)$, $\alpha^{-1}(\varphi^{-1}(O)) = (\varphi \alpha)^{-1}(O) \in \mathscr{O}_U$ holds. is a continuous map. Define a functor $\mathcal{T}: \mathscr{P}_{F}(\mathscr{C}, J) \to \mathcal{T}op \text{ by } \mathcal{T}((X, \mathscr{D})) = (X, \mathscr{O}_{(X, \mathscr{D})})$ and $\mathcal{T}(\varphi: (X, \mathscr{D}) \to (Y, \mathscr{E})) = (\varphi: (X, \mathscr{O}_{(X, \mathscr{D})}) \to (Y, \mathscr{O}_{(Y, \mathscr{E})})).$ Definition 9.2

For a topological space (X, \mathcal{O}) , we define a set $\mathcal{D}_{(X, \mathcal{O})}$ by $\mathscr{D}_{(X,\mathscr{O})} = \prod_{U \in Ob\mathscr{C}} \{ \alpha \in F_X(U) \mid \alpha : F_{\mathscr{T}}(U) \to X \text{ is continuous.} \}.$ If $\mathscr{D}_{(X, \mathscr{O})}$ is a the-ology on X, we call an element of $\mathscr{D}_{(X, \mathscr{O})}$ an $F-(X, \mathcal{O})$ -plot.

For $O \in \mathcal{O}_{(Y,\mathscr{E})}$ and $U \in Ob\mathscr{C}$, $\alpha \in \mathscr{D} \cap F_X(U)$, since $\varphi \alpha = (F_{\varphi})_U(\alpha)$ Hence we have $\varphi^{-1}(O) \in \mathcal{O}_{(X,\mathscr{D})}$ and $\varphi: (X, \mathcal{O}_{(X,\mathscr{D})}) \to (Y, \mathcal{O}_{(Y,\mathscr{E})})$

being a the-ology on X.

Proposition 9.3 is satisfied for (X, \mathcal{O}) , then $\mathcal{D}_{(X, \mathcal{O})}$ is a the-ology on X. exists a covering $(U_i \xrightarrow{f_i} U)_{i \in I}$ of U such that compositions $F_{\mathscr{T}}(U_i) \xrightarrow{F_{\mathscr{T}}(f_i)} F_{\mathscr{T}}(U) \xrightarrow{\alpha} X$ are continuous for any $i \in I$.

The following proposition gives a sufficient condition for $\mathscr{D}_{(X, \mathscr{O})}$

- Let (X, \mathcal{O}) be a topological space. If the following condition (C)
- (C) For any $U \in Ob\mathscr{C}$, a map $\alpha: F_{\mathscr{T}}(U) \to X$ is continuous if there

Remark 9.4 We consider the following condition (Q) on $F_{\mathcal{T}}: \mathscr{C} \to \mathscr{T}op$. (Q) For any $U \in Ob \mathscr{C}$, there exists a covering $(U_i \xrightarrow{f_i} U)_{i \in I}$ of Usuch that the map $\coprod F_{\mathscr{T}}(U_i) \to F_{\mathscr{T}}(U)$ induced by the family $(F_{\mathscr{T}}(U_i) \xrightarrow{F_{\mathscr{T}}(f_i)} F_{\mathscr{T}}(U))_{i \in I}$ of maps is a quotient map. If the condition (Q) is satisfied, the condition (C) of (9.3) is satisfied for any topological space (X, O).

Lemma 9.5 Let (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) and (Z, \mathcal{O}_Z) be topological spaces. For continuous maps $f: X \to Y$ and $g: Y \to Z$, if $gf: X \to Z$ is a quotient map, so is g.

Proposition 9.6 For an object U of \mathcal{C} , suppose that there exists a covering R of U such that the map $\rho: \coprod F_{\mathscr{T}}(\operatorname{dom}(f)) \to F_{\mathscr{T}}(U)$ induced by the family $(F_{\mathscr{T}}(\operatorname{dom}(f)) \xrightarrow{F_{\mathscr{T}}(f)} F_{\mathscr{T}}(U))_{f \in \mathbb{R}}$ of maps is a quotient map. Let \overline{R} be the sieve on U generated by R. Then, the map $\bar{\rho} \colon \coprod F_{\mathscr{T}}(\operatorname{dom}(u)) \to F_{\mathscr{T}}(U)$ $u \in R$ $(F_{\mathscr{T}}(\operatorname{dom}(u)) \xrightarrow{F_{\mathscr{T}}(u)} F_{\mathscr{T}}(U))_{u \in \overline{R}}$ of maps is a quotient map.

Thus we have the following result.

Proposition 9.7 $\coprod_{f \in \mathbb{R}} F_{\mathcal{T}}(\operatorname{dom}(f)) \to F_{\mathcal{T}}(U) \text{ induced by the family}$ $(F_{\mathscr{T}}(\operatorname{dom}(f)) \xrightarrow{F_{\mathscr{T}}(f)} F_{\mathscr{T}}(U))_{f \in \mathbb{R}}$ of maps is a quotient map.

Proposition 9.8 (2) For a topological space $(X, \mathcal{O}), \mathcal{O} \subset \mathcal{O}_{(X, \mathcal{D}_{(X, \mathcal{O})})}$ holds.

- The condition (Q) in (9.4) is equivalent to the following condition. (Q') For any $U \in Ob\mathscr{C}$, there exists $R \in J(U)$ such that the map

(1) For an object (X, \mathscr{D}) of $\mathscr{P}_{F}(\mathscr{C}, J)$, we have $\mathscr{D} \subset \mathscr{D}_{(X, \mathscr{O}_{(X, \mathscr{D})})}$.

Assume that $\mathscr{D}_{(X, \mathscr{O})}$ is an object of $\mathscr{P}_F(\mathscr{C}, J)$ for any topological space (X, \mathcal{O}) . Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces and $f: X \rightarrow Y$ a continuous map.

Then $f:(X, \mathscr{D}_{(X, \mathscr{O}_X)}) \to (Y, \mathscr{D}_{(Y, \mathscr{O}_Y)})$ is a morphism in $\mathscr{P}_F(\mathscr{C}, J)$. In fact, for $U \in Ob\mathscr{C}$ and $\alpha \in \mathscr{D} \cap F_X(U)$, since $(F_f)_U(\alpha) = f\alpha: F_{\mathcal{T}}(U) \to Y$

is continuous, $(F_f)_U(\alpha) \in \mathscr{D}_{(Y,\mathscr{O}_V)} \cap F_Y(U)$ holds.

for an object (X, \mathcal{O}) of $\mathcal{T}op$ and for a continuous map $f:(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$.

Define a functor $P: \mathcal{T}op \to \mathcal{P}_F(\mathcal{C}, J)$ by $P((X, \mathcal{O})) = (X, \mathcal{D}_{(X, \mathcal{O})})$

 $P(f:(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)) = (f:(X, \mathcal{D}_{(X, \mathcal{O}_X)}) \to (Y, \mathcal{D}_{(Y, \mathcal{O}_Y)}))$

Tare faithful.

Proposition 9.9

Suppose that $(X, \mathcal{D}_{(X, \mathcal{O})})$ is an object of $\mathcal{P}_F(\mathcal{C}, J)$ for any topological space (X, \mathcal{O}) . Then, $P: \mathcal{T}op \to \mathcal{P}_F(\mathcal{C}, J)$ is a right adjoint of $\mathcal{T}: \mathcal{P}_F(\mathcal{C}, J) \to \mathcal{T}op.$

For a topological space (Y, \mathcal{O}_Y) and a map $f: X \to Y$, we put

Then \mathcal{O}^f is the coarsest topology on X such that $f: X \to Y$ is a continuous map.

We remark that $\Gamma P = \mathcal{U}$ and $\mathcal{UT} = \Gamma$ hold and that both P and

 $\mathcal{O}^f = \{ O \subset X \mid O = f^{-1}(V) \text{ for some } V \in \mathcal{O}_V \}.$

Proposition 9.10 For a map $f: X \to Y$ and an object (Y, \mathscr{E}) of $\mathscr{P}_F(\mathscr{C}, J)$, consider the $F-(\mathscr{C}, J)$ -ology \mathscr{E}^f on X. Then, the F-topology $\mathscr{O}_{(X, \mathscr{E}^f)}$ on Xassociated with \mathscr{E}^f is finer than $\mathscr{O}^f_{(Y, \mathscr{E})}$.

For a topological space (X, \mathcal{O}_X) and a map $f: X \to Y$, we put $\mathcal{O}_f = \{ O \subset Y \mid f^{-1}(O) \in \mathcal{O}_X \}.$ Then \mathcal{O}_f is the finest topology on Y such that $f: X \to Y$ is a continuous map.

Proposition 9.11 the the-ology \mathscr{D}_f on Y. Then, the F-topology $\mathscr{O}_{(Y, \mathscr{D}_f)}$ on Yassociated with \mathscr{D}_f is coarser than $(\mathscr{O}_{(X,\mathscr{D})})_f$. If $F_{\mathcal{T}}: \mathscr{C} \to \mathscr{T}op$ satisfies the following condition (Q"), $\mathscr{O}_{(Y,\mathscr{D}_f)}$ coincides with $(\mathcal{O}_{(X,\mathcal{D})})_f$. (Q") For any $U \in Ob\mathscr{C}$ and $R \in J(U)$, the map f∈R of maps is a quotient map.

- For a map $f: X \to Y$ and an object (X, \mathscr{D}) of $\mathscr{P}_F(\mathscr{C}, J)$, consider

- $\coprod_{\mathcal{F}} F_{\mathcal{T}}(\operatorname{dom}(f)) \to F_{\mathcal{T}}(U)$ induced by the family $(F_{\mathscr{T}}(\operatorname{dom}(h)) \xrightarrow{F_{\mathscr{T}}(h)} F_{\mathscr{T}}(U))_{h \in \mathbb{R}}$

References

- 1971, 145–194.
- [2] A. Grothendieck, J. L. Verdier, Condition de finitude. Topos et Sites fibrés. Applications aux questions de passage à la limite, Lecture Notes in Math., vol.270, Springer-Verlag, Berlin-Heidelberg-New York, 1972, 163-340. [3] P. T. Johnstone, Topos Theory, Academic Press, 1977. [4] P. Iglesias-Zemmour, Diffeology, Mathematical Surveys and Monographs Vol. 185, American Mathematical Society, 2013. [5] S. MacLane, Categories for the Working Mathematician Second

[1] A. Grothendieck, Catégorie fibrées et Descente, Lecture Notes in Math., vol.224, Springer-Verlag, Berlin-Heidelberg-New York,

Edition, Graduate Texts in Math., 5, Springer, 1997.

[6] J. L. Verdier, Topologies et Faisceaux, Lecture Notes in Math., vol.269, Springer-Verlag, Berlin-Heidelberg-New York, 1972, 219-263.

New York, 1972, 265-297.

- Journal of Mathematics Vol.62, No.1, (2008) 139-169.
- [9] A. Yamaguchi, Notes on representation theory of internal categories, preprint,

http://www.las.osakafu-u.ac.jp/~yamaguti/archives/ric_note.pdf

[10] A. Yamaguchi, Untitled preprint, http://www.las.osakafu-u.ac.jp/~yamaguti/archives/mynote.pdf

[7] J. L. Verdier, Fonctoialite des Categories de Faisceaux, Lecture Notes in Math., vol.269, Springer-Verlag, Berlin-Heidelberg-

[8] A. Yamaguchi, Representations of internal categories, Kyushu

Thank you for listening

Thank you for listening and your patience.