A theory of plots

Atsushi Yamaguchi
Shinshu Topology Seminar Kansai Algebraic Topology Seminar January 30, 2024

Contents of this slide
§1. Recollections on Grothendieck site
§2. Plots on a set
§3. Category of F-plots
§4. Fibered category of morphisms
§5. Locally cartesian closedness
§6. Strong subobject classifier
§7. Groupoids associated with epimorphisms
§8. Fibrations
§9. F-topology
§1. Recollections on Grothendieck site
We denote by Set the category of sets and maps.
For a category \mathscr{C}, we call a functor $\mathscr{C}{ }^{o p} \rightarrow$ Set presheaf on \mathscr{C}.
For an object X of \mathscr{C}, let $h_{X}: \mathscr{C}^{o p} \rightarrow$ Set be a functor defined by $h_{X}(U)=\mathscr{C}(U, X)$ for an object U of \mathscr{C} and

$$
h_{X}(f: U \rightarrow V)=\left(f^{*}: \mathscr{C}(V, X) \rightarrow \mathscr{C}(U, X)\right)
$$

for a morphism $f: U \rightarrow V$ in \mathscr{C}.
Here, $\mathscr{C}(U, X)$ denotes the set of morphisms in \mathscr{C} from U to X.
We call $h_{X}: \mathscr{C}^{o p} \rightarrow$ Set the presheaf on \mathscr{C} represented by X.
For a morphism $\varphi: X \rightarrow Y$ in \mathscr{C}, let $h_{\varphi}: h_{X} \rightarrow h_{Y}$ be a natural transformation defined by $\left(h_{\varphi}\right)_{U}=\varphi_{*}: \mathscr{C}(U, X) \rightarrow \mathscr{C}(U, Y)$.

Definition 1.1

Let \mathscr{C} be a category.
(1) A full subcategory \mathscr{D} of \mathscr{C} is called a sieve if it satisfies the following condition.
If $U \in \mathrm{Ob} \mathscr{C}$ and $\mathscr{C}(U, V) \neq \varnothing$ for some $V \in \mathrm{Ob} \mathscr{D}$, then $U \in \mathrm{Ob} \mathscr{D}$.
(2) For $X \in \mathrm{Ob} \mathscr{C}$, sieves of \mathscr{C} / X is called a sieve on X.

For set valued functors $F, G: \mathscr{C} \rightarrow \operatorname{Set}$, if $F(U)$ is a subset of $G(U)$ for any object U of \mathscr{C} and the inclusion map $i_{U}: F(U) \rightarrow G(U)$ defines a natural transformation $i: F \rightarrow G$, we call F a subfunctor of G. If F is a subfunctor of G, we denote this by $F \subset G$.

Remark 1.2

For a sieve R is on $X, \mathrm{Ob} R$ is a set of morphisms in \mathscr{C} whose targets are X.
If we put $R(Y)=\{f: Y \rightarrow X \mid f \in \mathrm{Ob} R\}$ for $Y \in \mathrm{Ob} \mathscr{C}$, then R is a subfunctor of the presheaf $h_{X}: \mathscr{C}^{o p} \rightarrow \operatorname{Set}$ represented by X.
Namely, $R \mapsto R(-)$ gives a bijective correspondence between the set of sieves on X and the set of subfunctors of h_{X}. Thus we identify a sieve on X with a subfunctor of h_{X}.

For a morphism f in a category \mathscr{C}, let us denote by $\operatorname{dom}(f)$ the source of f and codom (f) the target of f.

Definition 1.3

Let \mathscr{C} be a category. For each $X \in \mathrm{Ob} \mathscr{\mathscr { C }}$, a set $J(X)$ of sieves on X is given. If the following conditions are satisfied, a correspondence $J: X \mapsto J(X)$ is called a (Grothendieck) topology on \mathscr{C}. A category \mathscr{C} with a topology J is called a site which we denote by (\mathscr{C}, J).
(T1) For any $X \in \mathrm{Ob} \mathscr{C}, h_{X} \in J(X)$.
(T2) For any $X \in \mathrm{Ob} \mathscr{C}, R \in J(X)$ and morphism $f: Y \rightarrow X$ of \mathscr{C}, a subfunctor $h_{f}^{-1}(R)$ of h_{Y} defined below belongs to $J(Y)$.

$$
h_{f}^{-1}(R)(Z)=\{g: Z \rightarrow Y \mid f g \in R(Z)\}
$$

(T3) A sieve S on X belongs to $J(X)$, if there exists $R \in J(X)$ such that $h_{f}^{-1}(S) \in J(\operatorname{dom}(f))$ for any $f \in \mathrm{Ob} R$.

Proposition 1.4

Consider the following conditions on J.
(T3') A sieve S on X belongs to $J(X)$, if there exists $R \in J(X)$ such that S is a subfunctor of R and $h_{f}^{-1}(S) \in J(\operatorname{dom}(f))$ for $f \in \mathrm{Ob} R$.
(T4) A sieve S on X belongs to $J(X)$ if it has a subfunctor which belongs to $J(X)$.
(T5) Suppose that $R \in J(X)$ and that $R_{f} \in J(\operatorname{dom}(f))$ is given for each $f \in \mathrm{Ob} R$. Then, $\left\{f g \mid f \in \mathrm{Ob} R, g \in \mathrm{Ob} R_{f}\right\} \in J(X)$.
(1) (T2) and (T3) imply (T4). (T1) and (T3) imply (T5).
(2) (T4) and (T5) imply (T3). (T3') and (T4) imply (T3).

For subfunctors G and H of a presheaf F on \mathscr{C}, let us denote by $G \cap H$ a subfunctor of F defined by $(G \cap H)(X)=G(X) \cap H(X)$.

Proposition 1.5
If $R, S \in J(X)$, then $R \cap S \in J(X)$.
Definition 1.6
Let J, J^{\prime} be topologies on \mathscr{C}. If $J(X) \subset J^{\prime}(X)$ for any $X \in \mathrm{Ob} \mathscr{C}$, J^{\prime} is said to be finer than J, or J be coarser than J^{\prime}. Hence the set of all topologies on \mathscr{C} is an ordered set.

Let $\left(J_{i}\right)_{i \in I}$ be a family of topologies on \mathscr{C}. We set $J(X)=\bigcap_{i \in I} J_{i}(X)$ for each $X \in \mathrm{Ob} \mathscr{C}$, then J is a topology on \mathscr{C} and $J=\inf \left\{J_{i} \mid i \in I\right\}$. If T is the set of all topologies on \mathscr{C} that are finer than every J_{i}, then $\sup \left\{J_{i} \mid i \in I\right\}=\inf T$.
A topology J on \mathscr{C} given by $J(X)=($ the set of all sieves on $X)$ is the finest topology on \mathscr{C}. On the other hand, a topology J given by $J(X)=\left\{h_{X}\right\}$ is the coarsest topology.

Proposition 1.7

For a set R of morphisms in \mathscr{C} with target X, we put

$$
\bar{R}=\bigcup_{f \in R} \operatorname{Im}\left(h_{f}: h_{\mathrm{dom}(f)} \rightarrow h_{X}\right) .
$$

In other words, \bar{R} is the set of all morphisms of the form $f g$ such that $f \in R, g \in \operatorname{Mor} \mathscr{C}$ and $\operatorname{codom}(g)=\operatorname{dom}(f)$.
Then, \bar{R} is the smallest sieve containing R.
Definition 1.8
Let (\mathscr{C}, J) be a site.
(1) For a set R of morphisms in \mathscr{C} with target X, we call \bar{R} the sieve generated by R.
(2) A family of morphisms $\left(f_{i}: X_{i} \rightarrow X\right)_{i \in I}$ is called a covering of X if the sieve generated by f_{i}^{\prime} s belongs to $J(X)$.

Let \mathscr{C} be a category. Suppose that, for each object X, a set $P(X)$ of families of morphisms of \mathscr{C} with target X is given. Then, there is the coarsest topology J_{P} on \mathscr{C} such that for each object X, every element of $P(X)$ is a covering. In fact, J_{P} is the intersection of all topologies satisfying the above condition. We call J_{P} the topology generated by P.

Definition 1.9

Let \mathscr{C} be a category. For each $X \in \mathrm{Ob} \mathscr{C}$, a set $P(X)$ of families of morphisms of \mathscr{C} with target X is given. If the following conditions (P1), (P2) and (P3) are satisfied, the correspondence $P: X \mapsto P(X)$ is called a basis for a (Grothendieck) topology on \mathscr{C}.
(P1) For any $X \in \mathrm{Ob} \mathscr{C},\left\{i d_{X}\right\} \in P(X)$.
(P2) If $\left(f_{i}: X_{i} \rightarrow X\right)_{i \in I} \in P(X)$, then for any morphism $f: Y \rightarrow X$ in \mathscr{C}, there exists $\left(g_{j}: Y_{j} \rightarrow Y\right)_{j \in I^{\prime}} \in P(Y)$ such that for each $j \in I^{\prime}, f g_{j}$ factors through some f_{i}.
(P3) If $\left(f_{i}: X_{i} \rightarrow X\right)_{i \in I} \in P(X)$ and $\left(g_{i j}: X_{i j} \rightarrow X_{i}\right)_{j \in I_{i}} \in P\left(X_{i}\right)$ for each $i \in I$ are given, then $\left(f_{i} g_{i j}: X_{i j} \rightarrow X\right)_{(i, j) \in K} \in P(X)$, where $K=\left\{(i, j) \mid i \in I, j \in I_{i}\right\}$.

Proposition 1.10

Let \mathscr{C} be a category and J a topology on \mathscr{C}. For each $X \in \mathrm{Ob} \mathscr{C}$, let $P(X)$ be the set of all coverings of X. Then P is a basis for a topology.

Proposition 1.11

(1) Let P be a basis for a topology on \mathscr{C} and J_{P} the topology generated by P. Then, we have

$$
J_{P}(X)=\left\{R \subset h_{X} \mid R \supset S \text { for some } S \in P(X)\right\} .
$$

(2) For a topology J on \mathscr{C}, let P be as in (1.10). Then the topology generated by P coincides with J.

We denote by $\hat{\mathscr{C}}$ the category of presheaves on \mathscr{C} below.

Proposition 1.12

Let $S=\left(f_{i}: X_{i} \rightarrow X\right)_{i \in I}$ be a family of morphisms in \mathscr{C}.
For each $i \in I$, we regard f_{i} as an element of $\bar{S}\left(X_{i}\right)$.
For a presheaf F on \mathscr{C}, define a map $\Phi: \hat{\mathscr{C}}(\bar{S}, F) \rightarrow \prod_{i \in I} F\left(X_{i}\right)$ by $\Phi(\varphi)=\left(\varphi_{X_{i}}\left(f_{i}\right)\right)_{i \in I}$. Then, Φ is injective and its image consists of families $\left(x_{i}\right)_{i \in I}$ which satisfy the following condition for any $i, j \in I$ and any object Z of \mathscr{C}.

$$
\text { "If } f_{i} u=f_{j} v \text { for } u: Z \rightarrow X_{i} \text { and } v: Z \rightarrow X_{j} \text {, then } F(u)\left(x_{i}\right)=F(v)\left(x_{j}\right) \text {." }
$$

§2. Plots on a set

Definition 2.1
Let \mathscr{C} be a category and $F: \mathscr{C} \rightarrow \operatorname{Set}$ a functor.
For a set X, we define a presheaf F_{X} on \mathscr{C} to be a composition

$$
\mathscr{C} o p \xrightarrow{F^{o p}} \operatorname{Set}^{o p} \xrightarrow{h_{X}} \text { Set } .
$$

Here we denote by $F^{o p}: \mathscr{C}^{o p} \rightarrow$ Set $^{o p}$ a functor defined by $F^{O P}(U)=F(U)$ for $U \in \mathrm{Ob} \mathscr{C}$ and $F^{O P}(f)=F(f)$ for $f \in \operatorname{Mor} \mathscr{C}$.
An element of $\coprod_{U \in \mathrm{Ob} \mathscr{C}} F_{X}(U)$ is called an F-parametrization of X.

We note that F_{X} is given by $F_{X}(U)=\operatorname{Set}(F(U), X)$ for $U \in \mathrm{Ob} \mathscr{C}$ and $F_{X}(f)(\alpha)=\alpha F(f)$ for $(f: U \rightarrow V) \in \operatorname{Mor} \mathscr{C}$ and $\alpha \in F_{X}(V)$.

Definition 2.2

Let (\mathscr{C}, J) be a site, X a set and $F: \mathscr{C} \rightarrow$ Set a functor.
Assume that \mathscr{C} has a terminal object $1_{\mathscr{C}}$ and that $F\left(1_{\mathscr{C}}\right)$ consists of a single element. If a subset \mathscr{D} of $\underset{U \in 00 \mathbb{E}_{8}}{\amalg} F_{X}(U)$ satisfies the following conditions, we call \mathscr{D} a the-ology on X.
(i) $\mathscr{D} \supset F_{X}\left(1_{\mathscr{C}}\right)$
(ii) For a morphism $f: U \rightarrow V$ in \mathscr{C}, the map $F_{X}(f): F_{X}(V) \rightarrow F_{X}(U)$ induced by f maps $\mathscr{D} \cap F_{X}(V)$ into $\mathscr{D} \cap F_{X}(U)$.
(iii) For an object U of \mathscr{C}, an element x of $F_{X}(U)$ belongs to $\mathscr{D} \cap F_{X}(U)$ if there exists a covering $\left(f_{i}: U_{i} \rightarrow U\right)_{i \in I}$ such that $F_{X}\left(f_{i}\right): F_{X}(U) \rightarrow F_{X}\left(U_{i}\right)$ maps x into $\mathscr{D} \cap F_{X}\left(U_{i}\right)$ for any $i \in I$.

We call a pair (X, \mathscr{D}) a the-ological object and call an element of \mathscr{D} an F-plot of (X, \mathscr{D}).

Proposition 2.3

Condition (iii) is of (2.2) is equivalent to the following condition if we assume condition (ii).
(iii') For an object U of \mathscr{C}, an element x of $F_{X}(U)$ belongs to
$\mathscr{D} \cap F_{X}(U)$ if there exists $R \in J(U)$ such that
$F_{X}(f): F_{X}(U) \rightarrow F_{X}(\operatorname{dom}(f))$ maps x into $\mathscr{D} \cap F_{X}(\operatorname{dom}(f))$ for any $f \in R$.

For a map $\varphi: X \rightarrow Y$ and a functor $F: \mathscr{C} \rightarrow$ Set, we define a morphism $F_{\varphi}: F_{X} \rightarrow F_{Y}$ of presheaves by

$$
\left(F_{\varphi}\right)_{U}=\varphi_{*}: F_{X}(U)=\operatorname{Set}(F(U), X) \rightarrow \operatorname{Set}(F(U), Y)=F_{Y}(U) .
$$

Definition 2.4

Let (\mathscr{C}, J) be a site, X a set and $F: \mathscr{C} \rightarrow$ Set a functor.
(1) Let (X, \mathscr{D}) and (Y, \mathscr{E}) be the-ological objects.

If the map $\left(F_{\varphi}\right)_{U}: F_{X}(U) \rightarrow F_{Y}(U)$ induced by a map $\varphi: X \rightarrow Y$ maps $\mathscr{D} \cap F_{X}(U)$ into $\mathscr{E} \cap F_{Y}(U)$ for each $U \in \mathrm{Ob} \mathscr{C}$, we call φ a morphism of $F-(\mathscr{C}, J)$-ological objects. We denote this by $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$.
(2) We define a category $\mathscr{P}_{\Gamma}(\mathscr{C}, J)$ of the-ological objects as follows. Objects of $\mathscr{P}_{F}(\mathscr{C}, J)$ are the-ological objects and morphisms of $\mathscr{P}_{F}(\mathscr{C}, J)$ are morphism of the-ological objects.

For a the-ological object (X, \mathscr{D}) and $U \in \mathrm{Ob} \mathscr{\mathscr { C }}$, we put $F_{\mathscr{D}}(U)=\mathscr{D} \cap F_{X}(U)$. Then $U \mapsto F_{\mathscr{D}}(U)$ defines a presheaf $F_{\mathscr{D}}$ on \mathscr{E}.

Remark 2.5

Let $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$ be a morphism of the-ological objects.
It follows from the definition of a morphism of the-ological objects that $\left(F_{\varphi}\right)_{U}: F_{X}(U) \rightarrow F_{Y}(U)$ defines a map
$\left(F_{\varphi}\right)_{U}: F_{\mathscr{D}}(U) \rightarrow F_{\mathscr{E}}(U)$ which is natural in $U \in \mathrm{Ob} \mathscr{E}$. Thus we have a morphism $F_{\varphi}: F_{\mathscr{D}} \rightarrow F_{\mathscr{E}}$ of presheaves.

Definition 2.6
For the-ologies \mathscr{D} and \mathscr{E} on X, we say that \mathscr{D} is finer than \mathscr{E} and that \mathscr{E} is coarser than \mathscr{D} if $\mathscr{D} \subset \mathscr{E}$.

Remark 2.7

We put $\mathscr{D}_{\text {coarse, } X}=\prod_{U \in \mathrm{Ob} \mathscr{E}} F_{X}(U)$. It is clear that $\mathscr{D}_{\text {coarse, } X}$ is the coarsest the-ology on X. For a map $f: Y \rightarrow X$ and a the-ology \mathscr{E} on $Y, f:(Y, \mathscr{E}) \rightarrow\left(X, \mathscr{D}_{\text {coarse, } X}\right)$ is a morphism of the-ologies.

Proposition 2.8

Let $\left(\mathscr{D}_{i}\right)_{i \in I}$ be a family of the-ologies on a set X. Then, $\bigcap_{i \in I} \mathscr{D}_{i}$ is a the-ology on X that is the finest the-ology among the-ologies on X which are coarser than \mathscr{D}_{i} for any $i \in I$.

For a set X, we denote by $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ a subcategory of $\mathscr{P}_{F}(\mathscr{C}, J)$ consisting of objects of the form (X, \mathscr{D}) and morphisms of the form id $_{X}:(X, \mathscr{D}) \rightarrow(X, \mathscr{E})$. Then, $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ is regarded as an ordered set of the-ologies on X.
We often denote by \mathscr{D} an object (X, \mathscr{D}) of $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ for short.
It follows from (2.7) that $\left(X, \mathscr{D}_{\text {coarse, } X}\right)$ is the maximum (terminal) object of $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$.

Corollary 2.9
$\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ is complete as an ordered set.

Proposition 2.10

Let \mathcal{S} be a subset of $\coprod_{U \in \mathrm{Ob} \mathscr{C}} F_{X}(U)$ which contains $F_{X}\left(1_{\mathscr{C}}\right)$.
For $f \in \operatorname{Mor} \mathscr{C}$, define a subset \mathcal{S}_{f} of $F_{X}(\operatorname{dom}(f))$ by

$$
\mathcal{S}_{f}=F_{X}(f)\left(\mathcal{S} \cap F_{X}(\operatorname{codom}(f))\right) .
$$

For $U \in \mathrm{Ob} \mathscr{C}$, we define a subset $\mathcal{S}(U)$ of $F_{X}(U)$ by

$$
\mathcal{S}(U)=\left\{x \in F_{X}(U) \mid \text { There exists } R \in J(U) \text { such that } \quad \begin{array}{l}
\left.F_{X}(g)(x) \in \bigcup_{f \in \mathrm{Mor} \mathscr{C}} S_{f} \text { for all } g \in R .\right\} .
\end{array}\right.
$$

If we put $\mathscr{G}(\mathcal{S})=\coprod_{U \in \mathrm{Ob} \mathscr{C}} \mathcal{S}(U)$ and $\Sigma=\left\{\mathscr{D} \in \mathscr{P}_{F}(\mathscr{C}, J)_{X} \mid \mathscr{D} \supset \mathcal{S}\right\}$, then we have $\mathscr{G}(\mathcal{S})=\inf \Sigma \in \mathscr{P}_{F}(\mathscr{C}, J)_{X}$.

Remark 2.11

(1) For $U \in \mathrm{Ob} \mathscr{C}$, the subset $\mathcal{S}(U)$ of $F_{X}(U)$ defined in (2.10) coincides with the following set.
$\left\{x \in F_{X}(U) \mid\right.$ There exists a covering $\left(U_{i} \xrightarrow{g_{i}} U\right)_{i \in I}$ such that $F_{X}\left(g_{i}\right)(x) \in \bigcup_{f \in \text { More } \mathscr{E}} \mathcal{S}_{f}$ for all $\left.i \in I.\right\}$
(2) Let Σ be a non-empty subset of $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ and put $S(\Sigma)=\bigcup_{\mathscr{D} \in \Sigma} \mathscr{D}$. Then $\mathcal{S}(\Sigma)(U)$ coincides with the following set.
$\left\{x \in F_{X}(U) \mid\right.$ There exists a covering $\left(U_{i} \xrightarrow{g_{i}} U\right)_{i \in I}$ such that $F_{X}\left(g_{i}\right)(x) \in \bigcup_{\mathscr{D} \in \Sigma} \mathscr{D}$ for all $\left.i \in I.\right\}$
Hence $\sup \Sigma=\mathscr{G}(\mathcal{S}(\Sigma))=\bigcup_{U \in \mathscr{C}} \mathcal{S}(\Sigma)(U)$ holds.

Definition 2.12

For a subset \mathcal{S} of $\coprod_{U \in \mathrm{Ob} \mathscr{C}} F_{X}(U)$ containing $F_{X}\left(1_{\mathscr{C}}\right)$, we call $\mathscr{G}(\mathcal{S})$
defined in (2.10) the the-ology generated by \mathcal{S}.
Definition 2.13
Let (\mathscr{C}, J) be a site and X a set. We put $\mathscr{D}_{\text {disc, } X}=\bigcap_{\mathscr{D} \in \mathrm{Ob} \mathscr{P}_{F}\left(\mathscr{C}, J_{X}\right.} \mathscr{D}$ and call this the discrete the-ology on $X . \mathscr{D}_{\text {disc, } X}$ is the finest the-ology on X.

Remark 2.14
For any map $f: X \rightarrow Y$ and a the-ology \mathscr{E} on Y,
$f:\left(X, \mathscr{D}_{\text {disc }, X}\right) \rightarrow(Y, \mathscr{E})$ is a morphism of the-ologies.

Remark 2.15

(1) Since $\mathscr{D}_{\text {disc, } X} \supset F_{X}\left(1_{\mathscr{C}}\right), \mathscr{D}_{\text {disc, } X}$ contains the image of the map $F_{X}\left(o_{U}\right): F_{X}\left(1_{\mathscr{C}}\right) \rightarrow F_{X}(U)$ induced by the unique map $o_{U}: U \rightarrow 1_{\mathscr{C}}$ for any $U \in \mathrm{Ob} \mathscr{C}$. Hence every constant map in $F_{X}(U)$ belongs to $\mathscr{D}_{\text {disc, } X}$.
(2) Let $\mathcal{S}_{\text {const }}$ be the set of all constant maps in $\coprod_{U \in \mathrm{Ob} \mathscr{C}} F_{X}(U)$. Then $\mathcal{S}_{\text {const }}=\bigcup_{f \in \text { Nor } \mathscr{E}}\left(\mathcal{S}_{\text {const }}\right)_{f}$. Thus $\mathscr{D}_{\text {disc }, X} \cap F_{X}(U)=\mathscr{D}\left(\mathcal{S}_{\text {const }}\right) \cap F_{X}(U)$ coincides with the following set.
$\left\{x \in F_{X}(U) \mid\right.$ There exists a covering $\left(U_{i} \xrightarrow{g_{i}} U\right)_{i \in I}$ such that

$$
\left.F_{X}\left(g_{i}\right)(x) \text { is a contant map for all } i \in I .\right\}
$$

§3. Category of F-plots
For a map $f: X \rightarrow Y$ and $(Y, \mathscr{E}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)$, we define an the-ology \mathscr{E}^{f} on X to be the coarsest the-ology such that $f:(X, \mathscr{E} f) \rightarrow(Y, \mathscr{E})$ is a morphism of the-ologies.

Proposition 3.1

For a map $f: X \rightarrow Y$ and $(Y, \mathscr{E}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J), \mathscr{E}^{f}$ is as follows.
$\mathscr{E} f=\underset{U \in \mathrm{Ob} \mathscr{E}}{\amalg}\left(F_{f}\right)^{-1}\left(\mathscr{E} \cap F_{Y}(U)\right)=\underset{U \in \mathrm{Ob} \mathscr{E}}{\amalg}\left\{\varphi \in F_{X}(U) \mid f \varphi \in \mathscr{E} \cap F_{Y}(U)\right\}$
Proposition 3.2
Let $\left(\mathscr{E}_{i}\right)_{i \in I}$ a family of the-ologies on a set Y, For a map $f: X \rightarrow Y,\left(\bigcap_{i \in I} \mathscr{E}_{i}\right)^{f}=\bigcap_{i \in I} \mathscr{E}_{i}^{f}$ holds.

We define a forgetful functor $\Gamma: \mathscr{P}_{F}(\mathscr{C}, J) \rightarrow \operatorname{Set}$ by $\Gamma(X, \mathscr{D})=X$ for $(X, \mathscr{D}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)$ and $\Gamma(\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E}))=(\varphi: X \rightarrow Y)$ for a morphism $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$ in $\mathscr{P}_{F}(\mathscr{C}, J)$.

It is clear that Γ is faithful. In other words, if we put

$$
\mathscr{P}_{F}(\mathscr{C}, J)_{f}((X, \mathscr{D}),(Y, \mathscr{E}))=\Gamma^{-1}(f) \cap \mathscr{P}_{F}(\mathscr{C}, J)((X, \mathscr{D}),(Y, \mathscr{E}))
$$

for a map $f: X \rightarrow Y$ and $(X, \mathscr{D}),(Y, \mathscr{E}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)$, $\mathscr{P}_{F}(\mathscr{C}, J)_{f}((X, \mathscr{D}),(Y, \mathscr{E}))$ has at most one element.
$\mathscr{P}_{F}(\mathscr{C}, J)_{f}((X, \mathscr{D}),(Y, \mathscr{E}))$ is not empty if and only if $\mathscr{D} \subset \mathscr{E}^{f}$ which is equivalent that $\mathscr{\mathscr { P }}_{F}(\mathscr{C}, J)_{X}((X, \mathscr{D}),(X, \mathscr{E} f))$ is not empty.

Proposition 3.3

For maps $f: X \rightarrow Y, g: W \rightarrow X$ and an object (Y, \mathscr{E}) of $\mathscr{P}_{F}(\mathscr{C}, J)_{Y}$, $\mathscr{C}^{f} f_{g}=(\mathscr{E} f)^{g}$ holds and $\Gamma: \mathscr{P}_{F}(\mathscr{C}, J) \rightarrow \operatorname{Set}$ is a fibered category.

In fact, $f:(X, \mathscr{E} f) \rightarrow(Y, \mathscr{E})$ is unique cartesian morphism over a map $f: X \rightarrow Y$ whose target is (Y, \mathscr{E}). Hence the inverse image functor

$$
f^{*}: \mathscr{P}_{F}(\mathscr{C}, J)_{Y} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{X}
$$

associated with f is given by $f^{*}(Y, \mathscr{E})=\left(X, \mathscr{E}^{f}\right)$ and

$$
f^{*}\left(i d_{Y}:(Y, \mathscr{E}) \rightarrow(Y, \mathscr{G})\right)=\left(i d_{X}:(X, \mathscr{E} f) \rightarrow(X, \mathscr{\mathscr { f }})\right) .
$$

It is clear that $\mathscr{E}^{f} f_{g}=(\mathscr{E} f)^{g}$ holds, which implies $(f g)^{*}=g^{*} f^{*}$.

For a map $f: X \rightarrow Y$ and $(X, \mathscr{D}) \in \operatorname{Ob} \mathscr{\mathscr { P }}_{F}(\mathscr{C}, J)$, we define a the-ology \mathscr{D}_{f} on Y to be the finest the-ology such that $f:(X, \mathscr{D}) \rightarrow\left(Y, \mathscr{D}_{f}\right)$ is a morphism of the-ologies, that is, $\mathscr{D}_{f}=\bigcap_{\mathscr{E} \in \Sigma} \mathscr{E}$, where

$$
\Sigma=\left\{\mathscr{E} \in \mathrm{Ob} \mathscr{P}_{F}(\mathscr{C}, J)_{Y} \mid \mathscr{E} \supset \underset{U \in \mathrm{Ob} \mathscr{E}}{\mathrm{U}}\left(F_{f}\right)_{U}\left(\mathscr{D} \cap F_{X}(U)\right)\right\} .
$$

Remark 3.4

For $U \in \mathrm{Ob} \mathscr{C}$, the subset $\mathcal{S}(U)$ of $F_{X}(U)$ defined in (2.9) is the set of elements x of $F_{X}(U)$ which satisfy the following condition $(*)$ if $f: X \rightarrow Y$ is surjective.
(*) There exists $R \in J(U)$ such that, for each $h \in R$, there exists $y \in \mathscr{D} \cap F_{X}(\operatorname{dom}(h))$ which satisfies $F_{Y}(h)(x)=\left(F_{f}\right)_{\operatorname{dom}(h)}(y)$.

If we put $\mathscr{G}(\mathcal{S})=\coprod_{U \in \mathrm{Ob} \mathscr{C}} \mathcal{S}(U)$, we have $\mathscr{D}_{f}=\mathscr{G}(\mathcal{S})$.

Proposition 3.5

$\Gamma: \mathscr{P}_{F}(\mathscr{C}, J) \rightarrow$ Set is a bifibered category.
For a map $f: X \rightarrow Y$, define a functor $f_{*}: \mathscr{P}_{F}(\mathscr{C}, J)_{X} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{Y}$ as follows. For $(X, \mathscr{D}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)_{X}$, we put $f_{*}(X, \mathscr{D})=\left(Y, \mathscr{D}_{f}\right)$. If $(X, \mathscr{D}),\left(X, \mathscr{D}^{\prime}\right) \in \operatorname{Ob}_{F}(\mathscr{C}, J)_{X}$ satisfies $\mathscr{D} \subset \mathscr{D}^{\prime}$, then $\mathscr{D}_{f} \subset \mathscr{D}_{f}^{\prime}$ holds. Hence, for a morphism $\operatorname{id}_{X}:(X, \mathscr{D}) \rightarrow\left(X, \mathscr{D}^{\prime}\right)$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{X^{\prime}}$ we put $f_{*}\left(i d_{X}:(X, \mathscr{D}) \rightarrow\left(X, \mathscr{D}^{\prime}\right)\right)=\left(i d_{Y}:\left(Y, \mathscr{D}_{f}\right) \rightarrow\left(Y, \mathscr{D}_{f}^{\prime}\right)\right)$.
It can be verified that $\mathscr{P}_{F}(\mathscr{C}, J)_{Y}\left(f_{*}(X, \mathscr{D}),(Y, \mathscr{E})\right)$ is not empty if and only if $\mathscr{P}_{F}(\mathscr{C}, J)_{Y}\left((X, \mathscr{D}), f^{*}(Y, \mathscr{E})\right)$ is not empty.
This shows that f_{*} is a left adjoint of f^{*}.

Proposition 3.6

Let $p: \mathscr{F} \rightarrow \mathscr{C}$ be a prefibered category. If \mathscr{F}_{X} has an initial object for any object X of \mathscr{C}, then p has a left adjoint.

Corollary 3.7

Let $p: \mathscr{F} \rightarrow \mathscr{C}$ be a bifibered category. If \mathscr{F}_{X} has a terminal object for any object X of \mathscr{C}, then p has a right adjoint.

Corollary 3.8
$\Gamma: \mathscr{P}_{F}(\mathscr{C}, J) \rightarrow$ Set has left and right adjoints.

Let $\left\{\left(X_{i}, \mathscr{D}_{i}\right)\right\}_{i \in I}$ be a family of objects of $\mathscr{D}_{F}(\mathscr{C}, J)$.
We denote by $\mathrm{pr}_{i}: \prod_{j \in I} X_{j} \rightarrow X_{i}$ the projection to the i-th component and $l_{i}: X_{i} \rightarrow \coprod_{j \in I} X_{j}$ the inclusion to the i-th summand.
Put $\mathscr{D}^{I}=\bigcap_{j \in I} \mathscr{D}_{i}^{\mathrm{pr}_{i}}$. Then, \mathscr{D}^{I} is the finest the-ology such that $\operatorname{pr}_{i}:\left(\prod_{j \in I} X_{j}, \mathscr{D}^{I}\right) \rightarrow\left(X_{i}, \mathscr{D}_{i}\right)$ is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ for any $i \in I$.
Let \mathscr{D}_{I} be the coarsest the-ology on ${\underset{j}{j \in I}} X_{j}$ such that
$t_{i}:\left(X_{i}, \mathscr{D}_{i}\right) \rightarrow\left(\coprod_{j \in I} X_{j}, \mathscr{D}_{I}\right)$ is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ for any $i \in I$.
If we put $\mathcal{S}_{I}=\left\{\mathscr{E} \in \mathrm{Ob} \mathscr{P}_{F}(\mathscr{C}, J) \bigcup_{j \in I} X_{j} \mid \mathscr{E} \supset \bigcup_{j \in I}\left(\mathscr{D}_{j}\right)_{l_{j}}\right\}$, then $\mathscr{D}_{I}=\bigcap_{\mathscr{E} \in \mathcal{S}_{I}} \mathscr{E}$.

Proposition 3.9

(1) $\left(\left(\prod_{j \in I} X_{j}, \mathscr{D}^{I}\right) \xrightarrow{\mathrm{pr}_{i}}\left(X_{i}, \mathscr{D}_{i}\right)\right)_{i \in I}$ is a product of $\left\{\left(X_{i}, \mathscr{D}_{i}\right)\right\}_{i \in I}$.
(2) $\left(\left(X_{i}, \mathscr{D}_{i}\right) \xrightarrow{l_{i}}\left(\coprod_{j \in I} X_{j}, \mathscr{D}_{I}\right)\right)_{i \in I}$ is a coproduct of $\left\{\left(X_{i}, \mathscr{D}_{i}\right)\right\}_{i \in I}$.

Proposition 3.10

Let $f, g:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$ be morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$. Then, equalizers and coequalizers of f and g exist.

In fact, if $Z \xrightarrow{i} X$ is an equalizer of f and g in the category of sets, then $\left(Z, \mathscr{D}^{i}\right) \xrightarrow{i}(X, \mathscr{D})$ is an equalizer of f and g in $\mathscr{P}_{F}(\mathscr{C}, J)$. If $Y \xrightarrow{q} W$ is a coequalizer of f and g in the category of sets, then $(Y, \mathscr{E}) \xrightarrow{q}\left(W, \mathscr{E}_{q}\right)$ is a coequalizer of f and g in $\mathscr{P}_{F}(\mathscr{C}, J)$.
§4. Fibered category of morphisms
For a category \mathscr{C}, let $\mathscr{C}^{(2)}$ be the category of morphisms in \mathscr{C} defined as follows.
Put $\mathrm{Ob} \mathscr{C}^{(2)}=$ Mor \mathscr{C} and a morphism from $\boldsymbol{E}=(E \xrightarrow{\pi} X)$ to $\boldsymbol{F}=(F \xrightarrow{\rho} Y)$ is a pair $\langle\xi: E \rightarrow F, f: X \rightarrow Y\rangle$ of morphisms in \mathscr{C} which satisfies $\rho \xi=f \pi$.
The composition of morphisms $\langle\xi, f\rangle: \boldsymbol{E} \rightarrow \boldsymbol{F}$ and $\langle\zeta, g\rangle: \boldsymbol{F} \rightarrow \boldsymbol{G}$ is defined to be $\langle\zeta \xi, g f\rangle: \boldsymbol{E} \rightarrow \boldsymbol{G}$.

Define a functor $\wp: \mathscr{C}^{(2)} \rightarrow \mathscr{C}$ by $\wp(E \xrightarrow{\pi} X)=X$ and $\wp(\langle\xi, f\rangle)=f$. For an object X of \mathscr{C}, we denote by $\mathscr{C}_{X}^{(2)}$ a subcategory of $\mathscr{C}^{(2)}$ given as follows.

$$
\begin{aligned}
\operatorname{Ob} \mathscr{C}_{X}^{(2)} & =\left\{\boldsymbol{E} \in \operatorname{Ob} \mathscr{C}^{(2)} \mid \wp(\boldsymbol{E})=X\right\} \\
\operatorname{Mor} \mathscr{C}_{X}^{(2)} & =\left\{\boldsymbol{\xi} \in \operatorname{Mor} \mathscr{C}^{(2)} \mid \wp(\xi)=i d_{X}\right\}
\end{aligned}
$$

We mention that $\mathscr{C}_{X}^{(2)}$ is often denoted by \mathscr{C} / X in literatures.
For a morphism $f: X \rightarrow Y$ in \mathscr{C}, an object E of $\mathscr{C}_{X}^{(2)}$ and an object \boldsymbol{F} of $\mathscr{C}_{Y}^{(2)}$, we denote by $\mathscr{C}_{f}^{(2)}(\boldsymbol{E}, \boldsymbol{F})$ the set of all morphisms $\boldsymbol{\xi}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ in $\mathscr{C}^{(2)}$ such that $\wp(\xi)=f$.

If \mathscr{C} has finite limits, $\mathscr{\wp}: \mathscr{C}^{(2)} \rightarrow \mathscr{C}$ is a fibered category as we explain below.
For a morphism $f: X \rightarrow Y$ in \mathscr{C} and an object $F=(F \xrightarrow{\rho} Y)$ of $\mathscr{C}_{Y}^{(2)}$, consider the following cartesian square in \mathscr{C}.

We put $f^{*}(\boldsymbol{F})=\left(F \times_{Y} X \xrightarrow{\boldsymbol{p}_{f}} X\right)$ and $\boldsymbol{\alpha}_{f}(\boldsymbol{F})=\left\langle f_{p}, f\right\rangle: f^{*}(\boldsymbol{F}) \rightarrow \boldsymbol{F}$.

Proposition 4.1

$\boldsymbol{\alpha}_{f}(\boldsymbol{F})$ is a cartesian morphism, that is, for any object G of $\mathscr{C}_{X}^{(2)}$ the map $\boldsymbol{\alpha}_{f}(\boldsymbol{F})_{*}: \mathscr{C}_{X}^{(2)}\left(\boldsymbol{G}, f^{*}(\boldsymbol{F})\right) \rightarrow \mathscr{C}_{f}^{(2)}(\boldsymbol{G}, \boldsymbol{F})$ defined by
$\alpha_{f}(F) *(\xi)=\alpha_{f}(F) \xi$ is bijective.

For objects $\boldsymbol{E}, \boldsymbol{F}$ of $\mathscr{C}_{Y}^{(2)}$ and a morphism $\boldsymbol{\varphi}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ in $\mathscr{C}_{Y}^{(2)}$, let $f^{*}(\boldsymbol{\varphi}): f^{*}(\boldsymbol{E}) \rightarrow f^{*}(\boldsymbol{F})$ be the unique morphism in $\mathscr{C}_{X}^{(2)}$ that is mapped to a composition $f^{*}(\boldsymbol{E}) \xrightarrow{\boldsymbol{\alpha}_{f}(\boldsymbol{E})} \boldsymbol{E} \xrightarrow{\boldsymbol{\varphi}} \boldsymbol{F}$ by the bijection

$$
\boldsymbol{\alpha}_{f}\left(\boldsymbol{F}^{\prime}\right)_{*}: \mathscr{C}_{X}^{(2)}\left(f^{*}(\boldsymbol{E}), f^{*}\left(\boldsymbol{F}^{\prime}\right)\right) \rightarrow \mathscr{C}_{f}^{(2)}\left(f^{*}(\boldsymbol{E}), \boldsymbol{F}^{\prime}\right)
$$

given in (4.1). Thus we have the inverse image functor

$$
f^{*}: \mathscr{C}_{Y}^{(2)} \rightarrow \mathscr{C}_{X}^{(2)}
$$

associated with a morphism $f: X \rightarrow Y$ in \mathscr{C}. It follows from the definition of f^{*} that the bijection in (4.1) is natural in F.

For morphisms $f: X \rightarrow Y, g: Z \rightarrow X$ in \mathscr{C} and an object E of $\mathscr{C}_{Y}^{(2)}$, let $\boldsymbol{c}_{f, g}(\boldsymbol{E}): g^{*}\left(f^{*}(\boldsymbol{E})\right) \rightarrow(f g) *(\boldsymbol{E})$ be the unique morphism in $\mathscr{C}_{Z}^{(2)}$ that is mapped to a composition $g^{*}\left(f^{*}(\boldsymbol{E})\right) \xrightarrow{\boldsymbol{\alpha}_{2}\left(f^{*}(\boldsymbol{E})\right)} f^{*}(\boldsymbol{E}) \xrightarrow{\boldsymbol{\alpha}_{f}(\boldsymbol{E})} \boldsymbol{E}$ by the following bijection given in (4.1).

$$
\boldsymbol{\alpha}_{f g}(\boldsymbol{E})_{*}: \mathscr{C}_{Z}^{(2)}\left(g^{*}\left(f^{*}(\boldsymbol{E})\right),(f g)^{*}(\boldsymbol{E})\right) \rightarrow \mathscr{C}_{f g}^{(2)}\left(g^{*}\left(f^{*}(\boldsymbol{E})\right), \boldsymbol{E}\right)
$$

Proposition 4.2
$\boldsymbol{c}_{f, g}(\boldsymbol{E})$ is an isomorphism in $\mathscr{C}_{Z}^{(2)}$. Hence $\wp: \mathscr{C}^{(2)} \rightarrow \mathscr{C}$ is a fibered category.

For a morphism $f: X \rightarrow Y$ in \mathscr{E}, define a functor $f_{*}: \mathscr{C}_{X}^{(2)} \rightarrow \mathscr{C}_{Y}^{(2)}$ by $f_{*}(\boldsymbol{E})=\left(E \xrightarrow{f_{p}} Y\right)$ and $f_{*}\left(\left\langle\xi, i d_{X}\right\rangle\right)=\left\langle\xi, i d_{Y}\right\rangle: f_{*}(\boldsymbol{E}) \rightarrow f_{*}(\boldsymbol{F})$ for an object $\boldsymbol{E}=(\boldsymbol{E} \xrightarrow{\rho} X)$ of $\mathscr{C}_{X}^{(2)}$ and a morphism $\left\langle\xi, i d_{X}\right\rangle: \boldsymbol{E} \rightarrow \boldsymbol{F}$ in $\mathscr{C}_{X}^{(2)}$.

Proposition 4.3

$f_{\approx}: \mathscr{C}_{X}^{(2)} \rightarrow \mathscr{C}_{Y}^{(2)}$ is a left adjoint of $f^{*}: \mathscr{C}_{Y}^{(2)} \rightarrow \mathscr{C}_{X}^{(2)}$.
Hence $\wp: \mathscr{C}^{(2)} \rightarrow \mathscr{C}$ is a bifibered category.
For an object \boldsymbol{E} of $\mathscr{C}_{X}^{(2)}$ and an object \boldsymbol{F} of $\mathscr{C}_{Y}^{(2)}$, we define a map $\Phi_{E, F}: \mathscr{C}_{f}^{(2)}(\boldsymbol{E}, \boldsymbol{F}) \rightarrow \mathscr{C}_{Y}^{(2)}\left(f_{*}(\boldsymbol{E}), \boldsymbol{F}\right)$ by $\Phi_{E, F}(\langle\xi, f\rangle)=\left\langle\xi, i d_{Y}\right\rangle$, which is a natural bijection. It follows from (4.1) that we have a natural bijection $\Phi_{E, F} \boldsymbol{\alpha}_{f}(\boldsymbol{F})_{*}: \mathscr{C}_{X}^{(2)}\left(\boldsymbol{E}, f^{*}(\boldsymbol{F})\right) \rightarrow \mathscr{C}_{Y}^{(2)}\left(f_{*}(\boldsymbol{E}), \boldsymbol{F}\right)$.
§5. Locally cartesian closedness
$\mathscr{P}_{F}(\mathscr{C}, J)$ is complete and cocomplete by (3.9) and (3.10), in particular $\mathscr{P}_{F}(\mathscr{C}, J)$ has finite limits.

Hence we can consider the fibered category

$$
\wp: \mathscr{P}_{F}(\mathscr{C}, J)^{(2)} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)
$$

of morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$ by (4.2).
It follows from (4.3) that the inverse image functors of this fibered category have left adjoints.

We show that the inverse image functors also have right adjoints below.

Let $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{F})$ be a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ and $E=((E, \mathscr{E}) \xrightarrow{\pi}(X, \mathscr{D}))$ an object of $\mathscr{P}_{F}(\mathscr{C}, J)^{(2)}$.
For $y \in Y$, we denote by $l_{y}: \varphi^{-1}(y) \rightarrow X$ the inclusion map and consider a the-ology $\mathscr{D}^{l_{y}}$ on $\varphi^{-1}(y)$.

We define a subset $E(\varphi ; y)$ of $\mathscr{P}_{F}(\mathscr{C}, J)\left(\left(\varphi^{-1}(y), \mathscr{D}^{l y}\right),(E, \mathscr{E})\right)$ by

$$
E(\varphi ; y)=\left\{\alpha \in \mathscr{P}_{F}(\mathscr{C}, J)\left(\left(\varphi^{-1}(y), \mathscr{D}^{l_{y}}\right),(E, \mathscr{E})\right) \mid \pi \alpha=l_{y}\right\}
$$

if $\varphi^{-1}(y) \neq \varnothing$ and $E(\varphi ; y)=\varnothing$ if $\varphi^{-1}(y)=\varnothing$.
Put $E(\varphi)=\coprod_{y \in Y} E(\varphi ; y)$ and define $\operatorname{map} \varphi_{I E}: E(\varphi) \rightarrow Y$ by $\varphi_{!E}(\alpha)=y$ if $\alpha \in E(\varphi ; y)$. Note that the image of $\varphi_{!E}$ coincides with the image of φ.

We consider the following cartesian square (*) in Set.

Define a map $\varepsilon_{E}^{\varphi}: E(\varphi) \times_{Y} X \rightarrow E$ by $\varepsilon_{E}^{\varphi}(\alpha, x)=\alpha(x)$ if $\alpha \in E(\varphi ; y)$ and $x \in \varphi^{-1}(y)$ for $y \in Y$.
Then, $\varepsilon_{E}^{\varphi}$ makes the following diagram commute.

Let $\Sigma_{E, \varphi}$ the set of all the-ologies \mathscr{L} on $E(\varphi)$ such that $\mathscr{L} \subset \mathscr{F} \varphi_{\mid E}$ and $\mathscr{D}^{\bar{\varphi}_{I E}} \cap \mathscr{L}^{\tilde{\tilde{T}}_{E}} \subset \mathscr{E} \mathscr{E}_{E}^{\mathscr{E}}$ hold.
Note that $\mathscr{L} \in \Sigma_{E . \varphi}$ if and only if $\varphi_{I E}:(E(\varphi), \mathscr{L}) \rightarrow(Y, \mathscr{F})$ and $\varepsilon_{E}^{\varphi}:\left(E(\varphi) \times_{Y} X, \mathscr{D}^{\widetilde{\mathcal{P}_{1 E}}} \cap \mathscr{L}^{\tilde{\varphi}_{E}}\right) \rightarrow(E, \mathscr{E})$ are morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$.
Proposition 5.1
$\Sigma_{E, \varphi}$ is not empty.
In fact, the discrete the-ology $\mathscr{D}_{\text {disc, } E(\varphi)}$ on $E(\varphi)$ belongs to $\Sigma_{E, \varphi}$.

For $U \in \mathrm{Ob} \mathscr{C}$, we consider the following condition (LE) on an element γ of $F_{E(\varphi)}(U)$.
(LE) If $V, W \in \mathrm{Ob} \mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\psi \in \mathscr{D} \cap F_{X}(V)$ satisfy $\varphi \psi F(g)=\varphi_{!E} \gamma F(f)$, a composition

$$
F(W) \xrightarrow{(\gamma F(f), \psi F(g))} E(\varphi) \times_{Y} X \xrightarrow{\varepsilon_{B}^{\varphi}} E
$$

belongs to $\mathscr{E} \cap F_{E}(W)$ and a composition $F(U) \xrightarrow{\gamma} E(\varphi) \xrightarrow{\varphi_{I E}} Y$ belongs to $\mathscr{F} \cap F_{Y}(U)$.

Define a set $\mathscr{D}_{E, \varphi}$ of F-parametrizations of a set $E(\varphi)$ so that $\mathscr{D}_{E, \varphi} \cap F_{E(\varphi)}(U)$ is a subset of $F_{E(\varphi)}(U)$ consisting of elements which satisfy the above condition (LE) for any $U \in \mathrm{Ob} \mathscr{C}$.

Proposition 5.2

$\mathscr{D}_{E, \varphi}$ is a the-ology on $E(\varphi)$.
Proposition 5.3
$\mathscr{D}_{E, \varphi}$ is maximum element of $\Sigma_{E, \varphi}$.
Let $\boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(X, \mathscr{D})), \boldsymbol{G}=((G, \mathscr{G}) \xrightarrow{\rho}(X, \mathscr{D}))$ be objects of $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$ and $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{F})$ a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.
Let $\left\langle\xi, i d_{X}\right\rangle: \boldsymbol{E} \rightarrow \boldsymbol{G}$ be a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$.
If $\alpha \in E(\varphi ; y)$ for $y \in Y$, we have $\rho \xi \alpha=\pi \alpha=l_{y}$, hence $\xi \alpha \in G(\varphi ; y)$.
Thus we can define a map $\xi_{\varphi}: E(\varphi) \rightarrow G(\varphi)$ by $\varphi(\xi)(\alpha)=\xi \alpha$.

We consider the following diagram whose outer trapezoid and lower rectangle are cartesian.

Since the right triangle of the above diagram is commutative, there exists unique map $\xi_{\varphi} \times_{Y} i d_{X}: E(\varphi) \times_{Y} X \rightarrow G(\varphi) \times_{Y} X$ that makes the above diagram commutative.

Proposition 5.4
$\xi_{\varphi}:\left(E(\varphi), \mathscr{D}_{E, \varphi}\right) \rightarrow\left(G(\varphi), \mathscr{D}_{\boldsymbol{G}, \varphi}\right)$ is a morphism in $\mathscr{D}_{F}(\mathscr{C}, J)$ and the following diagram is commutative.

$$
\begin{aligned}
& E(\varphi) \times_{Y} X \xrightarrow[E]{\varepsilon_{E}^{\varphi}} E
\end{aligned}
$$

Remark 5.5
Let $\boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(X, \mathscr{D})), G=((G, \mathscr{G}) \xrightarrow{\rho}(X, \mathscr{D}))$,
$\boldsymbol{H}=((X, \mathscr{P}) \xrightarrow{\chi}(X, \mathscr{D}))$ be objects of $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$ and
$\left\langle\xi, i d_{X}\right\rangle: \boldsymbol{E} \rightarrow \boldsymbol{G},\left\langle\zeta, i d_{X}\right\rangle: \boldsymbol{G} \rightarrow \boldsymbol{H}$ be morphisms in $\mathscr{D}_{F}(\mathscr{C}, J)_{(X, \mathscr{D}}^{(2)}$.
For a morphism $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{F})$, it follows from the definition
of ξ_{φ} that $(\zeta \xi)_{\varphi}: E(\varphi) \rightarrow H(\varphi)$ coincides with a composition
$E(\varphi) \xrightarrow{\xi_{\varphi}} G(\varphi) \xrightarrow{\zeta_{\varphi}} H(\varphi)$.
We also note that $\left(i d_{E}\right)_{\varphi}$ coincides with the identity map of $E(\varphi)$.

We define a functor $\varphi_{!}: \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{E})}^{(2)}$ by putting

$$
\varphi_{!}(\boldsymbol{E})=\left(\left(E(\varphi), \mathscr{D}_{E, \varphi}\right) \xrightarrow{\varphi_{I E}}(Y, \mathscr{F})\right)
$$

for an object $E=((E, \mathscr{E}) \xrightarrow{\pi}(X, \mathscr{D}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$ and

$$
\varphi_{!}\left(\left\langle\xi, i d_{X}\right\rangle\right)=\left\langle\xi_{\varphi}, i d_{Y}\right\rangle: \varphi_{!}(\boldsymbol{E}) \rightarrow \varphi_{!}(\boldsymbol{G})
$$

for a morphism $\left\langle\xi, i d_{X}\right\rangle: \boldsymbol{E} \rightarrow \boldsymbol{G}$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$.
It follows from (5.3) and (5.4) that we have a natural transformation $\varepsilon^{\varphi}: \varphi^{*} \varphi_{!} \rightarrow i d_{\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{P})}^{(2)}}$ defined by

$$
\begin{aligned}
\varepsilon_{E}^{\varphi}=\left\langle\varepsilon_{E}^{\varphi}, i d_{X}\right\rangle: & \left(\left(E(\varphi) \times_{Y} X, \mathscr{D}_{E, \varphi}^{\tilde{\varphi}_{E}} \cap \mathscr{D}^{\widetilde{\varphi_{I E}}}\right) \xrightarrow{\widetilde{\varphi_{I E}}}(X, \mathscr{D})\right) \\
& \longrightarrow((E, \mathscr{E}) \xrightarrow{\pi}(X, \mathscr{D})) .
\end{aligned}
$$

For an object $\boldsymbol{G}=((G, \mathscr{G}) \xrightarrow{\rho}(Y, \mathscr{F}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{F})^{\prime}}^{(2)}$, we consider the following cartesian square in $\mathscr{P}_{F}(\mathscr{C}, J)$.

$$
\begin{aligned}
\left(G \times_{Y} X, \mathscr{G}^{\varphi_{\rho}} \cap \mathscr{D}_{\varphi}\right) & \xrightarrow{\varphi_{\rho}} \\
\mid \rho_{\varphi} & (G, \mathscr{Y}) \\
(X, \mathscr{D}) & \varphi
\end{aligned}
$$

Then, we have $\left.\varphi^{*}(\boldsymbol{G})=\left(G \times_{Y} X, \mathscr{G}^{\varphi_{\rho}} \cap \mathscr{D}^{\rho_{\varphi}}\right) \xrightarrow{\rho_{\varphi}}(X, \mathscr{D})\right)$.
We note that, for $y \in Y,\left(X \times_{Y} G\right)(\varphi ; y)$ is a subset of

$$
\mathscr{P}_{F}(\mathscr{C}, J)\left(\left(\varphi^{-1}(y), \mathscr{D}_{y}^{l}\right),\left(G \times_{Y} X, \mathscr{G}^{\varphi_{\rho}} \cap \mathscr{D}^{\rho_{\varphi}}\right)\right)
$$

consisting of elements of the form $\left(\lambda, l_{y}\right)$ such that $\lambda: \varphi^{-1}(y) \rightarrow G$ satisfies $\lambda\left(\varphi^{-1}(y)\right) \subset \rho^{-1}(y)$.

For $v \in G$, let us denote by $c_{v}: \varphi^{-1}(\rho(v)) \rightarrow G$ the constant map whose image is $\{v\}$. Then we have $c_{v}\left(\varphi^{-1}(\rho(v))\right)=\{\nu\} \subset \rho^{-1}(\rho(v))$ which implies $\left(c_{v}, l_{\rho(v)}\right) \in\left(G \times_{Y} X\right)(\varphi)$.
Define a $\operatorname{map} \eta_{\boldsymbol{G}}^{\varphi}: G \rightarrow\left(G \times_{Y} X\right)(\varphi)$ by $\eta_{\boldsymbol{G}}^{\varphi}(\nu)=\left(c_{v}, l_{\rho(\nu)}\right)$.
Then, $\eta_{\boldsymbol{G}}^{\varphi}$ makes the following diagram commute.

Proposition 5.6
$\eta_{G}^{\varphi}:(G, \mathscr{G}) \rightarrow\left(\left(G \times_{Y} X\right)(\varphi), \mathscr{D}_{\varphi^{*}(G), \varphi}\right)$ is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.

For objects $E=((E, \mathscr{E}) \xrightarrow{\pi}(Y, \mathscr{F})), \boldsymbol{G}=((G, \mathscr{G}) \xrightarrow{\rho}(Y, \mathscr{F}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{F})}^{(2)}$ and a morphism $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{F})$ in $\mathscr{P}_{F}(\mathscr{C}, J)$, we consider the following cartesian squares in $\mathscr{P}_{F}(\mathscr{C}, J)$.
$\left(E \times_{Y} X, \mathscr{E}^{\left.\varphi_{\pi} \cap \mathscr{D}^{\pi_{\varphi}}\right) \xrightarrow{\varphi_{\pi}}(E, \mathscr{E}), ~(E)}\right.$

$$
(X, \mathscr{D}) \xrightarrow{\mid \pi_{\varphi}} \xrightarrow{\varphi}(Y, \mathscr{F})
$$

$$
\begin{array}{r}
\left(G \times_{Y} X, \mathscr{G}^{\left.\varphi_{\rho} \cap \mathscr{D}_{\varphi}\right)} \xrightarrow{\boldsymbol{\varphi}_{\rho}}(G, \mathscr{G})\right. \\
(X, \mathscr{D}) \xrightarrow{\rho_{\varphi}} \xrightarrow{(G) \mathscr{F})}
\end{array}
$$

Let $\left\langle\zeta, i d_{Y}\right\rangle: \boldsymbol{E} \rightarrow \boldsymbol{G}$ be a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{F})}^{(2)}$.
Since $\rho \zeta=\pi$ holds, there exists unique morphism

$$
\zeta \times_{Y} i d_{X}:\left(E \times_{Y} X, \mathscr{E}^{\varphi_{\pi} \cap \mathscr{D}^{\pi_{\varphi}}}\right) \rightarrow\left(G \times_{Y} X, \mathscr{G}^{\left.\varphi_{\rho} \cap \mathscr{D}^{\rho_{\varphi}}\right)}\right.
$$

in $\mathscr{P}_{F}(\mathscr{C}, J)$ that makes the following diagram commutative.

The following result is easily verified from the definitions of $\eta_{E^{\prime}}^{\varphi}$ η_{G}^{φ} and $\left(\zeta \times_{Y} i d_{X}\right)_{\varphi}$.

Proposition 5.7

For a morphism $\left\langle\zeta, i d_{Y}\right\rangle:((E, \mathscr{E}) \xrightarrow{\pi}(Y, \mathscr{F})) \rightarrow((G, \mathscr{G}) \xrightarrow{\rho}(Y, \mathscr{F}))$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{F})}^{(2)}$, the following diagram is commutative.

$$
\begin{gathered}
E \xrightarrow{\eta_{E}^{\varphi}}\left(E \times_{Y} X\right)(\varphi) \\
\mid \zeta \\
G \xrightarrow{\eta_{G}^{\varphi}} \\
\mid\left(\zeta \times_{Y} i d_{X}\right)_{\varphi} \\
\left(G \times_{Y} X\right)(\varphi)
\end{gathered}
$$

It follows from (5.6) and (5.7) that we have a natural transformation $\eta^{\varphi}: i d_{\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{F})}^{(2)}} \rightarrow \varphi_{!} \varphi^{*}$ defined by

$$
\eta_{G}^{\varphi}=\left\langle\eta_{\boldsymbol{G}}^{\varphi}, i d_{Y}\right\rangle:((G, \mathscr{G}) \xrightarrow{\rho}(Y, \mathscr{F})) \rightarrow\left(\left(G \times_{Y} X\right)(\varphi) \xrightarrow{\varphi_{!\varphi^{*}(\boldsymbol{G})}}(Y, \mathscr{F})\right)
$$

for an object $G=((G, \mathscr{G}) \xrightarrow{\rho}(Y, \mathscr{F}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{F})}^{(2)}$.

Consider the following diagram, where the outer trapezoid and the lower rectangle are cartesian.

Since the right triangle of the above diagram is commutative, there exists unique map

$$
\eta_{G}^{\varphi} \times_{Y} i d_{X}: G \times_{Y} X \rightarrow\left(G \times_{Y} X\right)(\varphi) \times_{Y} X
$$

that makes the above diagram commute.

Lemma 5.8
For objects $E=((E, \mathscr{E}) \xrightarrow{\pi}(Y, \mathscr{F})), \boldsymbol{G}=((G, \mathscr{G}) \xrightarrow{\rho}(Y, \mathscr{F}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{F})}^{(2)}$ and a morphism $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{F})$ in $\mathscr{P}_{F}(\mathscr{C}, J)$, the following compositions are both identity maps.

$$
\begin{gathered}
E(\varphi) \xrightarrow{\eta_{\varphi_{1}(\boldsymbol{E})}^{\varphi}}\left(E(\varphi) \times_{Y} X\right)(\varphi) \xrightarrow{\left(\varepsilon_{E}^{\varphi}\right)_{\varphi}} E(\varphi) \\
G \times_{Y} X \xrightarrow{\eta_{G}^{\varphi} \times_{Y} i d_{X}}\left(G \times_{Y} X\right)(\varphi) \times_{Y} X \xrightarrow{\varepsilon_{\varphi^{*}(\boldsymbol{G})}^{\varphi}} G \times_{Y} X
\end{gathered}
$$

For an object $\boldsymbol{G}=((G, \mathscr{G}) \xrightarrow{\rho}(Y, \mathscr{F}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{F})}^{(2)}$ and an object $E=((E, \mathscr{E}) \xrightarrow{\pi}(X, \mathscr{D}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})^{\prime}}^{(2)}$, since compositions

$$
\begin{gathered}
\varphi_{!}(\boldsymbol{E}) \xrightarrow{\eta_{\varphi(\boldsymbol{E})}^{\varphi}} \varphi_{!} \varphi^{*} \varphi_{!}(\boldsymbol{E}) \xrightarrow{\varphi_{!}\left(\varepsilon_{E}^{\varphi}\right)} \varphi_{!}(\boldsymbol{E}), \\
\varphi^{*}(\boldsymbol{G}) \xrightarrow{\varphi^{*}\left(\eta_{G}^{\varphi}\right)} \varphi^{*} \varphi_{!} \varphi^{*}(\boldsymbol{G}) \xrightarrow[\varepsilon_{\varphi^{*}(\boldsymbol{G}}]{\longrightarrow} \varphi^{*}(\boldsymbol{G})
\end{gathered}
$$

are both identity morphisms by (5.8), we have the following result.

Proposition 5.9

$\varphi_{!}: \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{C})}^{(2)}$ is a right adjoint of the inverse image functor $\varphi^{*}: \mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{D})}^{(2)} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{E})}^{(2)}$.
Hence $\mathscr{P}_{F}(\mathscr{C}, J)$ is locally cartesian closed.

Remark 5.10 ([10], Proposition A.16.22)
Let $E=((Y, \mathscr{E}) \xrightarrow{\pi}(X, \mathscr{D})), \boldsymbol{F}=((Z, \mathscr{F}) \xrightarrow{\rho}(X, \mathscr{D}))$ and
$G=((W, \mathscr{G}) \xrightarrow{\chi}(X, \mathscr{D}))$ be objects of $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$.
It follows from (4.3) and (5.7) that there exist natural bijection

$$
\begin{aligned}
& \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}\left(\rho_{*} \rho^{*}(\boldsymbol{E}), \boldsymbol{G}\right) \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{(Z, \mathscr{F})}^{(2)}\left(\rho^{*}(\boldsymbol{E}), \rho^{*}(\boldsymbol{G})\right), \\
& \mathscr{P}_{F}(\mathscr{C}, J)_{(Z, \mathscr{F})}^{(2)}\left(\rho^{*}(\boldsymbol{E}), \rho^{*}(\boldsymbol{G})\right) \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}\left(\boldsymbol{E}, \rho_{!} \rho^{*}(\boldsymbol{G})\right) .
\end{aligned}
$$

We note that the product $\boldsymbol{E} \times \boldsymbol{F}$ of \boldsymbol{E} and \boldsymbol{F} in $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$ is given by $\boldsymbol{E} \times \boldsymbol{F}=\rho_{*} \rho^{*}(\boldsymbol{E})$.
Hence if we put $\boldsymbol{G}^{F}=\rho_{!} \rho^{*}(\boldsymbol{G})$, we have a natural bijection

$$
\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}(\boldsymbol{E} \times \boldsymbol{F}, \boldsymbol{G}) \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}\left(\boldsymbol{E}, \boldsymbol{G}^{\boldsymbol{F}}\right) .
$$

This shows that $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$ is cartesian closed.

§6. Strong subobject classifier

Definition 6.1
Let \mathscr{C} be a category.
(1) Two morphisms $p: X \rightarrow Y$ and $i: Z \rightarrow W$ in \mathscr{C} are said to be orthogonal if the following left diagram is commutative, there exits unique morphism $s: Y \rightarrow Z$ that makes the following right diagram commute.

If p and i are orthogonal, we denote this by $p \perp i$.
(2) For a class C of morphisms in \mathscr{C}, we put

$$
\begin{aligned}
& C^{\perp}=\{i \in \operatorname{Mor} \mathscr{C} \mid p \perp i \text { if } p \in C\}, \\
& { }^{\perp} C=\{p \in \operatorname{Mor} \mathscr{C} \mid p \perp i \text { if } i \in C\} .
\end{aligned}
$$

(3) Let E be the class of all epimorphisms in \mathscr{C}. A monomorphism $i: Z \rightarrow W$ in \mathscr{C} is called a strong monomorphism if i belongs to E^{\perp}.
(4) Let M be the class of all monomorphisms in \mathscr{E}. An epimorphism $p: X \rightarrow Y$ in \mathscr{C} is called a strong epimorphism if p belongs to ${ }^{\perp} M$.

Proposition 6.2

Let C be a class of morphisms in \mathscr{C}.
(1) If D is a class of morphisms in \mathscr{C} which contains C, then $C^{\perp} \supset D^{\perp}$ and ${ }^{\perp} C \supset^{\perp} D$.
(2) $C \subset^{\perp}\left(C^{\perp}\right)$ and $C \subset\left({ }^{\perp} C\right)^{\perp}$ hold.
(3) $\left({ }^{\perp}\left(C^{\perp}\right)\right)^{\perp}=C^{\perp}$ and ${ }^{\perp}\left(\left({ }^{\perp} C\right)^{\perp}\right)={ }^{\perp} C$ hold.

Proposition 6.3
(1) If $i: Z \rightarrow W$ is an equalizer of $f, g: W \rightarrow V$, then i is a strong monomorphism.
(2) If $p: X \rightarrow Y$ is a coequalizer of $f, g: U \rightarrow X$, then p is a strong epimorphism.

Definition 6.4

Let \mathscr{C} be a category with a terminal object $1_{\mathscr{C}}$.
If a morphism $t: 1_{\mathscr{C}} \rightarrow \Omega$ satisfies the following condition, we call
t a strong subobject classifier of \mathscr{C}.
(*) For each strong monomorphism $\sigma: Y \mapsto X$ in \mathscr{C}, there exists unique morphism $\phi_{\sigma}: X \rightarrow \Omega$ that makes the following square cartesian.

Remark 6.5

Assume that the outer rectangle of the following left diagram is cartesian. If $h: V \rightarrow X$ satisfies $f h=g s h$, then there exists unique morphism $k: V \rightarrow Y$ that satisfies $\sigma k=h$ by the assumption.

Hence if $\sigma: Y \rightarrow X$ is a monomorphism, σ is an equalizer of $f, g s: X \rightarrow Z$.
It follows that if \mathscr{C} has a strong subobject classifier, each strong monomorphism in \mathscr{C} is an equalizer of a certain pair of morphisms.

Proposition 6.6

A morphism $i:(Y, \mathscr{E}) \rightarrow(X, \mathscr{D})$ in $\mathscr{P}_{F}(\mathscr{C}, J)$ is a monomorphism if and only if $i: Y \rightarrow X$ is injective.

Proposition 6.7
Let $\sigma:(Y, \mathscr{F}) \rightarrow(X, \mathscr{D})$ be a strong monomorphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ and denote by $i: \sigma(Y) \rightarrow X$ the inclusion map.
Then there is a surjection $\tilde{\sigma}: Y \rightarrow \sigma(Y)$ which satisfies $i \tilde{\sigma}=\sigma$.
This map gives an isomorphism $\tilde{\sigma}:(Y, \mathscr{F}) \rightarrow\left(\sigma(Y), \mathscr{D}^{i}\right)$ in $\mathscr{P}_{F}(\mathscr{C}, J)$.

Let $t:\{1\} \rightarrow\{0,1\}$ be an inclusion map. Then,

$$
t:\left(\{1\}, \mathscr{D}_{\text {coarse },\{1\}}\right) \rightarrow\left(\{0,1\}, \mathscr{D}_{\text {coarse },\{0,1\}}\right)
$$

is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.
Proposition 6.8
Let (X, \mathscr{D}) be an object of $\mathscr{P}_{F}(\mathscr{C}, J)$ and Y a subset of X.
We denote by $\sigma: Y \rightarrow X$ the inclusion map and define a map
$\phi_{\sigma}: X \rightarrow\{0,1\}$ by $\phi_{\sigma}(x)=\left\{\begin{array}{ll}1 & x \in Y \\ 0 & x \notin Y\end{array}\right.$.
Then, the following diagram is a cartesian square in $\mathscr{P}_{F}(\mathscr{C}, J)$.

$$
\begin{gathered}
\left(Y, \mathscr{D}^{\sigma}\right) \xrightarrow{o_{Y}}\left(\{1\}, \mathscr{D}_{\text {coarse },\{1\}}\right) \\
\mid \sigma \\
(X, \mathscr{D}) \xrightarrow{\phi_{\sigma}}\left(\{0,1\}, \mathscr{D}_{\text {coarse },\{0,1\}}\right)
\end{gathered}
$$

Remark 6.9

The morphism $\sigma:\left(Y, \mathscr{D}^{\sigma}\right) \rightarrow(X, \mathscr{D})$ is an equalizer of $\phi_{\sigma}:(X, \mathscr{D}) \rightarrow\left(\{0,1\}, \mathscr{D}_{\text {coarse },\{0,1\}}\right)$ and a composition $(X, \mathscr{D}) \xrightarrow{o_{X}}\left(\{1\}, \mathscr{D}_{\text {coarse, }\{1\}}\right) \xrightarrow{t}\left(\{0,1\}, \mathscr{D}_{\text {coarse, }\{0,1\}}\right)$ by (6.5).
In particular, $\sigma:\left(Y, \mathscr{D}^{\sigma}\right) \rightarrow(X, \mathscr{D})$ is a strong monomorphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ by (6.3).

Proposition 6.10
$t:\left(\{1\}, \mathscr{D}_{\text {coarse },\{1\}}\right) \rightarrow\left(\{0,1\}, \mathscr{D}_{\text {coarse, }\{0,1\}}\right)$ is a strong subobject classifier in $\mathscr{P}_{F}(\mathscr{C}, J)$.

By (3.9), (3.10), (5.9) and (6.10), we have the following result.
Theorem 6.11
$\mathscr{P}_{F}(\mathscr{C}, J)$ is a quasi-topos.
Proposition 6.12
$\pi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$ is an epimorphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ if and only if $\pi: X \rightarrow Y$ is surjective.
§7. Groupoids associated with epimorphisms
Let $\boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(B, \mathscr{B}))$ be an object $\mathscr{P}_{F}(\mathscr{C}, J)_{(B, \mathscr{B})}^{(2)}$ such that π is an epimorphism. Then, π is surjective by (6.7), hence $\pi^{-1}(x)$ is not an empty set for any $x \in B$.
We denote by $i_{x}: \pi^{-1}(x) \rightarrow E$ the inclusion map.
Let $G_{1}(E)(x, y)$ be a subset of $\mathscr{P}_{F}(\mathscr{C}, J)\left(\left(\pi^{-1}(x), \mathscr{E}^{i} i_{x}\right),\left(\pi^{-1}(y), \mathscr{E}^{i} y\right)\right)$ consisting of elements which are isomorphisms for $x, y \in B$.
Put $G_{1}(\boldsymbol{E})=\coprod_{x, y \in B} G_{1}(\boldsymbol{E})(x, y)$ and define maps $\sigma_{E}, \tau_{\boldsymbol{E}}: G_{1}(\boldsymbol{E}) \rightarrow B$,
${ }_{l_{\boldsymbol{E}}}: G_{1}(\boldsymbol{E}) \rightarrow G_{1}(\boldsymbol{E})$ and $\varepsilon_{\boldsymbol{E}}: B \rightarrow G_{1}(\boldsymbol{E})$ by $\sigma_{\boldsymbol{E}}(\varphi)=x, \tau_{\boldsymbol{E}}(\varphi)=y$,
$l_{E}(\varphi)=\varphi^{-1}$ if $\varphi \in G_{1}(\boldsymbol{E})(x, y)$ and $\varepsilon_{E}(x)=i d_{\pi^{-1}(x)}$.

Supppse that the following diagram is cartesian.

As a set, $G_{1}(E) \times{ }_{B} G_{1}(E)$ is given by

$$
G_{1}(\boldsymbol{E}) \times_{B} G_{1}(\boldsymbol{E})=\left\{(\varphi, \psi) \in G_{1}(\boldsymbol{E}) \times G_{1}(\boldsymbol{E}) \mid \tau_{\boldsymbol{E}}(\varphi)=\sigma_{\boldsymbol{E}}(\psi)\right\}
$$

We define a $\operatorname{map} \mu_{E}: G_{1}(\boldsymbol{E}) \times_{B} G_{1}(\boldsymbol{E}) \rightarrow G_{1}(\boldsymbol{E})$ by $\mu_{E}(\varphi, \psi)=\psi \varphi$. We consider the following cartesian squares.

$$
E \times{ }_{B}^{\tau_{E}} G_{1}(\boldsymbol{E}) \xrightarrow{\operatorname{pr}_{G_{1}(\boldsymbol{E})}^{\tau}} G_{1}(\boldsymbol{E})
$$

$$
\begin{aligned}
& E \times{ }_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \xrightarrow{\mathrm{pr}_{G_{1}(\boldsymbol{E})}^{\sigma}} G_{1}(\boldsymbol{E})
\end{aligned}
$$

$$
\begin{aligned}
& G_{1}(\boldsymbol{E}) \times_{B} G_{1}(\boldsymbol{E}) \xrightarrow{\mathrm{pr}_{2}} G_{1}(\boldsymbol{E}) \\
& \xrightarrow[G_{1}(\boldsymbol{E})]{\mid \mathrm{pr}_{1}} \xrightarrow{\tau_{E}}{ }^{\bullet}{ }^{\|}
\end{aligned}
$$

Hence $E \times{ }_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E})$ and $E \times{ }_{B}^{\tau_{E}} G_{1}(\boldsymbol{E})$ are given as follows as sets.

$$
\begin{aligned}
& E \times \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E})=\left\{(e, \varphi) \in E \times G_{1}(\boldsymbol{E}) \mid \pi(e)=\sigma_{E}(\varphi)\right\}, \\
& E \times \times_{B}^{\tau_{E}} G_{1}(\boldsymbol{E})=\left\{(e, \varphi) \in E \times G_{1}(\boldsymbol{E}) \mid \pi(e)=\tau_{E}(\varphi)\right\}
\end{aligned}
$$

There exists unique map $i d_{E} \times_{B} l_{E}: E \times_{B}^{\tau_{E}} G_{1}(\boldsymbol{E}) \rightarrow E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E})$ that makes the following diagram commute.

We define a map $\hat{\xi}_{E}: E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \rightarrow E$ by $\hat{\xi}_{E}(e, \varphi)=i_{\tau_{E}(\varphi)} \varphi(e)$. Let Σ_{E} the set of all the-ologies \mathscr{L} on $G_{1}(\boldsymbol{E})$ which satisfy
 We note that the $\mathscr{L} \in \Sigma_{E}$ if and only if following maps are morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$.

$$
\begin{aligned}
& \hat{\xi}_{E}:\left(E \times_{B}^{\sigma_{E}} G_{1}(E), \mathscr{E}^{p r_{E}^{r}} \cap \mathscr{L}^{\mathrm{pr}_{G_{G}}^{\sigma}(\mathbb{E})}\right) \rightarrow(E, \mathscr{E}) \\
& \hat{\xi}_{E}\left(i d_{E} \times_{B} l_{E}\right):\left(E \times_{B}^{\tau_{E}} G_{1}(\boldsymbol{E}), \mathscr{E}^{\mathscr{P} \mathrm{Pr}_{E}^{\tau_{E}}} \cap \mathscr{L}^{\left.\operatorname{pr}_{G_{1}}^{\tau_{1}(E)}\right)}\right) \rightarrow(E, \mathscr{E}) \\
& \sigma_{E}, \tau_{E}:\left(G_{1}(E), \mathscr{L}\right) \rightarrow(B, \mathscr{B})
\end{aligned}
$$

Proposition 7.1
Σ_{E} is not empty. In fact $\left(G_{1}(\boldsymbol{E}), \mathscr{D}_{\text {disc } ; G_{1}(E)}\right) \in \Sigma_{\boldsymbol{E}}$.

For $U \in \mathrm{Ob} \mathscr{C}$, we consider the following conditions (G1), (G2), (G3) on an element γ of $F_{G_{1}(E)}(U)$.
(G1) If $V, W \in \mathrm{Ob} \mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\lambda \in \mathscr{E} \cap F_{E}(V)$ satisfy $\pi \lambda F(g)=\sigma_{E} \gamma F(f)$, a composition

$$
F(W) \xrightarrow{(\lambda F(g), \gamma F(f))} E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \xrightarrow{\hat{\xi}_{E}} E
$$

belongs to $\mathscr{E} \cap F_{E}(W)$.
(G2) If $V, W \in \mathrm{Ob} \mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\lambda \in \mathscr{E} \cap F_{E}(V)$ satisfy $\pi \lambda F(g)=\tau_{E} \gamma F(f)$, a composition

$$
F(W) \xrightarrow{\left(\lambda F(g), \iota_{E} \gamma F(f)\right)} E \times_{B}^{\sigma_{E}} G_{1}(E) \xrightarrow{\hat{\xi}_{E}} E
$$

belongs to $\mathscr{E} \cap F_{E}(W)$.
(G3) Compositions $F(U) \xrightarrow{\gamma} G_{1}(\boldsymbol{E}) \xrightarrow{\sigma_{E}} B$ and $F(U) \xrightarrow{\gamma} G_{1}(\boldsymbol{E}) \xrightarrow{\tau_{E}} B$ belong to $\mathscr{B} \cap F_{B}(U)$.

Define a set \mathscr{G}_{E} of F-parametrizations of a set $G_{1}(\boldsymbol{E})$ so that $\mathscr{G}_{E} \cap F_{G_{1}(E)}(U)$ is a subset of $F_{G_{1}(E)}(U)$ consisting of elements which satisfy the above conditions (G1), (G2) and (G3) for any $U \in \mathrm{Ob} \mathscr{C}$.

Remark 7.2

The conditions (G1), (G2) and (G3) on $\gamma \in F_{G_{1}(E)}(U)$ above are equivalent to the following conditions ($G 1^{\prime}$), ($G 2^{\prime}$) and ($G 3^{\prime}$), respectively.
($G 1^{\prime}$) If $V, W \in \mathrm{Ob} \mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\lambda \in \mathscr{E} \cap F_{E}(V)$ satisfy $\pi \lambda F(g)=\sigma_{E} \gamma F(f)$, then γ satisfies
$\left((\lambda F(g), \gamma F(f)): F(W) \rightarrow E \times_{B}^{\sigma_{E}} G_{1}(E)\right) \in \mathscr{E}^{\hat{E}_{E}} \cap F_{E \times{ }_{B}^{\sigma_{B}} G_{1}(E)}(W)$.
(G2') If $V, W \in \mathrm{Ob} \mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\lambda \in \mathscr{E} \cap F_{E}(V)$
satisfy $\pi \lambda F(g)=\tau_{E} \gamma F(f)$, then γ satisfies
$\left((\lambda F(g), \gamma F(f)): F(W) \rightarrow E \times_{B}^{\tau_{B}} G_{1}(\boldsymbol{E})\right) \in \mathscr{E} \mathscr{E}_{E} \hat{E}_{B}\left(i_{E_{E}} \times_{B} l_{E}\right) \cap F_{E \times{ }_{B}^{T_{B}} G_{1}(E)}(W)$.
$\left(G 3^{\prime}\right) \gamma \in \mathscr{B}^{\sigma_{E}} \cap \mathscr{B}^{\tau_{E}} \cap F_{G_{1}(E)}(U)$

Proposition 7.3

\mathscr{G}_{E} is a the-ology on $G_{1}(\boldsymbol{E})$.
Proposition 7.4
\mathscr{G}_{E} is maximum element of Σ_{E}.

We consider the following cartesian square.

$$
\begin{align*}
& E \times{ }_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \times{ }_{B} G_{1}(\boldsymbol{E}) \stackrel{\mathrm{pr}_{12}}{\downarrow \mathrm{pr}_{3}} \\
& G_{1}(\boldsymbol{E}) \tag{i}\\
& \\
& \sigma_{E}{ }^{\sigma_{B}} G_{1}(\boldsymbol{E}) \\
& \tau_{E} \mathrm{pr}_{G_{1}}^{\sigma}(\boldsymbol{E}) \\
& B
\end{align*}
$$

That is, $E \times \times_{B}^{\sigma_{E}} G_{1}(E) \times{ }_{B} G_{1}(E)$ is the following set.

$$
\left\{(e, \varphi, \psi) \in E \times G_{1}(E) \times G_{1}(E) \mid \pi(e)=\sigma_{E}(\varphi), \tau_{E}(\varphi)=\sigma_{E}(\psi)\right\}
$$

It follows from the definition of $\hat{\xi}_{E}$ that the following diagram is commutative.

$$
\begin{align*}
& E \times{ }_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \xrightarrow{\hat{\xi}_{E}} E \\
& \downarrow \operatorname{pr}_{G_{1}(E)}^{\sigma} \longrightarrow \downarrow \tag{ii}\\
& G_{1}(E) \xrightarrow{\tau_{E}} B
\end{align*}
$$

There exists unique map

$$
\hat{\xi}_{E} \times{ }_{B} i d_{G_{1}(E)}: E \times \times_{B}^{\sigma_{E}} G_{1}(E) \times{ }_{B} G_{1}(E) \rightarrow E \times_{B}^{\sigma_{E}} G_{1}(E)
$$

that makes the following diagram commute by the commutativity of diagrams (i) and (ii) above.

We define maps $\mathrm{pr}_{23}: E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \times_{B} G_{1}(\boldsymbol{E}) \rightarrow G_{1}(\boldsymbol{E}) \times_{B} G_{1}(\boldsymbol{E})$ and $\mathrm{pr}_{E}: E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \times_{B} G_{1}(\boldsymbol{E}) \rightarrow E$ by $\mathrm{pr}_{23}(e, \varphi, \psi)=(\varphi, \psi)$ and $\operatorname{pr}_{E}(e, \varphi, \psi)=e$, respectively. Then, there exists unique map

$$
i d_{E} \times_{B} \mu_{E}: E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \times_{B} G_{1}(\boldsymbol{E}) \rightarrow E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E})
$$

that makes the following diagram commute.

Let $v_{E}^{(2)}: G_{1}(\boldsymbol{E}) \times{ }_{B} G_{1}(\boldsymbol{E}) \rightarrow G_{1}(\boldsymbol{E}) \times{ }_{B} G_{1}(\boldsymbol{E})$ be unique map that makes the following diagram commute.

We note that $l_{E}^{(2)} \operatorname{maps}(\varphi, \psi) \in G_{1}(\boldsymbol{E}) \times{ }_{B} G_{1}(\boldsymbol{E})$ to $\left(l_{\boldsymbol{E}}(\psi), l_{\boldsymbol{E}}(\varphi)\right)$. It is easy to verify the following fact.

Lemma 7.5

The following diagrams are commutative.

$$
\begin{aligned}
& E \times{ }_{B}^{\sigma_{E}} G_{1}(E) \times_{B} G_{1}(E) \xrightarrow{i d_{E} \times{ }_{B} \mu_{E}} E \times{ }_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \\
& \hat{\xi}_{E} \times_{B} i d_{G_{1}(E)} \\
& E \times{ }_{B}^{\sigma_{E}} G_{1}(E) \longrightarrow E
\end{aligned}
$$

$$
\begin{aligned}
& G_{1}(\boldsymbol{E}) \times_{B} G_{1}(\boldsymbol{E}) \xrightarrow{\mu_{\boldsymbol{E}}} G_{1}(\boldsymbol{E}) \\
& G_{1}(\boldsymbol{E}) \times{ }_{B} G_{1} G_{1}^{(2)}(E) \xrightarrow{\mu_{E}} G_{1}(\boldsymbol{E}) \\
& \begin{array}{l}
\left(i d_{E}, \varepsilon_{E} \pi\right) \\
E \times \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \xrightarrow{E} i d_{E} \\
\hat{\xi}_{E} \\
\end{array}
\end{aligned}
$$

Proposition 7.6
The structure maps

$$
\begin{aligned}
\sigma_{E}, \tau_{E} & :\left(G_{1}(E), \mathscr{G}_{E}\right) \rightarrow(B, \mathscr{B}) \\
\varepsilon_{E} & :(B, \mathscr{B}) \rightarrow\left(G_{1}(E), \mathscr{G}_{E}\right) \\
\mu_{E} & :\left(G_{1}(E) \times_{B} G_{1}(\boldsymbol{E}), \mathscr{G}_{E}^{\mathrm{pr}_{1}} \cap \mathscr{G}_{E}^{\mathrm{pr}_{2}}\right) \rightarrow\left(G_{1}(\boldsymbol{E}), \mathscr{G}_{E}\right) \\
l_{E} & :\left(G_{1}(E), \mathscr{G}_{E}\right) \rightarrow\left(G_{1}\left(E^{\prime}\right), \mathscr{G}_{E}\right)
\end{aligned}
$$

of the groupoid $\left(B, G_{1}(E)\right)$ are morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$.
Definition 7.7
Let $E=((E, \mathscr{E}) \xrightarrow{\pi}(B, \mathscr{B}))$ be an object of $\mathscr{P}_{F}(\mathscr{C}, J)_{(B, \mathscr{B})}^{(2)}$ such that π is an epimorphism. We call the groupoid $\left((B, \mathscr{B}),\left(G_{1}(\boldsymbol{E}), \mathscr{G}_{E}\right) ; \sigma_{E}, \tau_{E}, \varepsilon_{E}, \mu_{E}, l_{E}\right)$ in $\mathscr{P}_{F}(\mathscr{C}, J)$ the groupoid associated with E and denote this groupoid by $\boldsymbol{G}(\boldsymbol{E})$.

Example 7.8

We denote by $o_{X}:(X, \mathscr{X}) \rightarrow\left(\{1\}, \mathscr{D}_{\text {coarse, }\{1\}}\right)$ the unique morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ for an object (X, \mathscr{X}) of $\mathscr{P}_{F}(\mathscr{C}, J)$. Since o_{X} is an epimorphism, we can consider the groupoid $G\left(O_{X}\right)$ associated with $\boldsymbol{O}_{X}=\left((X, \mathscr{X}) \xrightarrow{o_{X}}\left(\{1\}, \mathscr{D}_{\text {coarse, }\{1\}}\right)\right.$. This groupoid $\boldsymbol{G}\left(\boldsymbol{O}_{X}\right)=\left(\left(\{1\}, \mathscr{D}_{\text {coarse, }\{1\}}\right),\left(G_{1}\left(\boldsymbol{O}_{X}\right), \mathscr{G}_{\boldsymbol{O}_{X}}\right) ; \sigma_{\boldsymbol{O}_{X}}, \tau_{\boldsymbol{O}_{X}}, \boldsymbol{\varepsilon}_{\boldsymbol{O}_{X}}, \mu_{\boldsymbol{O}_{X}}, \boldsymbol{O}_{\boldsymbol{O}_{X}}\right)$
is described as follows. Put $\operatorname{End}(X, \mathscr{X})=\mathscr{P}_{F}(\mathscr{C}, J)((X, \mathscr{X}),(X, \mathscr{X}))$ and define a subset $\operatorname{Aut}(X, \mathscr{X})$ of $\operatorname{End}(X, \mathscr{X})$ by
$\operatorname{Aut}(X, \mathscr{X})=\{\varphi \in \operatorname{End}(X, \mathscr{X}) \mid \varphi$ is an isomorphism. $\}$.
Then, $G_{1}\left(O_{X}\right)$ is identified with $\operatorname{Aut}(X, \mathscr{X})$ as a set.
The source $\sigma_{O_{X}}$ and the target $\tau_{O_{X}}$ are the unique map $G_{1}\left(O_{X}\right) \rightarrow\{1\}$. The unit $\varepsilon_{O_{X}}:\{1\} \rightarrow G_{1}\left(O_{X}\right)$ maps 1 to $i d_{X}$.

The composition $\mu_{O_{X}}: G_{1}\left(O_{X}\right) \times G_{1}\left(O_{X}\right) \rightarrow G_{1}\left(O_{X}\right)$ maps (φ, ψ) to $\psi \varphi$ and the inverse ${ }_{\boldsymbol{O}_{X}}: G_{1}\left(\boldsymbol{O}_{X}\right) \rightarrow G_{1}\left(\boldsymbol{O}_{X}\right)$ maps φ to φ^{-1}. We define a map $\alpha_{X}: X \times G_{1}\left(O_{X}\right) \rightarrow X$ by $\alpha_{X}(x, \varphi)=\varphi(x)$, then the the-ology $\mathscr{G}_{O_{X}}$ on $G_{1}\left(O_{X}\right)=\operatorname{Aut}(X, \mathscr{X})$ is given as follows. For $U \in \mathrm{Ob} \mathscr{C}, \mathscr{G}_{o_{X}} \cap F_{G_{1}\left(o_{X}\right)}(U)$ is a subset of $F_{G_{1}\left(O_{X}\right)}(U)$ consisting of elements γ which satisfy the following condition (G).
(G) For $V, W \in \mathrm{Ob} \mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\lambda \in \mathscr{X} \cap F_{X}(V)$, the following compositions belong to $\mathscr{X} \cap F_{X}(W)$.

$$
\begin{gathered}
F(W) \xrightarrow{(\lambda F(g), \gamma F(f))} X \times G_{1}\left(\boldsymbol{O}_{X}\right) \xrightarrow{\alpha_{X}} X \\
F(W) \xrightarrow{\left(\lambda F(g), \iota_{X} \gamma F(f)\right)} X \times G_{1}\left(\boldsymbol{O}_{X}\right) \xrightarrow{\alpha_{X}} X
\end{gathered}
$$

Let $((G, \mathscr{G}) ; \varepsilon, \mu, l)$ be a group object in $\mathscr{P}_{F}(\mathscr{C}, J)$ with structure morphisms $\varepsilon:\left(\{1\}, \mathscr{D}_{\text {disc, }\{1\}}\right) \rightarrow(G, \mathscr{G}), l:(G, \mathscr{G}) \rightarrow(G, \mathscr{G})$ and $\mu:\left(G \times G, \mathscr{G P}_{1} \cap \mathscr{G} p_{2}\right) \rightarrow(G, \mathscr{G})$ in $\mathscr{P}_{F}(\mathscr{C}, J)$ which make the following diagrams commute. Here, $p_{i}: G \times G \rightarrow G$ denotes the projection onto the i-th component for $i=1,2$.

For an object (B, \mathscr{B}) of $\mathscr{P}_{F}(\mathscr{C}, J)$, we define a groupoid $G_{G, B}$ in $\mathscr{P}_{F}(\mathscr{C}, J)$ as follows.
Put $G_{1}=B \times G \times B$ and let $\sigma_{G, B}, \tau_{G, B}: G_{1} \rightarrow B$ and $\mathrm{pr}_{G}: G_{1} \rightarrow G$ be the projections given by $\sigma_{G, B}(x, g, y)=x, \tau_{G, B}(x, g, y)=y$ and $\operatorname{pr}_{G}(x, g, y)=g$. Define maps $\varepsilon_{G, B}: B \rightarrow G_{1}$ by $\varepsilon_{G, B}(x)=(x, \varepsilon(1), x)$. Consider the following cartesian square.

Then $G_{1} \times{ }_{B} G_{1}=\left\{((x, g, y),(z, h, w)) \in G_{1} \times G_{1} \mid y=z\right\}$ holds as a set.
Define maps $\mu_{G, B}: G_{1} \times{ }_{B} G_{1} \rightarrow G_{1}$ and $l_{G, B}: G_{1} \rightarrow G_{1}$ by $\mu_{G, B}((x, g, y),(z, h, w))=(x, \mu(g, h), w)$ and $l_{G, B}(x, g, y)=(y, l(g), x)$.

 Since $\sigma_{G, B} \varepsilon_{G, B}=\tau_{G, B} \varepsilon_{G, B}=i d_{X}$ and the following diagram is commutative, it follows that $\varepsilon_{G, B}:(B, \mathscr{B}) \rightarrow\left(G_{1}, \mathscr{B}^{\sigma_{G, B}} \cap \mathscr{G}^{\left.\mathrm{pr}_{G} \cap \mathscr{B}^{\tau_{G, B}}\right)}\right.$ is also a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.

$$
\begin{aligned}
& (B, \mathscr{B}) \xrightarrow{\varepsilon_{G, B}}\left(G_{1}, \mathscr{B}^{\left.\sigma_{G, B} \cap \mathscr{G r}_{G} \cap \mathscr{B}^{\tau_{G, B}}\right)}\right. \\
& \downarrow o_{B} \quad \downarrow \mathrm{pr}_{G} \\
& \left(\{1\}, \mathscr{D}_{d i s c,\{1\}}\right) \longrightarrow(G, \mathscr{G})
\end{aligned}
$$

We note that $\sigma_{G, B} \mu_{G, B}=\sigma_{G, B} \mathrm{pr}_{1}$ and $\tau_{G, B} \mu_{G, B}=\tau_{G, B} \mathrm{pr}_{2}$ hold and that the following diagram commutes.

$$
\begin{aligned}
& G_{1} \times{ }_{B} G_{1} \xrightarrow{\left(\mathrm{pr}_{G}, \mathrm{pr}_{G}\right)} G \times G \\
& \stackrel{{ }_{G}}{\stackrel{\mu_{G, B}}{ } \quad \operatorname{pr}_{G}} \stackrel{{ }_{V} \mu}{G}
\end{aligned}
$$

Since $\sigma_{G, B^{\prime}}, \tau_{G, B^{\prime}}\left(\operatorname{pr}_{G}, \mathrm{pr}_{G}\right)$ and μ are morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$, it follows that

$$
\begin{aligned}
& \rightarrow\left(G_{1}, \mathscr{B}^{\sigma_{G, B}} \cap \mathscr{G}^{\left.\mathrm{pr}_{G} \cap \mathscr{B}^{\tau_{G, B}}\right)}\right.
\end{aligned}
$$

is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.

We also have $\sigma_{G, B} l_{G, B}=\tau_{G, B^{\prime}}, \tau_{G, B}{ }_{G}{ }_{G, B}=\sigma_{G, B}$ and $\operatorname{pr}_{G} l_{G, B}=\imath \mathrm{pr}_{G}$ which imply that
is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$. It is easy to verify that
$\left((B, \mathscr{B}),\left(B \times G \times B, \mathscr{B}^{\left.\left.\sigma_{G, B} \cap \mathscr{G}^{\operatorname{pr}_{G} \cap \mathscr{B}}{ }^{\tau_{G, B}}\right) ; \sigma_{G, B}, \tau_{G, B}, \varepsilon_{G, B}, \mu_{G, B}, l_{G, B}\right)}\right.\right.$
is a groupoid in $\mathscr{P}_{F}(\mathscr{C}, J)$.
Definition 7.9
The groupoid
$\left((B, \mathscr{B}),\left(B \times G \times B, \mathscr{B}^{\sigma_{G, B}} \cap \mathscr{G}^{\left.\left.\operatorname{pr}_{G} \cap \mathscr{B}^{\tau_{G, B}}\right) ; \sigma_{G, B}, \tau_{G, B}, \varepsilon_{G, B}, \mu_{G, B}, l_{G, B}\right)}\right.\right.$
in $\mathscr{P}_{F}(\mathscr{C}, J)$ constructed above is called the trivial groupoid associated with $((G, \mathscr{G}) ; \varepsilon, \mu, l)$ and (B, \mathscr{B}).

Let (X, \mathscr{X}) and (B, \mathscr{B}) be objects of $\mathscr{P}_{F}(\mathscr{C}, J)$.
Let us denote by $\mathrm{pr}_{X}: X \times B \rightarrow X$ and $\mathrm{pr}_{B}: X \times B \rightarrow B$ the projections.
Then we have an object $X=\left(\left(X \times B, X^{\mathrm{pr}_{x}} \cap \mathscr{B}^{\mathrm{pr}_{B}} \xrightarrow{\mathrm{pr}_{B}}(B, \mathscr{B})\right)\right.$ of $\mathrm{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$.
We also have a group object $G_{1}\left(O_{X}\right)=\operatorname{Aut}(X, \mathscr{X})$ in $\mathscr{P}_{F}(\mathscr{C}, J)$ with unit $\varepsilon_{O_{X}}:\{1\} \rightarrow G_{1}\left(O_{X}\right)$, product $\mu_{O_{X}}: G_{1}\left(O_{X}\right) \times G_{1}\left(O_{X}\right) \rightarrow G_{1}\left(O_{X}\right)$ and inverse ${ }_{\boldsymbol{O}_{X}}: G_{1}\left(\boldsymbol{O}_{X}\right) \rightarrow G_{1}\left(\boldsymbol{O}_{X}\right)$ as we considered in (7.8).

Proposition 7.10

The groupoid $\boldsymbol{G}(\boldsymbol{X})=\left((B, \mathscr{B}),\left(G_{1}(\boldsymbol{X}), \mathscr{G}_{X}\right) ; \sigma_{X}, \tau_{X}, \varepsilon_{X}, \mu_{X}, l_{X}\right)$ in $\mathscr{P}_{F}(\mathscr{C}, J)$ associated with X is isomorphic to the trivial groupoid associated with $\left(\left(G_{1}\left(\boldsymbol{O}_{X}\right), \mathscr{G}_{\boldsymbol{O}_{X}}\right) ; \varepsilon_{\boldsymbol{O}_{X}}, \mu_{\boldsymbol{O}_{X}}, \boldsymbol{l}_{\boldsymbol{O}_{X}}\right)$ and (B, $\left.\mathscr{B}\right)$.

Let us denote by $\mathrm{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$ a subcategory of $\mathscr{P}_{F}(\mathscr{C}, J)^{(2)}$ whose objects are epimorphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$ and morphisms are cartesian morphisms in the fibered category $\wp: \mathscr{P}_{F}(\mathscr{C}, J)^{(2)} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)$ of morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$. Let $\boldsymbol{D}=((D, \mathscr{D}) \xrightarrow{\rho}(A, \mathscr{A})), \boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(B, \mathscr{B}))$ be objects of $\operatorname{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$ and $\boldsymbol{\xi}=\langle\xi, f\rangle: \boldsymbol{D} \rightarrow \boldsymbol{E}$ a morphism in $\operatorname{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$. For $x \in A$ and $y \in B$, we denote by $j_{x}: \rho^{-1}(x) \rightarrow D$ and $i_{y}: \pi^{-1}(y) \rightarrow E$ the inclusion maps, respectively.

Then, we have unique map $\xi_{x}: \rho^{-1}(x) \rightarrow \pi^{-1}(f(x))$ that makes the right diagram commute.

Lemma 7.11
$\xi_{x}:\left(\rho^{-1}(x), \mathscr{D}^{j_{x}}\right) \rightarrow\left(\pi^{-1}(f(x)), \mathscr{E}_{\mathcal{F}_{(x)}}\right)$ is an isomorphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.

Remark 7.12.

We consider the following cartesian square.

Since ξ is cartesian, $(\rho, \xi):(D, \mathscr{D}) \rightarrow\left(A \times_{B} E, \mathscr{A}^{\pi_{f}} \cap \mathscr{E} f_{\pi}\right)$ is an isomorphism in $\mathscr{\mathscr { P }}_{F}(\mathscr{C}, J)$. Put $\xi_{f}=(\rho, \xi)$ then ξ_{f} satisfies $\pi_{f} \xi_{f}=\rho$ and $f_{\pi} \xi_{f}=\xi$. Thus we have

$$
\mathscr{D}=\left(\mathscr{A}^{\pi_{f}} \cap \mathscr{E} f_{\pi}\right)^{\xi_{f}}=\mathscr{A}^{\pi_{f} \xi_{f}} \cap \mathscr{E}^{f_{\pi} \xi_{f}}=\mathscr{A}^{\rho} \cap \mathscr{E}^{\xi} .
$$

By (7.11), we can define a bijection

$$
\xi_{x, y}: G_{1}(\boldsymbol{D})(x, y) \rightarrow G_{1}(\boldsymbol{E})(f(x), f(y))
$$

by $\xi_{x, y}(\varphi)=\xi_{y} \varphi \xi_{x}^{-1}$ for $x, y \in A$.
We also define a map $\xi_{1}: G_{1}(D) \rightarrow G_{1}(E)$ by $\xi_{1}(\varphi)=\xi_{x, y}(\varphi)$ where $x=\sigma_{D}(\varphi)$ and $y=\tau_{D}(\varphi)$.
Note that a pair $\left(f, \xi_{1}\right)$ of maps is a morphism $\boldsymbol{G}(\boldsymbol{D}) \rightarrow \boldsymbol{G}(\boldsymbol{E})$ of groupoids, that is, the following diagrams are commutative. Here, $\xi_{1} \times{ }_{f} \xi_{1}: G_{1}(\boldsymbol{D}) \times{ }_{A} G_{1}(\boldsymbol{D}) \rightarrow G_{1}(\boldsymbol{E}) \times{ }_{B} G_{1}(\boldsymbol{E})$ maps (φ, ψ) to $\left(\xi_{1}(\varphi), \xi_{1}(\psi)\right)$.

$$
\begin{aligned}
& A \stackrel{\sigma_{D}}{\longleftrightarrow} G_{1}(\boldsymbol{D}) \xrightarrow{\tau_{\boldsymbol{D}}} A \xrightarrow{\varepsilon_{\boldsymbol{D}}} G_{1}(\boldsymbol{D}) \xrightarrow{l_{\boldsymbol{D}}} G_{1}(\boldsymbol{D}) \quad G_{1}(\boldsymbol{D}) \times{ }_{A} G_{1}(\boldsymbol{D}) \xrightarrow{\mu_{\boldsymbol{D}}} G_{1}(\boldsymbol{D})
\end{aligned}
$$

Define a map $\xi \times_{f} \xi_{1}: D \times_{A}^{\sigma_{D}} G_{1}(\boldsymbol{D}) \rightarrow E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E})$ by

$$
\left(\xi \times_{f} \xi_{1}\right)(e, \varphi)=\left(\xi(e), \xi_{1}(\varphi)\right) .
$$

Then, the following diagram is commutative.

$$
\begin{aligned}
& D \times_{A}^{\sigma_{D}} G_{1}(\boldsymbol{D}) \\
& \mid \xi \times_{f} \xi_{1} \\
& E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) \xrightarrow{\hat{\xi}_{D}} \\
& \\
& \hat{\xi}_{E} \xi \\
&
\end{aligned}
$$

Lemma 7.13
$\xi_{1}:\left(G_{1}(\boldsymbol{D}), \mathscr{G}_{\boldsymbol{D}}\right) \rightarrow\left(G_{1}(\boldsymbol{E}), \mathscr{G}_{\boldsymbol{E}}\right)$ is a morphism in $\mathscr{\mathscr { P }}_{F}(\mathscr{C}, J)$.
It follows that a pair of morphisms $\left(f, \xi_{1}\right): \boldsymbol{G}(\boldsymbol{D}) \rightarrow \boldsymbol{G}(\boldsymbol{E})$ is a morphism of groupoids in $\mathscr{P}_{F}(\mathscr{C}, J)$.

We denote by $\operatorname{Grp}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$ the category of groupopids in $\mathscr{P}_{F}(\mathscr{C}, J)$. That is, objects of $\operatorname{Grp}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$ are groupopids in $\mathscr{P}_{F}(\mathscr{C}, J)$ and morphisms of $\operatorname{Grp}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$ are morphisms of groupopids.

Define a functor $\mathbf{G r}: \operatorname{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right) \rightarrow \operatorname{Grp}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$ as follows. For an object $\boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\boldsymbol{\pi}}(B, \mathscr{B}))$ of $\operatorname{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$, let $\mathbf{G r}(\boldsymbol{E})$ be the groupoid $\boldsymbol{G}(\boldsymbol{E})$ associated with \boldsymbol{E} as we defined in (7.7). For a morphism $\boldsymbol{\xi}=\langle\xi, f\rangle: \boldsymbol{D} \rightarrow \boldsymbol{E}$ in $\operatorname{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$, we put $\boldsymbol{\operatorname { G r }}(\boldsymbol{\xi})=\left(f, \xi_{1}\right): \boldsymbol{G}(\boldsymbol{D}) \rightarrow \boldsymbol{G}(\boldsymbol{E})$.
Then $\operatorname{Gr}(\xi)$ is a morphism in $\operatorname{Grp}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$ by (7.13).

Let \boldsymbol{E} be an object of $\mathrm{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$. If the groupoid $\boldsymbol{G}(\boldsymbol{E})$ associated with \boldsymbol{E} (7.7) is fibrating, we call \boldsymbol{E} a fibration.

Remark 8.2

If $E=((E, \mathscr{E}) \xrightarrow{\boldsymbol{\pi}}(B, \mathscr{B}))$ is a fibration, since $\left(\sigma_{E}, \tau_{E}\right): G_{1}(E) \rightarrow B \times B$
is surjective, $G_{1}(\boldsymbol{E})(x, y)$ is not empty for any $x, y \in B$.
Hence fibers $\left(\pi^{-1}(x), \mathscr{E}^{i} x\right)$ of π are all isomorphic.
Lemma 8.3
Let (X, \mathscr{X}) and (B, \mathscr{B}) be objects of $\mathscr{P}_{F}(\mathscr{C}, J)$.
We denote the projections by $\mathrm{pr}_{X}: X \times B \rightarrow X$ and $\mathrm{pr}_{B}: X \times B \rightarrow B$.
Then \mathscr{B} coincides with $\left(\mathscr{X}^{\operatorname{pr}_{X}} \cap \mathscr{B}^{\operatorname{pr}_{B}}\right)_{\operatorname{pr}_{B}}$.
Proposition 8.4
Let $\xi: D \rightarrow \boldsymbol{E}$ be a morphism in $\operatorname{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$.
If E is a fibration, so is D.

Example 8.5
Let $((G, \mathscr{G}) ; \varepsilon, \mu, l)$ be a group in $\mathscr{P}_{F}(\mathscr{C}, J)$ and (B, \mathscr{B}) an object of $\mathscr{\mathscr { P }}_{F}(\mathscr{C}, J)$. Consider the trivial groupoid
$\left((B, \mathscr{B}),\left(B \times G \times B, \mathscr{B}^{\sigma_{G, B}} \cap \mathscr{B}^{\tau_{G, B}} \cap \mathscr{G}^{\mathrm{pr}_{G}}\right) ; \sigma_{G, B}, \tau_{G, B}, \varepsilon_{G, B}, \mu_{G, B}, l_{G, B}\right)$ in $\mathscr{P}_{F}(\mathscr{C}, J)$ associated with $((G, \mathscr{G}) ; \varepsilon, \mu, l)$ and (B, \mathscr{B}).
We denote this groupoid by $G_{G, B}$.
Since $\left(\sigma_{G, B}, \tau_{G, B}\right): B \times G \times B \rightarrow B \times B$ is a projection, it follows from (8.3) that $G_{G, B}$ is fibrating.

Hence $X=\left(\left(X \times B, \mathscr{X}^{\mathrm{pr}_{X}} \cap \mathscr{B}^{\mathrm{pr}_{B}}\right) \xrightarrow{\mathrm{pr}_{B}}(B, \mathscr{B})\right)$ is a fibration by (7.10). We call X a product fibration.

Definition 8.6
Let \mathscr{C} be a category with a terminal object $1_{\mathscr{C}}$. For an object U of \mathscr{C}, we say that a functor $F: \mathscr{C} \rightarrow$ Set is U-pointed if $F: \mathscr{C}\left(1_{\mathscr{C}}, U\right) \rightarrow \operatorname{Set}\left(F\left(1_{\mathscr{C}}\right), F(U)\right)$ is surjective. If F is U-pointed for any object U of \mathscr{C}, we say that F is pointed.

Proposition 8.7

If a category \mathscr{C} has a terminal object $1_{\mathscr{C}}$, then the functor $h^{1_{\mathscr{C}}}: \mathscr{C} \rightarrow$ Set defined by $h^{1_{\mathscr{C}}}(U)=\mathscr{C}\left(1_{\mathscr{C}}, U\right)$ and $h^{1_{\mathscr{E}}}(f: U \rightarrow V)=\left(f_{\approx}: \mathscr{C}\left(1_{\mathscr{C}}, U\right) \rightarrow \mathscr{C}\left(1_{\mathscr{C}}, V\right)\right)$ is pointed.

Definition 8.8

Let (\mathscr{C}, J) be a site. For an object U of \mathscr{C}, we say that a functor $F: \mathscr{C} \rightarrow$ Set is U-local if F satisfies the following condition (L).
If F is U-local for any object U of \mathscr{C}, we say that F is local.
(L) For an object V of \mathscr{C} and a map $\alpha: F(V) \rightarrow F(U)$, if there exists a covering $\left(V_{i} \xrightarrow{f_{i}} V\right)_{i \in I}$ of V such that

$$
F\left(f_{i}\right)^{*}: \operatorname{Set}(F(V), F(U)) \rightarrow \operatorname{Set}\left(F\left(V_{i}\right), F(U)\right)
$$

maps α into the image of $F: \mathscr{C}\left(V_{i}, U\right) \rightarrow \operatorname{Set}\left(F\left(V_{i}\right), F(U)\right)$ for any $i \in I$, then α belongs to the image of

$$
F: \mathscr{C}(V, U) \rightarrow \operatorname{Set}(F(V), F(U)) .
$$

Remark 8.9

Let \mathscr{C} be a category and $F: \mathscr{C} \rightarrow \operatorname{Set}$ a functor. For an object U of \mathscr{C}, we define a subset \mathscr{F}_{U} of $\coprod_{V \in \mathrm{Ob} \mathscr{C}} F_{F(U)}(V)$ by

$$
\mathscr{F}_{U}=\coprod_{V \in \mathrm{Ob} \mathscr{C}} \operatorname{Im}\left(F: \mathscr{C}(V, U) \rightarrow \operatorname{Set}(F(V), F(U))=F_{F(U)}(V)\right) .
$$

Then, it is easy to verify that \mathscr{F}_{U} satisfies condition (ii) of (2.2).
(1) Assume that \mathscr{C} has a terminal object $1_{\mathscr{C}}$. Since

$$
\mathscr{F}_{U} \cap F_{F(U)}\left(1_{\mathscr{C}}\right)=\operatorname{Im}\left(F: \mathscr{C}\left(1_{\mathscr{C}}, U\right) \rightarrow F_{F(U)}\left(1_{\mathscr{C}}\right)\right),
$$

F is U-pointed if and only if \mathscr{F}_{U} satisfies condition (i) of (2.2).
(2) For a site $(\mathscr{C}, J), F$ is U-local if and only if \mathscr{F}_{U} satisfies condition (iii) of (2.2).

Thus \mathscr{F}_{U} is a the-ology on $F(U)$ if and only if F is U-pointed and U-local. Assume that F is pointed and local below.

For an object V, a morphism $f: U \rightarrow W$ in \mathscr{C} and $\varphi \in \mathscr{F}_{U} \cap F_{F(U)}(V)$, since there exists $g \in \mathscr{C}(V, U)$ such that $F(g)=\varphi$, we have

$$
\left(F_{F(f)}\right)_{V}(\varphi)=F(f) \varphi=F(f) F(g)=F(f g) \in \mathscr{F}_{U} \cap F_{F(W)}(V) .
$$

It follows that $\left(F_{F(f)}\right)_{V}: F_{F(U)}(V) \rightarrow F_{F(W)}(V)$ maps $\mathscr{F}_{U} \cap F_{F(U)}(V)$ into $\mathscr{F}_{W} \cap F_{F(W)}(V)$.

Define a functor $\check{F}: \mathscr{C} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)$ by $\check{F}(U)=\left(F(U), \mathscr{F}_{U}\right)$ for $U \in \mathrm{Ob} \mathscr{C}$ and $\check{F}(f: U \rightarrow W)=\left(F(f):\left(F(U), \mathscr{F}_{U}\right) \rightarrow\left(F(W), \mathscr{F}_{W}\right)\right)$ for a morphism $f: U \rightarrow W$ in \mathscr{C}. Then $\Gamma \check{F}=F$ holds.

Example 8.10

Define a category \mathscr{C}^{∞} as follows. Objects of \mathscr{C}^{∞} are open sets of n dimensional Euclidean space \boldsymbol{R}^{n} for some $n \geqq 0$. Morphisms of \mathscr{C}^{∞} are C^{∞}-maps. For $U \in \mathrm{Ob} \mathscr{C}^{\infty}$, let $P_{\infty}(U)$ be the set of families $\left(U_{i} \xrightarrow{f_{i}} U\right)_{i \in I}$ of open embeddings such that $U=\bigcup_{i \in I} f_{i}\left(U_{i}\right)$. It is easy to verify that P_{∞} is a pretopology on \mathscr{C}^{∞}. We give a Grothendieck topology J_{∞} on \mathscr{C}^{∞} generated by P_{∞}. Then, the forgetful functor $F: \mathscr{C}^{\infty} \rightarrow \operatorname{Set}$ is pointed and local. For a set X, a the-ology on X is usually called a diffeology on X and a the-ological object is called a diffeological space.

Example 8.11

Let k be an algebraically closed field. We denote by $\mathscr{A} f f_{k}$ the category of affine varieties over k. For $V \in \mathrm{Ob} \mathscr{A} f f_{k^{\prime}}$ let $P_{\mathscr{A} f f_{k}}(V)$ be the set of families $\left(V_{i} \xrightarrow{f_{i}} V\right)_{i \in I}$ of Zariski open embeddings such that $V=\bigcup_{i \in I} f_{i}\left(V_{i}\right)$. It is easy to verify that $P_{\mathscr{A} f f_{k}}(V)$ is a pretopology on $\mathscr{A} f f_{k}$. We give a Grothendieck topology $J_{\mathscr{A} f f_{k}}$ on $\mathscr{A} f f_{k}$ generated by $P_{\mathscr{A} f f_{k}}(V)$.
Then, the forgetful functor $F: \mathscr{A} f f_{k} \rightarrow \operatorname{Set}$ is pointed and local.

Proposition 8.12

Let (X, \mathscr{X}) be an object of $\mathscr{P}_{F}(\mathscr{C}, J)$. Suppose that $F: \mathscr{C} \rightarrow \operatorname{Set}$ is U-pointed and U-local for an object U of \mathscr{C}.
Then, a map $\varphi: F(U) \rightarrow X$ is an F-plot if and only if
$\varphi:\left(F(U), \mathscr{F}_{U}\right) \rightarrow(X, \mathscr{X})$ is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.
Lemma 8.13
For an object $E=((E, \mathscr{E}) \xrightarrow{\boldsymbol{\pi}}(B, \mathscr{B}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)$, the following diagram in $\mathscr{P}_{F}(\mathscr{C}, J)$ is cartesian.

$$
\begin{aligned}
& \left(E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}), \mathscr{E}^{\mathrm{pr}_{E}^{\sigma}} \cap \mathscr{G}_{E}^{\mathrm{pr}_{G_{1}}^{\sigma}(\boldsymbol{E})}\right) \xrightarrow{\hat{\xi}_{E}}(E, \mathscr{E}) \\
& { }_{\downarrow} \operatorname{pr}_{G_{1}(E)}^{\sigma} \\
& \left(G_{1}(E), \mathscr{G}_{E}\right) \xrightarrow{\tau_{E}}(B, \mathscr{B})
\end{aligned}
$$

Let $\boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(B, \mathscr{B}))$ be a fibration. For $b \in B$, define a map $t_{b}: B \rightarrow B \times B$ by $l_{b}(x)=(b, x)$. We denote by $\operatorname{pr}_{B i}: B \times B \rightarrow B$ the projection onto the i-th component for $i=1,2$.
Since $\mathrm{pr}_{B 1} l_{b}$ is a constant map and $\mathrm{pr}_{B 2} l_{b}$ is the identity map of B,
 For $U \in \mathrm{Ob} \mathrm{\mathscr{C}}$ and $\gamma \in \mathscr{B} \cap F_{B}(U)$, since

$$
\left(F_{l_{b}}\right)_{U}(\gamma) \in \mathscr{B}^{\mathrm{pr}_{B 1} \cap \mathscr{B}^{\mathrm{pr}_{B 2}}=\left(\mathscr{G}_{E}\right)_{\left(\sigma_{E}, \tau_{E}\right)^{\prime}},}
$$

it follows from (3.4) that there exists $R \in J(U)$ such that, for each $h \in R$, there exists $\gamma_{h} \in \mathscr{G}_{E} \cap F_{G_{1}(E)}(\operatorname{dom}(h))$ which satisfies

$$
F_{B \times B}(h)\left(\left(F_{l_{b}}\right) U(\gamma)\right)=\left(F_{\left(\sigma_{E}, \tau_{E}\right)}\right) \operatorname{dom}(h),
$$

For $u \in F(\operatorname{dom}(h))$, since $\gamma_{h}(u)$ belongs to $G_{1}(\boldsymbol{E})(b, \gamma(F(h)(u)))$ by the commutativity of the following diagram, we have $\pi\left(\left(\gamma_{h}(u)\right)(e)\right)=\gamma(F(h)(u))$ for $e \in \pi^{-1}(b)$.

We denote by $\operatorname{pr}_{\pi^{-1}(b)}: \pi^{-1}(b) \times F(\operatorname{dom}(h)) \rightarrow \pi^{-1}(b)$ and $\operatorname{pr}_{F(\operatorname{dom}(h))}: \pi^{-1}(b) \times F(\operatorname{dom}(h)) \rightarrow F(\operatorname{dom}(h))$ the projections onto the first and second components, respectively.
We also denote by $i_{b}: \pi^{-1}(b) \rightarrow E$ the inclusion map.

For $(e, u) \in \pi^{-1}(b) \times F(\operatorname{dom}(h))$, since $\pi(e)=b=\sigma_{E} \gamma_{h}(u)$ by the commutativity of the above diagram, we have a map

$$
\left(i_{b} \mathrm{pr}_{\pi^{-1}(b),}, \gamma_{h} \mathrm{pr}_{F(\operatorname{dom}(h))}\right): \pi^{-1}(b) \times F(\operatorname{dom}(h)) \rightarrow E \times_{B}^{\sigma_{E}} G_{1}(\boldsymbol{E}) .
$$

Let us denote by $\bar{\gamma}_{h}: \pi^{-1}(b) \times F(\operatorname{dom}(h)) \rightarrow E$ a composition

$$
\pi^{-1}(b) \times F(\operatorname{dom}(h)) \xrightarrow{\left(i_{i} \mathrm{pr}_{x^{-1}(b) \gamma_{1}} \mathrm{pr}_{F(\operatorname{dom}(b))}\right)} E \times_{B}^{\sigma_{B}} G_{1}(\boldsymbol{E}) \xrightarrow{\hat{\xi}_{F}} E .
$$

Then $\bar{\gamma}_{h}(e, u)=\left(\gamma_{h}(u)\right)(e)$ holds for $(e, u) \in \pi^{-1}(b) \times F(\operatorname{dom}(h))$.

Lemma 8.14

The following diagram is cartesian in the category of sets.

$$
\begin{aligned}
& \pi^{-1}(b) \times F(\operatorname{dom}(h)) \xrightarrow{\bar{\gamma}_{h}} \\
& \mid \operatorname{pr}_{F(\operatorname{dom}(h))} \\
& F F(h)\left.\mid \operatorname{dom}^{2}(h)\right) \xrightarrow{E} \\
& \hline
\end{aligned}
$$

Lemma 8.15

If $F: \mathscr{C} \rightarrow$ Set is pointed and local, the following diagram is cartesian in $\mathscr{P}_{F}(\mathscr{C}, J)$.

Assume that the lower right rectangle of the following diagram is cartesian. Then, there exists unique map

$$
\hat{\gamma}_{h}: \pi^{-1}(b) \times F(\operatorname{dom}(h)) \rightarrow F(U) \times_{B} E
$$

that makes the following diagram commute.

$$
\begin{aligned}
& \pi^{-1}(b) \times F(\operatorname{dom}(h)) \quad \bar{\gamma}_{h}
\end{aligned}
$$

Proposition 8.16

We assume that $F: \mathscr{C} \rightarrow$ Set is pointed and local. Consider objects

$$
\begin{aligned}
\gamma^{*}(\boldsymbol{E})= & \left(\left(F(U) \times_{B} E, \mathscr{F}_{U}^{\pi_{\gamma}} \cap \mathscr{E}^{\gamma_{\pi}}\right) \xrightarrow{\pi_{\gamma}}\left(F(U), \mathscr{F}_{U}\right)\right) \\
G= & \left(\left(\pi^{-1}(b) \times F(\operatorname{dom}(h)),\left(\mathscr{E}^{i_{b}}\right)^{\left.\mathrm{pr}_{\pi^{-1}(b)} \cap \mathscr{F}_{\operatorname{dom}(h)}^{\left.\mathrm{pr}_{F(\operatorname{dom}(h))}\right)}\right) \xrightarrow{\mathrm{pr}_{F(\operatorname{dom}(h))}}} \begin{array}{rl}
& \left.\left(F(\operatorname{dom}(h)), \mathscr{F}_{\operatorname{dom}(h)}\right)\right)
\end{array}\right.\right.
\end{aligned}
$$

of $\mathscr{P}_{F}(\mathscr{C}, J)$. Then, $\boldsymbol{\gamma}_{h}=\left\langle\hat{\gamma}_{h}, F(h)\right\rangle: \boldsymbol{G} \rightarrow \gamma^{*}(\boldsymbol{E})$ is cartesian morphism in $\mathscr{P}_{F}(\mathscr{C}, J)^{(2)}$.

For morphisms $\zeta_{1}, \zeta_{2}: D \rightarrow \boldsymbol{E}$ in $\operatorname{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$, we put $D=((D, \mathscr{D}) \xrightarrow{\rho}(A, \mathscr{A})), \boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(B, \mathscr{B}))$ and $\zeta_{k}=\left\langle\zeta_{k}, f_{k}\right\rangle$ for $k=1,2$. For $a \in A$ and $b \in B$, we denote by $j_{a}: \rho^{-1}(a) \rightarrow D$, $i_{b}: \pi^{-1}(b) \rightarrow E$ the inclusion maps. It follows from (7.11) that the morphisms $\zeta_{k, x}:\left(\rho^{-1}(x), \mathscr{D}^{j_{x}}\right) \rightarrow\left(\pi^{-1}\left(f_{k}(x)\right), \mathscr{E}^{i_{k}(x)}\right)(k=1,2)$ obtained by restricting $\zeta_{k}:(D, \mathscr{D}) \rightarrow(E, \mathscr{E})$ are isomorphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$. Thus we have the following isomorphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.

$$
\zeta_{2, x} \zeta_{1, x}^{-1}:\left(\pi^{-1}\left(f_{1}(x)\right), \mathscr{E} i_{f_{1}(x)}\right) \rightarrow\left(\pi^{-1}\left(f_{2}(x)\right), \mathscr{E} i_{f_{2}(x)}\right)
$$

We define a map $\tilde{\zeta}: A \rightarrow G_{1}(\boldsymbol{E})$ by $\tilde{\zeta}(x)=\zeta_{2, x} \zeta_{1, x}^{-1}$.
Then, $\sigma_{E} \tilde{\zeta}(x)=f_{1}(x)$ and $\tau_{E} \tilde{\zeta}(x)=f_{2}(x)$ hold.

The following diagram is commutative.

Lemma 8.17
$\tilde{\zeta}:(A, \mathscr{A}) \rightarrow\left(G_{1}(E), \mathscr{G}_{E}\right)$ is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.

Proposition 8.18 ([4], 8.9)

We assume that $F: \mathscr{C} \rightarrow$ Set is pointed and local.
An object $\boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(B, \mathscr{B}))$ of $\operatorname{Epi}_{c}\left(\mathscr{P}_{F}(\mathscr{C}, J)\right)$ is a fibration if and only if the following condition (P) is satisfied.
(P) There exists an object (T, \mathscr{T}) of $\mathscr{P}_{F}(\mathscr{C}, J)$ such that, for any $U \in \mathrm{Ob} \mathscr{C}$ and $\gamma \in \mathscr{B} \cap F_{B}(U)$, there exists a covering $\left(U_{i} \xrightarrow{f_{i}} U\right)_{i \in U}$ of U such that the inverse image $\left(\gamma F\left(f_{i}\right)\right) *(\boldsymbol{E})$ of \boldsymbol{E} by $\gamma F\left(f_{i}\right): F\left(U_{i}\right) \rightarrow B$ is isomorphic to a product fibration
 Here $\mathrm{pr}_{T}: T \times F\left(U_{i}\right) \rightarrow T$ and $\mathrm{pr}_{F\left(U_{i}\right)}: T \times F\left(U_{i}\right) \rightarrow F\left(U_{i}\right)$ denote the projections.
§9. F-topology
Let $\mathscr{T} p$ be the category of topological spaces and continuous maps. We denote by $\mathscr{U}: \mathscr{T} p \rightarrow$ Set the forgetful functor.
For a functor $F: \mathscr{C} \rightarrow$ Set, we assume in this section that there exists a functor $F_{\mathscr{T}}: \mathscr{C} \rightarrow \mathscr{T} p$ which satisfies $F=\mathscr{U} F_{\mathscr{T}}$.

We denote by \mathscr{O}_{U} the sets of open sets of $F_{\mathscr{I}}(U)$ for $U \in \mathrm{Ob} \mathscr{C}$.
Definition 9.1
For an object (X, \mathscr{D}) of $\mathscr{P}_{F}(\mathscr{C}, J)$, we define a set $\mathcal{O}_{(X, \mathscr{D})}$ of subsets of X by

$$
\mathcal{O}_{(X, \mathscr{D})}=\left\{O \subset X \mid \alpha^{-1}(O) \in \mathcal{O}_{U} \text { if } U \in \mathrm{Ob} \mathscr{C}, \alpha \in \mathscr{D} \cap F_{X}(U)\right\} .
$$

It is easy to verify that $\mathcal{O}_{(X, \mathscr{D})}$ is a topology on X.
In fact, $\mathcal{O}_{(X, \mathscr{D})}$ is the coarsest topology on X such that $\alpha: F_{\mathscr{T}}(U) \rightarrow X$ is continuous for any $U \in \mathrm{Ob} \mathscr{C}$ and $\alpha \in \mathscr{D} \cap F_{X}(U)$. We call $\mathcal{O}_{(X, \mathscr{D})}$ the F-topology on X associated with \mathscr{D}.

Let $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$ be a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.
For $O \in \mathcal{O}_{(Y, \mathscr{E})}$ and $U \in \mathrm{Ob} \mathscr{C}, \alpha \in \mathscr{D} \cap F_{X}(U)$, since $\varphi \alpha=\left(F_{\varphi}\right)_{U}(\alpha)$ belongs to $\mathscr{E} \cap F_{Y}(U), \alpha^{-1}\left(\varphi^{-1}(O)\right)=(\varphi \alpha)^{-1}(O) \in \mathcal{O}_{U}$ holds. Hence we have $\varphi^{-1}(O) \in \mathcal{O}_{(X, \mathscr{D})}$ and $\varphi:\left(X, \mathcal{O}_{(X, \mathscr{D})}\right) \rightarrow\left(Y, \mathcal{O}_{(Y, \mathscr{C})}\right)$ is a continuous map.
Define a functor $\mathscr{T}: \mathscr{P}_{F}(\mathscr{C}, J) \rightarrow \mathscr{T o p}$ by $\mathscr{T}((X, \mathscr{D}))=\left(X, \mathcal{O}_{(X, \mathscr{D})}\right)$ and $\mathscr{T}(\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E}))=\left(\varphi:\left(X, \mathcal{O}_{(X, \mathscr{D})}\right) \rightarrow\left(Y, \mathcal{O}_{(Y, \mathscr{E})}\right)\right)$.

Definition 9.2

For a topological space (X, \mathcal{O}), we define a set $\mathscr{D}_{(X, \mathcal{O})}$ by

$$
\mathscr{D}_{(X, \mathscr{O})}=\coprod_{U \in \mathrm{Ob} \mathscr{\mathscr { C }}}\left\{\alpha \in F_{X}(U) \mid \alpha: F_{\mathscr{T}}(U) \rightarrow X \text { is continuous. }\right\} .
$$

If $\mathscr{D}_{(X, \mathscr{O})}$ is a the-ology on X, we call an element of $\mathscr{D}_{(X, \mathscr{O})}$ an $F-(X, 0)$-plot.

The following proposition gives a sufficient condition for $\mathscr{D}_{(X, Q)}$ being a the-ology on X.

Proposition 9.3

Let (X, \mathcal{O}) be a topological space. If the following condition (C) is satisfied for (X, \mathcal{O}), then $\mathscr{D}_{(X, \mathscr{O})}$ is a the-ology on X.
(C) For any $U \in \operatorname{Ob\mathscr {E}}$, a map $\alpha: F_{\mathscr{F}}(U) \rightarrow X$ is continuous if there exists a covering $\left(U_{i} \xrightarrow{f_{i}} U\right)_{i \in I}$ of U such that compositions $F_{\mathscr{I}}\left(U_{i}\right) \xrightarrow{F_{\mathscr{F}}\left(F_{i}\right)} F_{\mathscr{F}}(U) \xrightarrow{\alpha} X$ are continuous for any $i \in I$.

Remark 9.4

We consider the following condition (Q) on $F_{\mathscr{T}}: \mathscr{C} \rightarrow \mathscr{T}$ p .
(Q) For any $U \in \mathrm{Ob} \mathscr{C}$, there exists a covering $\left(U_{i} \xrightarrow{f_{i}} U\right)_{i \in I}$ of U such that the map $\coprod_{i \in I} F_{\mathscr{T}}\left(U_{i}\right) \rightarrow F_{\mathscr{T}}(U)$ induced by the family $\left(F_{\mathscr{T}}\left(U_{i}\right) \xrightarrow{F_{\mathscr{F}}\left(f_{i}\right)} F_{\mathscr{T}}(U)\right)_{i \in I}$ of maps is a quotient map.
If the condition (Q) is satisfied, the condition (C) of (9.3) is satisfied for any topological space (X, \mathcal{O}).

Lemma 9.5
Let $\left(X, \mathcal{O}_{X}\right),\left(Y, \mathcal{O}_{Y}\right)$ and $\left(Z, \mathcal{O}_{Z}\right)$ be topological spaces.
For continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, if $g f: X \rightarrow Z$ is a quotient map, so is g.

Proposition 9.6

For an object U of \mathscr{C}, suppose that there exists a covering R of U such that the map $\rho: \coprod_{f \in R} F_{\mathscr{T}}(\operatorname{dom}(f)) \rightarrow F_{\mathscr{T}}(U)$ induced by the
family $\left(F_{\mathscr{T}}(\operatorname{dom}(f)) \xrightarrow{F_{\mathscr{T}}(f)} F_{\mathscr{G}}(U)\right)_{f \in R}$ of maps is a quotient map.
Let \bar{R} be the sieve on U generated by R. Then, the map

$$
\bar{\rho}: \coprod_{u \in \bar{R}} F_{\mathscr{T}}(\operatorname{dom}(u)) \rightarrow F_{\mathscr{T}}(U)
$$

$\left(F_{\mathscr{T}}(\operatorname{dom}(u)) \xrightarrow{F_{\mathscr{F}}(u)} F_{\mathscr{T}}(U)\right)_{u \in \bar{R}}$ of maps is a quotient map.

Thus we have the following result.

Proposition 9.7

The condition (Q) in (9.4) is equivalent to the following condition.
(Q') For any $U \in \mathrm{Ob} \mathscr{C}$, there exists $R \in J(U)$ such that the map $\coprod_{f \in R} F_{\mathscr{T}}(\operatorname{dom}(f)) \rightarrow F_{\mathscr{T}}(U)$ induced by the family $\left(F_{\mathscr{T}}(\operatorname{dom}(f)) \xrightarrow{F_{\mathscr{T}}(f)} F_{\mathscr{T}}(U)\right)_{f \in R}$ of maps is a quotient map.

Proposition 9.8

(1) For an object (X, \mathscr{D}) of $\mathscr{P}_{F}(\mathscr{C}, J)$, we have $\mathscr{D} \subset \mathscr{D}_{\left(X, \mathcal{O}_{(X, \mathscr{D})}\right)}$.
(2) For a topological space $(X, \mathcal{O}), \mathscr{O} \subset \mathcal{O}_{\left(X, \mathscr{D}_{(X, \mathscr{O})}\right)}$ holds.

Assume that $\mathscr{D}_{(X, O)}$ is an object of $\mathscr{P}_{F}(\mathscr{C}, J)$ for any topological space (X, \mathcal{O}). Let $\left(X, \mathcal{O}_{X}\right)$ and $\left(Y, \mathcal{O}_{Y}\right)$ be topological spaces and $f: X \rightarrow Y$ a continuous map.

Then $f:\left(X, \mathscr{D}_{\left(X, \mathscr{O}_{X}\right)}\right) \rightarrow\left(Y, \mathscr{D}_{\left(Y, \mathscr{O}_{Y}\right)}\right)$ is a morphism in $\mathscr{D}_{F}(\mathscr{C}, J)$. In fact, for $U \in \mathrm{Ob} \mathscr{C}$ and $\alpha \in \mathscr{D} \cap F_{X}(U)$, since

$$
\left(F_{f}\right)_{U}(\alpha)=f \alpha: F_{\mathscr{T}}(U) \rightarrow Y
$$

is continuous, $\left(F_{f}\right)_{U}(\alpha) \in \mathscr{D}_{\left(Y, \mathscr{O}_{Y}\right)} \cap F_{Y}(U)$ holds.
Define a functor $P: \mathscr{O} p \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)$ by $P((X, \mathcal{O}))=\left(X, \mathscr{D}_{(X, \mathcal{O})}\right)$ for an object (X, \mathcal{O}) of $\mathscr{T} p$ and

$$
P\left(f:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)\right)=\left(f:\left(X, \mathscr{D}_{\left(X, \mathscr{O}_{X}\right)}\right) \rightarrow\left(Y, \mathscr{D}_{\left(Y, \mathscr{O}_{Y}\right)}\right)\right)
$$

for a continuous map $f:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$.

We remark that $\Gamma P=\mathscr{U}$ and $\mathscr{U}=\Gamma$ hold and that both P and \mathscr{T} are faithful.

Proposition 9.9

Suppose that $\left(X, \mathscr{D}_{(X, \mathscr{O})}\right)$ is an object of $\mathscr{P}_{F}(\mathscr{C}, J)$ for any topological space (X, \mathcal{O}). Then, $P: \mathscr{T} p \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)$ is a right adjoint of $\mathscr{T}: \mathscr{P}_{F}(\mathscr{C}, J) \rightarrow \mathscr{T} p$.

For a topological space $\left(Y, \mathcal{O}_{Y}\right)$ and a map $f: X \rightarrow Y$, we put

$$
\mathcal{O}^{f}=\left\{O \subset X \mid O=f^{-1}(V) \text { for some } V \in \mathcal{O}_{Y}\right\} \text {. }
$$

Then \mathcal{O}^{f} is the coarsest topology on X such that $f: X \rightarrow Y$ is a continuous map.

Proposition 9.10

For a map $f: X \rightarrow Y$ and an object (Y, \mathscr{E}) of $\mathscr{P}_{F}(\mathscr{C}, J)$, consider the F-($\mathscr{C}, J)$-ology $\mathscr{E} f$ on X. Then, the F-topology $\mathcal{O}_{(X, \mathscr{E})}$ on X associated with $\mathscr{E} f$ is finer than $\mathcal{O}_{(Y, \mathscr{E})}^{f}$.

For a topological space $\left(X, \mathcal{O}_{X}\right)$ and a map $f: X \rightarrow Y$, we put

$$
\mathcal{O}_{f}=\left\{O \subset Y \mid f^{-1}(O) \in \mathcal{O}_{X}\right\} .
$$

Then \mathcal{O}_{f} is the finest topology on Y such that $f: X \rightarrow Y$ is a continuous map.

Proposition 9.11

For a map $f: X \rightarrow Y$ and an object (X, \mathscr{D}) of $\mathscr{P}_{F}(\mathscr{C}, J)$, consider the the-ology \mathscr{D}_{f} on Y. Then, the F-topology $\mathcal{O}_{\left(Y, \mathscr{D}_{f}\right)}$ on Y associated with \mathscr{D}_{f} is coarser than $\left(\mathcal{O}_{(X, \mathscr{D})}\right)_{f}$.
If $F_{\mathscr{T}}: \mathscr{C} \rightarrow \mathscr{T} o p$ satisfies the following condition $\left(Q^{\prime \prime}\right), \mathscr{O}_{\left(Y, \mathscr{D}_{f}\right)}$ coincides with $\left(\mathcal{O}_{(X, \mathscr{D})}\right)_{f}$.
(Q") For any $U \in \mathrm{Ob} \mathscr{C}$ and $R \in J(U)$, the map

$$
\coprod_{f \in R} F_{\mathscr{T}}(\operatorname{dom}(f)) \rightarrow F_{\mathscr{T}}(U)
$$

induced by the family $\left(F_{\mathscr{T}}(\operatorname{dom}(h)) \xrightarrow{F_{\mathscr{F}}(h)} F_{\mathscr{T}}(U)\right)_{h \in R}$ of maps is a quotient map.

References

[1] A. Grothendieck, Catégorie fibrées et Descente, Lecture Notes in Math., vol.224, Springer-Verlag, Berlin-Heidelberg-New York, 1971, 145-194.
[2] A. Grothendieck, J. L. Verdier, Condition de finitude. Topos et Sites fibrés. Applications aux questions de passage à la limite, Lecture Notes in Math., vol.270, Springer-Verlag, Berlin-Heidelberg-New York, 1972, 163-340.
[3] P. T. Johnstone, Topos Theory, Academic Press, 1977.
[4] P. Iglesias-Zemmour, Diffeology, Mathematical Surveys and Monographs Vol. 185, American Mathematical Society, 2013.
[5] S. MacLane, Categories for the Working Mathematician Second Edition, Graduate Texts in Math., 5, Springer, 1997.
[6] J. L. Verdier, Topologies et Faisceaux, Lecture Notes in Math., vol.269, Springer-Verlag, Berlin-Heidelberg-New York, 1972, 219-263.
[7] J. L. Verdier, Fonctoialite des Categories de Faisceaux, Lecture Notes in Math., vol.269, Springer-Verlag, Berlin-HeidelbergNew York, 1972, 265-297.
[8] A. Yamaguchi, Representations of internal categories, Kyushu Journal of Mathematics Vol.62, No.1, (2008) 139-169.
[9] A. Yamaguchi, Notes on representation theory of internal categories, preprint, http://www.las.osakafu-u.ac.jp/~yamaguti/archives/ric_note.pdf
[10] A. Yamaguchi, Untitled preprint, http://www.las.osakafu-u.ac.jp/~yamaguti/archives/mynote.pdf

Thank you for listening

Thank you for listening

 and your patience.