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(id,    )
C1×  C1×  C1      C1×  C1

§1. Internal categories and Hopf algebroids
Let C be a category with finite limits.

An internal category in C consists of the following data.
(1) A pair (C0, C1) of objects of C.
(2) Four morphisms   ,   : C1 → C0,  : C0  →  C1,   : C1 ×  C1 → C1 in C,C0

σ  =τ  = id   and the following diagrams commute.ε C0

μ×id
ετ (   , id)εσ

Definition 1.1

where C1    C1×  C1    C1 is a limit of C1 → C0 ← C1, such that
pr1 pr2

C0
στ

ε

C1    C1×  C1    C1
pr1

C0

pr2

C0       C1       C0
σ

σ τ
τ

μ
C0 C0 C0

C1×  C1            C1C0

μ
μid×μ

C1       C1       C1
id id

μ
C1×  C1C0

στ ε μ

Here C1×  C1×  C1 is a limit of a diagram C1 → C0 ← C1 → C0 ← C1.C0 C0

ττ σ σ



C1       C1×  C1       C1

We denote by (C0, C1;  ,  ,  ,   ) the internal category defined above.τσ εμ
Moreover, if there exists a morphism  : C1 → C1, which makes theι
following diagrams commute, we call (C0, C1;  ,  ,  ,   ,  ) an internalτσ εμι

C1

C0                C0

(id,  )ι (  , id)ι

groupoid in C.

C0

C0          C1          C0

σ τμ
ε ε

C1
ι
στ

τσ



Let C = (C0, C1;  ,  ,  ,  ) and D = (D0, D1;  ’,  ’,  ’,  ’) be internal

D1×  D1       D1       D0

C1×  C1       C1       C0C0       C1       C0

We also have a notion of internal functors between internal

τσ εμ

diagrams commute.

ε

morphisms f0 : C0 → D0 and f1 : C1 → D1 which make the following

categories. 
Definition 1.2

categories in C. An internal functor from C to D is a pair (f0,f1) of
σ τ ε μ

D0       D1       D0
σ

σ τ

τ’ ’
f0 f1 f0

C0

μ

f1×  f1
ε

D0

μf0
f1 f0

’ ’



C0                C0

commute. 

An internal natural transformation ϕ: f → g from f to g is a
Let f = (f0, f1), g = (g0, g1) : C → D be internal functors.

morphism ϕ: C0 → D1 in C which makes the following diagrams

(f1,    )

(    , g1)

Definition 1.3

D1

C0

σ τ

f0 g0

D1×  D1         D1

C1         D1×  D1C0

μ

D0

μ’

σ

τ ’ϕ

ϕ

ϕ



i1 : A → A ⊗kB  and i2 : B → A ⊗kB 

Let k be a commutative ring. We denote by Algk the category of

For objects A  and B  of Algk, we define maps**

by i1(x) = x⊗1 and i2(y) = 1⊗y, respectively. Then, a diagram

is a coproduct of A  and B  in Algk.
A → A ⊗kB ← B i1 i2

For morphisms f, g : A → B  in Algk, let I be the ideal of B generated
by {f(x) - g(x) | x ∈ A }. Then, the quotient map p : B → B /I is a
coequalizer of f and g.

commutative graded k-algebras and homomorphisms between them.

******

****

**

**

* * *



opposite category Algk  of Algk is a category with finite limits.
Hence Algk is a category with finite colimits, in other words, the

op

We call an internal groupoid in Algk  a Hopf algebroid.

Thus we can consider the notion of internal categories in Algk .

Definition 1.4

op

op



satisfying p(  ) = idX.

Let p : F → C be a functor. 
For an object X of C, we denote by FX the subcategory of F
consisting of objects M of F satisfying p(M) = X and morphisms ϕ

For a morphism f : X → Y of C and M ∈ Ob FX, N ∈ Ob FY, we put

ϕ

§2. A brief review on fibered category

Ff(M, N) = {ϕ∈ F(M, N) | p(  ) = f }.ϕ

Let α: M → N be a morphism in F and set X = p(M), f = p(  ).

FX(L, M) → Ff(L, N) defined by ϕ   α   is bijective.

α

ϕ

Definition 2.1

We call α a cartesian morphism if, for any L ∈ Ob FX, the map



Let α : Mi → Ni (i = 1,2) be morphisms in F such that p(M1) = p(M2),i

p(N1) = p(N2), p(   ) = p(   ) and λ: N1 → N2 a morphism in Fp(N ).1 2

If α  is cartesian, there exists unique morphism
1

μ: M1 → M2 in Fp(M ) that satisfies α μ=λ  .2 α1 μ λ
M1          N1

α1

2

Proposition 2.2

αα
2

1

μ: M1 → M2 such that p(  ) = idp(M ) and α μ=α.

If α : Mi → N (i = 1,2) are cartesian morphisms in F such that

Moreover, μ is an isomorphism.
μ

≅

M2

M1

μ N
α1

2

p(M1) = p(M2) and p(   ) = p(   ), there is unique morphismα1 2

Corollary 2.3
i

α
1 2 1

α

M2          N2
α



By (2.3), f*(N) is unique up to isomorphism. 

inverse image of N by f.
We denote M by f*(N) and α by α (N) : f*(N) → N.f

cartesian morphism α: M → N such that p(  ) = f, M is called anα

Definition 2.4
Let f : X → Y be a morphism in C and N ∈ Ob FY. If there exists a

morphism idX of X always exists and α  (N) : idX(N) → N can be

For X ∈ Ob C and N ∈ Ob FX, since the identity morphism idN of N is
obviously cartesian, the inverse image of N by the identity

idX

By the uniqueness of idX(N) up to isomorphism, α  (N) : idX(N) → N
is an isomorphism for any choice of idX(N).

Remark 2.5

chosen as the identity morphism of N.
idX

*

* *
*



It follows from (2.2) that f*(    ) = f*(  )f*(  ) holds.

f*(  ) ϕ
f*(N)        Nα (N)f

f*(N’)        N’α (N’)f

ϕ

ψψ ϕϕ

Let f : X → Y be a morphism in C. Assume that cartesian morphisms
α (N) : f*(N) → N and α (N’) : f*(N’) → N’ which satisfy
p(   (N)) = p(   (N’)) = f exist. Then, for a morphism

f*(  ) : f*(N) → f*(N’) that makes the right diagram

Moreover, for a morphism ψ: N’ → N” in FY, if an inverse image
f*(N”) of N” by f exists, we have the following diagram.

N             N’             N”

f*(N)                       f*(N”)
f*(  )

ϕ

α (N)f α (N”)f
ϕ f*(  )ψ

ψ
α (N’)f

f*(     )ϕψ

f*(N’)

ϕ

ff
αf αf
ϕ: N → N’ in FY, there exists unique morphism

commute.



correspondence N   f*(N) defines a functor f*: FY → FX such that,
cartesian morphism α (N) : f*(N) → N for any N ∈ Ob FY. Then a
Let f : X → Y be a morphism in C. Assume that there exists a 

f

for any morphism ϕ: N → N’ in FY, the following diagram commutes.

Proposition 2.6

f*(  ) ϕ
f*(N)           Nα (N)f

f*(N’)           N’α (N’)f

ϕ

the inverse image by f exists. 
If the assumption of (2.6) is satisfied, we say that the functor of
Definition 2.7



(ii) The composition of cartesian morphisms is cartesian.

If a functor p : F → C satisfies the following condition (i), p is called
a prefibered category and if p satisfies both (i) and (ii), p is called
a fibered category.
(i) For any morphism f in C, the functor of the inverse image by f

Definition 2.8

exists.

For categories C and D, we denote by Funct(C, D) the category of
functors from C to D and natural transformations between them.



is called a cleavage if   (f) is an inverse image functor f*: FY → FX

for (f : X → Y) ∈ Mor C.

Let p : F → C be a functor. A map

A functor p : F → C is called a cloven prefibered category

(resp. normalized cloven prefibered category) if a cleavage

A cleavage κ is said to be normalized if   (idX) = idF  for any X ∈ Ob C.

κ
κ: Mor C →      Funct(FY, FX)

Π
X,Y ∈ Ob C

(resp. normalized cleavage) is given.

Definition 2.9

κ

We assume that all fibered categories below are normalized and
cloven fibered categories.

X



which makes the right diagram commute.

diagram commutes. In other words,
cf, g gives a natural transformation
g*f*→ (fg)* of functors from FY to FZ.

Let f : X → Y, g : Z → X be morphisms in C
and N an object of FY. If p : F → C is a

For a morphism ϕ: M → N in FY, the right

cf, g(N)

(fg)*(N)            N

g*f*(N)          f*(N)α (f*(N))g

α (N)f
α (N)fg

g*f*(M)        (fg)*(M)
g*f*(  ) (fg)*(  )ϕ

cf, g(N)

cf, g(M)

ϕ

g*f*(N)         (fg)*(N)

Then, we see the following.

Proposition 2.10

morphism cf, g(N) : g*f*(N) → (fg)*(N) of FZ

prefibered category, there exists unique



Let p : F → C be a cloven prefibered category. For a diagram
Z → X → Y → W in C and an object M of FW, we haveh

and the following diagram commutes. 
ch, id (M) =α  (id*h*(M)), cid  , h(M) = h*(     (M))idY Y W idWα

Let p : F → C is a prefibered category. Then, p is a fibered category
if and only if cf, g(N) is an isomorphism for any diagram Z → X → Y
in C and N ∈ Ob FY.

g f

(f*g*)h*(M)           (gf)*h*(M)         (h(gf))*(M)cg, f (h*(M)) ch, gf (M)

f*(g*h*)(M)           f*(hg)*(M)         ((hg)f)*(M)
f*(ch,g(M)) chg, f (M)

Y

Proposition 2.11

Proposition 2.12

g f



and (  ,  ) : (S , N ,β) → (T , L ,γ) is defined to

of M . A morphism from (R , M ,α) to (S , N ,β) is a pair (  ,  ) of

Example 2.13

morphisms λ∈ Algk(R , S ) and ϕ∈ Modk(M , N )

For a commutative ring k, we denote by Modk the category of

Ob MOD consists of triples (R , M ,α) where R  ∈ Ob Algk,
M  ∈ Ob Modk and α: M ⊗kR  → M  is a right R -module structure

ϕλ

Composition of (  ,  ) : (R , M ,α) → (S , N ,β)
νψ

*

graded right k-modules and homomorphisms preserving degrees.
We define a category MOD as follows.

*
****

*
*

* ****

N ⊗kS        N

M ⊗kR        Mα

β
ϕ⊗kλ       ϕ

*

*

**

**

****
such that the right diagram commutes.

λϕ ****

be (   ,    ) : (R , M ,α) → (T , L ,γ).
*** *

νλψϕ ****



Define a functor p : MOD → Algk by p(R , M ,α) = R  and p(  ,  ) =  .λϕ
For a morphism λ: S  → R  in Algk and an object (S , N ,β) of MOD,
let β : (N ⊗S R )⊗kR  → N ⊗S R  be the following composition.λ

Here m denotes the multiplication of R .
Let iN  : N  → N ⊗S R  be the map defined by iN (x) = x⊗1.
Then, (  , iN ) : (R , N ⊗S R ,β ) → (S , N ,β) is a cartesian morphism

in MOD   and the inverse image functor λ : MODS  → MODR  isop

λ

* * *
** * *

***** * *

(N ⊗S R )⊗kR  ≅ N ⊗S (R ⊗kR )          N ⊗S RidN ⊗S  m
*

* *
******* * **

*
* * * * * *

* * * * *λ* *

given by λ (S , N ,β) = (R , N ⊗S R ,β ) and λ(idS ,  ) = (idR ,  ⊗S idR ).
**

op* op

* * * * * * * λ *
*ϕ *ϕ * *

It can be verified that the composition of cartesian morphisms is
cartesian. Hence p  :  MOD  → Algk  is a fibered category.op op op

λ



For (R , M ,α) ∈ Ob MOD, we put λ (R , M ,α) = (S , M ,   (idM ⊗k   )).

For any morphism λ: R  → S  in Algk , the inverse image functor
 *: MODS → MODR  has a left adjoint λ : MODR → MODS .λ

Proposition 2.14
*

op
*

op
* *

op

λ : MODR → MODS  as follows.
For a morphism λ: S  → R  in Algk, we define a functor
* * *

* *

* * * * * * * *α λ
For a morphism (idR ,  ) : (R , M ,α) → (R , N ,β) in MODR , we putϕ ***** *
λ (idR ,  ) = (idS ,  ). Then, it is easy to verify that* *

ϕ ϕ
*

λ : MODR → MODS  is a right adjoint of  *: MODS → MODR . * ** λ **

* **
op op



we define a functor Ff, g : FY × FZ → Set by Ff, g(M, N) = FX(f*(M), g*(N))

§3. Representations of internal categories

g*(  )FX(f*(M), g*(N))         FX(f*(M), g*(L))         FX(f*(K), g*(N))f*(  )*

Let p : F → C be a fibered category. For a diagram Y ← X → Z in C,
op

to be the following composition for (  : K → M) ∈ Mor FY and
for M ∈ Ob FY, N ∈ Ob FZ and Ff, g(  ,  ) : Ff, g(M, N) → Ff, g(K, L) is defined

(  : N → L) ∈ Mor FZ.
*

f g

ϕψ

ϕψ

ϕ
ψ

a map kM, N : Ff, g(M, N) → Ffk, gk(M, N) to be the following composition.
For a morphism k : V → X in C, M ∈ Ob FY and N ∈ Ob FZ, let us define

#

Ff, g(M,N) = FX(f*(M), g*(N))    FV(k*f*(M), k*g*(N))k*
-1(cf, k(M)  )*

FV((fk)*(M), k*g*(N))         FV((fk)*(M), (gk)*(N)) = Ffk, gk(M,N)cg, k(N)*



FX(f*(M), g*(N))                 FV((fkj)*(M), (gkj)*(N))

Let ϕ: M → L and ψ: P → N be morphisms in FY and FZ, respectively.
Then, the following diagram is commutative.

Hence we have a natural transformation k : Ff, g → Ffk, gk.

Proposition 3.1

#

ψ *
f*(  )*g*(  )

FX(f*(L), g*(P))              FV((fk)*(L), (gk)*(P))kL, P

#

FX(f*(M), g*(N))             FV((fk)*(M), (gk)*(N))kM, N
(fk)*(  )*(gk)*(  )ϕ

#

ϕ ψ *

Proposition 3.2
For morphisms f : X → Y, g : X → Z, k : V → X, j : W → V in C and

kM, N

(kj)M, N

jM, N

M ∈ Ob FY, N ∈ Ob FZ, the following diagram is commutative.

#

#

#

FV((fk)*(M), (gk)*(N))



FX(f*(L), g*(M)) × FX(g*(M), h*(N))               FX(f*(L), g*(N))

FX((fk)*(L), (gk)*(M)) × FX((gk)*(M), (hk)*(N))       FX((fk)*(L), (gk)*(N))

For objects L, M, N of FY, FZ, FW, respectively, the following

Proposition 3.3
Let f : X → Y, g : X → Z, h : X → W, k : V → X be morphisms in C.

kL, M × kM, N kL, N
#

comp

diagram is commutative. Here, the horizontal maps “comp” are

# #

compositions of morphisms.

comp

For ξ∈ Ff, g(M,N), we denote kM, N(  ) by ξ for short below.ξ k
#



(  pr1)*(M) = (    )*(M)         (    )*(M) = (  pr2)*(M)

(U) ξ : M = (   )*(M) → (   )*(M) = M coincides with the identity

(  pr1)*(M) = (  pr2)*(M)

A pair (M,  ) of an object M of FC  and a morphism ξ:  *(M) →  *(M)

Definition 3.4
Let C = (C0, C1;  ,  ,  ,  ) be an internal category in C.τσ εμ

ξ 0

in FC  is called a representation of C on M if the following1

(A) Let C1    C1 ×  C1    C1 be a limit of C1    C0    C1.
pr1 pr2

C0
στ

Then, the following diagram is commutative.
μ

pr2ξ

ε
morphism of M.

σ τ

conditions are satisfied.

σ

σσ τ

τ

τ
pr1

μμ
ξ

ξ

εεσ τ



Let (M,  ) and (N,  ) be representations of C on M and N, respectively.ξ ζ
0

of C if ϕ makes the following diagram commute.

denote by Rep(C;  F).

A morphism ϕ:  M  → N in FC  is called a morphism of representations

*(N)         *(N)
*(  )             *(  )τ

*(M)        *(M)

ζ

ξ

ϕσ
σ τ

ϕ

σ τ

Thus we have the category of the representations of C, which we



τ  (f0(M))cf ,  (M)τ ’*0 ’

*σ  (f0(M))         (f0   ) (M) = (  f1) (M)    (  f1) (M) = (f0   )(M)ξf1cf ,  (M)’σ0’ ’’ ****** σ σ τ τ
-1

*

Let C = (C0, C1;  ,  ,  ,  ), D = (D0, D1;   ,   ,   ,   ) be internal categories in

a morphism of representations of C, then f0(  ) : f0(M) → f0(N) gives

τσ εμ
C and f = (f0,f1) : D → C an internal functor.
For a representation (M,  ) of C on M, we define

(f0(M),   ) is a representation of D on f0(M). If ϕ: (M,  ) → (N,  ) isξ

ξ
ξ :σ  (f0(M)) →τ  (f0(M))f

to be the following composition.

Proposition 3.5
* f ζ

a morphism f0(  ) : (f0(M),   ) → (f0(N),   ) of representations of D.
ϕ

ζ

*

’σ τ’ ’’εμ

** *’ ’

* ξ
***

ϕ ξf f***



Definition 3.6
We call (f0(M),   ) the restriction of (M,  ) along f. It follows from

f (M,  ) = (f0(M),   ) and f (  ) = f0(  ).*

* ξ
(3.5) that we have a functor f : Rep(C; F) → Rep(D; F) given by.

. *ϕ.

f ξ

ξ ξf ϕ



χ     is a morphism of representations from f (M,  ) = (f0(M),   ) to

χ : f → g .

χ    (  ) : f0(M) = (   )*(M) → (   )*(M) = g0(M).

Proposition 3.7
(M,  )ξ *. ξ ξf

g (M,  ) = (g0(M),   ) and the right diagram*. ξ ξg

ϕ: (M,  ) → (N,  ) of representations of C.ζξ

(f0(M),   )        (f0(N),   )ξf ζf*(  )ϕ
f* *

(g0(M),   )        (g0(N),   )ξg ζg*(  )ϕ
g* *

χ(M,  )ξ χ(N,  )ζ

on M, we define a morphism χ     : f0(M) → g0(M) in FD  to be

C, f = (f0,f1), g = (g0,g1) : D → C internal functors and χ an internal 
natural transformation from f to g. For a representation (M,  ) of Cξ

Let C = (C0, C1;  ,  ,  ,  ), D = (D0, D1;   ,   ,   ,   ) be internal categories inτσ εμ ’σ τ’ ’’εμ

χ
(M,  )ξ **

M, M σ# χτ* *
0

ξ

.

.

in Rep(D; F) commutes for a morphism

Thus we have a natural transformation
. ..

. .



§4. Notion of fibered representable pair

If Ff, g, M (resp. Ff, g) is representable, we call (f, g) a left (resp. right)

Ff, g, M(N) = FX(f*(M), g*(N)) and Ff, g, M(  ) = g*(  ) .

Definition 4.1

opFor N ∈ Ob FZ, we define a functor Ff, g : FY → Set by
Ff, g(M) = FX(f*(M), g*(N)) and Ff, g(  ) = f*(  )*.

*N

fibered representable pair with respect to M (resp. N).

if (f, g) is a left (resp. right) fibered representable pair with
respect to any M ∈ Ob FY (resp. N ∈ Ob FZ).

We say that (f, g) is a left (resp. right) fibered representable pair

Let p : F → C be a fibered category and Y ← X → Z a diagram in C.f g

ϕ

ψ

ϕ

N N ψ

N

For M ∈ Ob FY, we define a functor Ff, g, M : FZ → Set by



Remark 4.2
If g*: FZ → FX (resp. f*: FY → FX) has a left (resp. right) adjoint

*
representable pair for any morphism f : X → Y (resp. g : X → Z) in C.
It follows from (2.14) that (  ,  ) is a left fibered representableλν
pair for any diagram S ← R → T  in Algk .*

λ ν op
* *

g  : FX → FZ (resp. f! : FX → FY), (f, g) is a left (resp. right) fibered



We note that, if g*: FZ → FX has a left adjoint g  : FX → FZ, we can

If (f, g) is a left fibered representable pair with respect to
M ∈ Ob FY, we choose an object M[f, g] of FZ and denote by

Pf, g(M)N : FX(f*(M), g*(N)) → FZ(M[f, g], N)
a bijection which is natural in N ∈ Ob FZ.
We denote by ι  (M) : f*(M) → g*(M[f, g]) the morphism in FX whichf, g

is mapped to the identity morphism of M[f, g] by

Pf, g(M)    : FX(f*(M), g*(M[f, g])) → FZ(M[f, g], M[f, g]).M[f, g]

*
choose g (f*(M)) as M[f, g]. We denote by η: idF → g*g  the unit of* X *the adjunction g    g*. Then, we have⊥*

f, g f*(M)ι  (M) =η     : f*(M) → g*(g (f*(M))) = g*(M[f, g]).*



(M)f*(  ) by the following map.

Proposition 4.3

fibered representable pair with respect to L and M.
Define a morphism ϕ   : L[f, g] → M[f, g] of FZ to be the image of

Then, the following diagram commutes for any N ∈ Ob FZ.

FX(f*(M), g*(N))         FX(f*(L), g*(N))f*(  )*ϕ

FZ(M[f, g], N)              FZ(L[f, g], N)
Pf,g(M)N Pf,g(L)N

Let ϕ: L → M be a morphism in FY. Suppose that (f, g) is a left

ϕ*[f, g]

[f, g]

Pf,g(L)    : FX(f*(L), g*(M[f, g])) → FZ(L[f, g], M[f, g])M[f, g]

ι ϕf, g

If (f, g) is a left fibered representable pair with respect to N ∈ Ob FY

and ψ: M → N is a morphism in FY, we have (    )[f, g] =ψ   ϕ   .ψϕ [f, g] [f, g]



Proposition 4.4

are left fibered representable pairs with respect to M ∈ Ob FY.
Define a morphism Mk : M[fk, gk] → M[f, g] of FZ to be the image of
kM, M   (   (M)) by the following map.

Then, the following diagram commutes for any N ∈ Ob FZ.
FX(f*(M), g*(N))         FV((fk)*(M), (gk)*(N))kM,N

FZ(M[f, g], N)                 FZ(M[fk, gk], N)
Pf,g(M)N Pfk,gk(M)N*

#

Mk

#
[f, g]ιf, g

Pfk, gk(M)    : FX((fk)*(M), (gk)*(M[f, g])) → FZ(M[fk, gk], M[f, g])M[f, g]

Let k : V → X be a morphism in C. Suppose that (f, g) and (fk, gk)

If (fkh, gkh) is a left fibered representable pair with respect to M
for a morphism h : U → V, Mkh : M[fkh, gkh] → M[f, g] coincides with a
composition M[fkh, gkh]     M[fk, gk]     M[f, g].MkMh



M[fk, gk]         M[f, g]

L[fk, gk]          L[f, g]
Lk

Mk

Proposition 4.5
Under the assumptions of (4.3) and (4.4),
the right diagram is commutative.

[f, g]ϕ[fk, gk]

Remark 4.6
For morphisms f : X → Y, g : X → Z, k : V → X, i : W → Z, j : W → T,
h : U → W in C and M ∈ Ob FY, it follows from the above result that
the following diagram is commutative.

From now on, we assume left fibered representability if necessary.

(M[fk, gk])[ih, jh]          (M[fk, gk])[i, j]
(M[fk, gk])h

(M[f, g])[ih, jh]             (M[f, g])[i, j]
(M[f, g])h

(Mk)[ih, jh] (Mk)[i, j]

We denote (Mk)[i, j](M[fk, gk])h = (M[fk, gk])h(Mk)[ih, jh] by (Mk)h.

ϕ



ι  (M[f, g])    (M) by

FW((M[f, g])[g, h], N)              FW(M[f, h], N)

For morphisms f : X → Y, g : X → Z, h : X → W of C and M ∈ Ob FY, we
Proposition 4.7

define a morphism δ     : M[f, h] → (M[f, g])[g, h] in FW to be the image of

δf, g, h, M

f, g, h, M

ιf, gg, h

Pf, h(M)       : FX(f*(M), h*((M[f, g])[g, h])) → FW(M[f, h], (M[f, g])[g, h]).(M[f, g])[g, h]

Then, the following diagram commutes for any N ∈ Ob FW.

FX(g*(M[f, g]), h*(N))         FX(f*(M), h*(N))
Pg, h(M[f, g])N Pf, h(M)N

*

ι  (M)*f, g



M[f, h]         (M[f, g])[g, h]          M[f, h]             (M[f, g])[g, h]

(M[f, h])[h, i]            ((M[f, g])[g, h])[h, i]
(        )[h, i]

L[f, h]          (L[f, g])[g, h]      M[fk, hk]          (M[fk, gk])[gk, hk]

For morphisms f : X → Y, g : X → Z, h : X → W, i : X → V, k : V → X in C,
Proposition 4.8

M, L ∈ Ob FY and a morphism ϕ: L → M in FY, the following diagrams
are commutative.

δf, g, h, L

ϕ[f, h] (Mk)kMk

M[f, i]                (M[f, g])[g, i]
f, g, i, M

g, h, i, M[f, g]

δ
δδ

δ

δδ

δ

ϕ
f, g, h, M

(      )[g, h][f, g]

f, g, h, M

fk, gk, hk, M

f, g, h, M

f, h, i, M



M                         (M          )                   (M      )

Ob P = {0, 1, 2, 3, 4, 5} and P(i, j) is not empty if and
Let P be a poset defined as follows.

only if i = j or i = 0 or (i, j) = (1, 3), (1, 4), (2, 4), (2, 5).
We put P(i, j) = {   } if P(i, j) is not empty.τi j

For a functor D : P → C and M ∈ Ob FD(3), we
put D(   ) = fi j and define a morphism

θ (M) : M          → (M      )[f13f01, f25f02]          [f13, f14]  [f24, f25]D

in FD(5) to be the following composition.

[f13f01, f25f02]                            [f13f01, f14f01]  [f24f02, f25f02]
δf13f01, f14f01, f25f02, M (M   )f01  f02

[f13, f14]  [f24, f25]

τ    τ        τ   τ

0

1      2

3      4      5

01          02

13      14            24    25

τ       τ

τi j



θ (L)

i = 3, 4, 5. Put D(   ) = fi j and E(   ) = gi j. The following diagram is

Proposition 4.9
For a morphism ϕ: L → M of FY, the following diagram is commutative.

Proposition 4.10
Let D, E : P → C be functors which satisfies D(i) = E(i) for i = 3,4,5 and

τ
iλ: D → E a natural transformation which satisfies λ = idD(i) for

commutative for M ∈ Ob FD(3).

M                         (M      )[f13f01, f25f02]                           [f13, f14]  [f24, f25]

L                         (L      )[f13f01, f25f02]                         [f13, f14]  [f24, f25]

(        )ϕ[f13f01, f25f02]                                       [f13, f14]  [f24, f25]
Dθ (M)

D

ϕ

i j i jτ

M                         (M      )
Mλ0 (M  )1 2

D

θ (M)E

θ (M)
[f13f01, f25f02]                           [f13, f14]  [f24, f25]

[g13g01, g25g02]                          [g13, g14]  [g24, g25]M                         (M      )
λλ



Df, g, h, i(   ) = g, Df, g, h, i(    ) = h, Df, g, h, i(    ) = i.

For a diagram Y ← X → Z ← V → W in C, let X    X ×ZV    V be af g h i

Df, g, h, i(0) = X ×ZV, Df, g, h, i(1) = X, Df, g, h, i(2) = V, Df, g, h, i(3) = Y, Df, g, h, i(4) = Z,

prX prV

limit of X → Z ← V. We define a functor Df, g, h, i : P → C byg h

Df, g, h, i(5) = W and Df, g, h, i(   ) = prX, Df, g, h, i(    ) = prV, Df, g, h, i(   ) = f,0 1 0 2τ

1 4

1 3

2 4 2 5

We denote θ    (M) : M        → (M[f, g])[h, i] by θ     (M).[fprX, iprY]Df, g, h, i f,  g,  h,  i

τ
τττ

τ

X ×ZV

X      V

Y     Z     W
f     g       h     i

prX        prY

τ    τ        τ   τ

0

1      2

3      4      5

01          02

13      14            24    25

τ       τ
Df, g, h, i



We assume that internal categories below are left fibered
representable unless otherwise stated.

Definition 5.1

C = (C0, C1;  ,  ,  ,  ) in C is left (resp. right) fibered representable if
(  ,  ) and (  pr1,  pr2) are left (resp. right) fibered representable

For a fibered category p : F → C, we say that an internal category
τσ εμ

στ σ τ

§5. Existence of induced representations

pairs.



a composition M = M[    ,    ]       M[  ,  ]    M coincides with the identity

Proposition 5.2
Suppose that C = (C0, C1;  ,  ,  ,  ) is a left fibered representable
internal category. For M ∈ Ob FC  and ξ∈ FC (   (M),   (M)), we put

τσ ε

0 1σ* *
ξ= P , (M)M(  ) : M[  ,  ] → M.ˆ στ τσ

Then, (M,  ) is a representation of C on M if and only if
εσ ετ Mε στ ξ̂

morphism of M and the following diagram is commutative.

ξ
ξ

τ

θ     (M),  ,  ,τσ σ

M[  pr ,  pr ] = M[    ,    ]          M[  ,  ]1σ 2τ
M

μ στσμτ
μ

τ

(M[  ,  ])[  ,  ]                    M[  ,  ]σ σ στ τ τ

M
ξ̂[  ,  ]στ

ξ̂

ξ̂

μ



N[  ,  ]          N

M[  ,  ]         M

Then, ϕ defines a morphism ϕ: (M,  ) → (N,  ) of representations
ξ= P ,  (M)M(  ) : M[  ,  ] → M and ζ= P ,  (N)N(  ) : N[  ,  ] → N.

ˆ

if and only if the following diagram is commutative.

respectively and   : M → N a morphism in FC . We put

Proposition 5.3
Let (M,  ) and (N,  ) be representations of C on M and N,ξ ζ

ϕ 0

ξ

ζ

ˆ στ

ξ
τσ

ζ

ˆ στξ ζτσ

ˆ

ϕ
στ

στ

[  ,  ]στϕ



Γ

an object of MODA . Then, we have

Consider the fibered category p  : MOD  → Algk .
Example 5.4

Let Γ= (A ,   ;  ,  ,  ,  ) be a Hopf algebroid in Algk and M = (A , M ,  )τσ ε* * μΓ
op op op

* *α

M[  ,  ] =   (   (M)) = (A , M ⊗A     ,   (idM ⊗     ⊗k   )).* * α*στ τ σ * *
σΓ* σ * A*

σ
*
τ

in MOD  , we denote by ξ: M  → M ⊗AΓ the following composition.op -
* *

σ
* *

Define a map i  : M  → M ⊗A Γ  by i  (x) = x ⊗ 1. For a morphismΓ* * * *
τ

* Γ*

*

M      M ⊗A Γ      M ⊗A ΓiΓ*
* * * **

ξ̃
* *

τ σ

Then, (idA ,  ) : M → M[  ,  ] is a morphism in MODA  and this coincidesξ
*

-
στ *

with a morphism ξ= P , (M)M(  ) : M[  ,  ] → M in MODA .ˆ στ τσξ

Γ*

op
*

ξ= (id  ,  ) :  *(M) = (   , M ⊗A    ,α ) → (   , M ⊗A    ,α ) =  *(M)σ τΓ ̃
* Γσξ * * *Γ* Γ* * *Γ* τσ τ



right A -modules and θ     (M) = (idA ,θ     (M)) holds.

Γ ΓLet θ     (M) : (M ⊗A    ) ⊗A    → M ⊗A  (   ⊗A Γ ) be a map defined

M[  pr ,  pr ] = M[    ,    ] = (A , M ⊗A  (   ⊗A Γ ),α  (idM ⊗   (   ⊗    )⊗k     ))1σ 2τ μσμτ * * Γ* *
μσ

* * τ
* A Γ*

Put β=   (idM ⊗     ⊗k   ) : (M ⊗A    ) ⊗k A  → M ⊗A    . Then we have the

* A*
Γ*

σμμσ μ

* *

ασ *
σ
A* *Γ τ * *

σΓ* * *
σ

* *Γ

* A* * A* *

following equalities.

Morphisms M  : M = M[   ,   ] → M[  ,  ] and M  : M[    ,    ] → M[  ,  ] in MODA μσ μμτ στε ε ε σ τ στ

are given by M  = (idA , iM (idM  ⊗A   )) and M  = (idA , idM  ⊗A   ).ε *

,  ,  ,τσ στ
-

* * **
σ

* Γμσ
** * * *

,  ,  ,τσ στ ,  ,  ,τσ στ*

-

(M[  ,  ])[  ,  ] = (A , (M ⊗A Γ ) ⊗A   ,   (id(M ⊗    ) ⊗    ⊗k   ))σ στ τ * *
σ

* Γσ *βσ Γσ σΓ τ

ε* **
-1

μ * * *
μ

op
*

Let iM : M → M ⊗A A  be the isomorphism given by iM (x) = x ⊗ 1.* * * * * *

ξ    : (M[  ,  ])[  ,  ] → M[  ,  ] is given by ξ    = (idA ,  ⊗A id  ).[  ,  ]στ τ τσ σ στ [  ,  ]τσ *
ˆ ˆ -ξ * Γ*

by θ     (M)((x ⊗ g) ⊗ h) = x ⊗ (g ⊗ h). θ     (M) is an isomorphism of,  ,  ,τσ στ
-

,  ,  ,τσ στ
-

*



It follows from (5.2) that a morphism
ξ= (id  ,  ) :  *(M) = (   , M ⊗A    ,α ) → (   , M ⊗A    ,α ) =  *(M)σ τΓ ̃

* Γσξ * * *Γ* Γ* * *Γ* τσ τ

in MOD   is a representation of Γ on M = (A , M ,  ) if and only if* α*
the following diagrams in the category of right A -modules are

ε*

op
Γ*

commutative.

We call a pair (M ,ξ: M  → M ⊗A    ) of a right A -module and a* *
-

* *
σΓ*

*

*
homomorphism of right A -modules which makes the above*
diagrams commute a right   -comodule.*Γ

--

M ⊗A              M ⊗A  (   ⊗A   )                M ⊗A A

M ⊗A              (M ⊗A     ) ⊗A       M          M ⊗A

* *

Γ
idM ⊗AiM

*

*

* *

ξ σ

*

* *
*

*
M

Γ*
σ

*
idM ⊗A μ* *

* Γ* *
σμ Γ*

* *Γ*
σ

*
⊗A  id 

**
*Γ* *
σ Γ*ξ

σ

ξ

-

-

ξ Γ

* ,  ,  ,τσ στ
-θ     (M) ≅



If θ          (M) : M[  pr pr  ,  pr pr  ] → (M[  ,  ])[  pr ,  pr ] is an epimorphism,

We put μ  = P ,  (M[  ,  ])M    (    ) :  *(M[  ,  ]) →  *(M[  ,  ]).τ[  ,  ]

(M[  ,  ])[  ,  ]              M[  pr ,  pr ] = M[    ,    ]       M[  ,  ]

θ     (M) : M[  pr ,  pr ] → (M[  ,  ])[  ,  ],  ,  ,στ τσ

,  ,   pr1,  pr2

in FC  to be the following composition.
μ  : (M[  ,  ])[  ,  ] → M[  ,  ]

is an isomorphism. Define a morphism

For M ∈ Ob FC , we assume that

0

1σ 2τ

M

σ στ

τˆ

0

M
μ μ

-1

M
l

σ
-1 μM σ τ

Let C1 ×  C1    C1 ×  C1 ×  C1    C1 ×  C1 be a limit of a diagrampr12 pr23
C0C0 C0

C1 ×  C1    C1    C1 ×  C1.pr1pr2

C0

1   12       2   23

(M[  ,  ],    ) is a representation of C.
1       2

Proposition 5.5.

σ σσ ττ

τ

σσσσσ
θ     (M),  ,  ,στ τσ ττ τττ 1 2 μ

στ τσ ˆ στ τσ

C0 C0

στ μM
l

σσσσ σ τ τττ τ



FC(  ) =  .

defined by   (  ) = (M = M[   ,   ]       M[  ,  ]   N) is bijective.

Let M be an object of FC  and (N,  ) a representation of C.0

[  ,  ]τ

Theorem 5.6
ζ

epimorphism for L = M, N. Then a map

σ

ϕΦ
Hence if θ     (L)  is an isomorphism and θ          (L) is an

ε
Mε ϕ

epimorphism for all L ∈ Ob FC , a functor LC : FC → Rep(C; F) defined

forgetful functor FC : Rep(C; F) → FC  given by FC(M,  ) = M and

0

στ μl
M

ξ
ϕ ϕ

Φ: Rep(C; F)((M[  ,  ],    ), (N,  )) → FC (M, N)

ϕ

,  ,  ,στ τσ 1σ 2τ σ στ τ

0ζ

L = M, N and that θ          (L) : L[  pr pr  ,  pr pr  ] → (L[  ,  ])[  pr ,  pr ] is an,  ,   pr1,  pr2 1   12       2   23 1       2σσσσ σ τ τττ τ

στ Mμl

σ τε στ

,  ,  ,στ τσ

Assume that θ     (L) : L[  pr ,  pr ] → (L[  ,  ])[  ,  ] is an isomorphism for

,  ,   pr1,  pr2σ στ τ

0

0

by LC(M) = (M[  ,  ],    ) and LC(  ) =ϕ     is a left adjoint of the



(iii) (   )*: FC → FC ×  C  maps coequalizers to epimorphisms.

Theorem 5.7

of representations of C along f has a left adjoint if the following
The functor f : Rep(C; F) → Rep(D; F) obtained from the restrictions

σμ

.

(iv) For any diagram Y ← X → Z ← V → W in C and any objectf g h i

conditions are satisfied.
(i) FC  has coequalizers.
(ii) A functor FC → FC  which maps M ∈ Ob FC  to M[  ,  ] and
ϕ∈ Mor FC  to ϕ    preserves coequalizers.

C0

M of FC , θ    (M) : M        → (M[f, g])[h, i] is an isomorphism.0 [fprX, iprY]f, g, h, i

Let C, D be internal categories in C and f : D → C an internal functor.

0 1 1

000 στ

0

0

[  ,  ]τσ

.



The fibered category p  : MOD  → Algk  of graded k-modules
Remark 5.8

If σ: A  →Γ  is a flat morphism in Algk, then the conditions (ii) and
Let Γ= (A ,   ;  ,  ,  ,  ) be a Hopf algebroid in Algk.τσ ε* * μ

(iii) of (5.7) are satisfied.
* *

op opop

Hence, for a morphism f :Γ→Δ of Hopf algebroids, the restriction

satisfies the conditions (i) and (iv) of (5.7).

functor f : Rep(  ; F) → Rep(  ; F) has a left adjoint if σ: A  →Γ  is a. Γ Δ

Γ

flat morphism in Algk.
* *



h (X) =π (X ∧ E) ⊗E π (E ∧ E)    π (X ∧ E ∧ E ∧ E)             π (X ∧ E ∧ E)

We put h (X) = E (X) ⊗E E E. The product m induces

commutative ring k (k = E0 for example) and that E E =π (E ∧ E) is flat
Suppose that the coefficient ring E  =π (E) is a k-algebra for a

Let E be a commutative ring spectrum with unit   : S → E and
product m : E ∧ E → E.

0

*

*

§6. Hopf algebroid associated with homology theory
η

*

over E . Then, the functor from the category of spectra to the
**

*
category of graded E -modules given by X   E (X) ⊗E E E is a*
homology theory. 

* * *

* * *
* * * *

(idX ∧ m ∧ idE)*∧
* *

a natural transformation ψ: h  → (E ∧ E)  of homology theories.* *



Since ψ  : h (S ) → (E ∧ E) (S ) is an isomorphism, ψ: h  → (E ∧ E)  is an0 0
*

is an equivalence of homology theories. In other words, we see the

which is natural in X.
ψ : E (X) ⊗E E E →π (X ∧ E ∧ E)

the following fact.

There is an isomorphism of right E -modules
*X *

0S * * *

Proposition 6.1.

* *
*

E ≃ E ∧ S        E ∧ E, E ≃ S ∧ E       E ∧ E, E ∧ E    E and the switching

Let   ,  : E  → E E,  : E E → E  and  : E E → E E be the maps induced byστ * * ε * * ι * *
idE ∧η η∧ idE m0 0

map c : E ∧ E → E ∧ E, respectively.



DX : E (X) =π (X ∧ E) →π (X ∧ E ∧ E)* * *
be the map induced by X ∧ E ≃ X ∧ S ∧ E            X ∧ E ∧ E.0 idX ∧η∧ idE

Put μ=ψ  DE : E E =π (E ∧ E) → E E ⊗E E E. Then, it can be verified-1
E *** * *

that (E , E E;  ,  ,  ,   ,  ) is a Hopf algebroid in Algk, which we callτσ εμι* *

For a spectrum X, we put ϕ =ψ  DX : E (X) → E (X) ⊗E E E. Then, itX * * **X
-1

the Hopf algebroid associated with E. We denote this by HE.

turns out that ϕ  is a structure map of right E E-comodule onX

E (X). Hence E-homology theory X   E (X) takes the values in the
*

Let

**
category Rep(HE; MOD  ) of representations of HE.op

That is, E-homology theory is regarded as a functor from
“stable homotopy category” to Rep(HE; MOD  ).op
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