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§1. Internal cateqories and Hopf algebroids

Let C be a category with finite limits.

Definition 1.1

An internal category in C consists of the following data.
(1) A pair (Co, C1) of OijCfS of C.

(2) Four morphisms 0,T:Ci—Cp,E:Co>C,M:C; Xc,Ci—C1In C,

where <= Cix.C; 5> Cy is a limit of C;5Co<Cy, such that

oE=TE=Idc, and the following diagrams commute.
Here Cix¢,Cixc,Ci is a limit of a diagram C1—> Co<=C; > Co < Cu.

r id
Cﬁﬂ C1X COC1 P—r2> Cl C1X COC1X COC1MA>C1XCOC1 C1X cocl

N N T e A

CocZ—Ci—>Cy  Cixc € —— Ci ci—4s ¢ <9,



We denote by (Co,Ci;0, T, €, 1) the internal category defined above.
Moreover, if there exists a morphism t:C;— C;, which makes the

following diagrams commute, we call (Co,Ci;0,T, €, 1, L) an internal
groupoid in C.



We also have a notion of internal functors between internal
categories.

Definition 1.2
Let C=(Co,Ci;0,T, €, 1) and D=(Do,Dy;0°, T, €,11') be internal

categories in C. An internal functor from C to D is a pair (fo,f1) of
morphisms fo:Co— Do and f1:C;— D; which make the following

diagrams commute.

CoeZ-C—>Co  Cix,Ci—— Cil—— Co

o |f |fo (T R

Do« Z—D;—5>Dy  Dix,Di—2— Di—5—Dp



Definition 1.3
Let F=(Fo, ﬂ), g=(go, 91):C—>D be internal functors.

An internal natural transformation @:f—q from f to g is a

morphism @:Co—D; in C which makes the following diagrams

commute.
(oo, 91)

F/ Clog\o Ci — Dix D

Co @ Co (f,, ©T) u’
g [fon

DIXDODI — Dl



Let k be a commutative ring. We denote by Algk the category of
commutative graded k-algebras and homomorphisms between them.

For objects Axand By of Algk, we define maps
il . A*_> A*@kB* Cmd i2 . B*_> A*@kB*
by i1(x)=x®1 and ix(y)=1®yY, respectively. Then, a diagram

A *i_1> A*@ kB>v:<i_2 B*
is a coproduct of Ay and B in Algk.
For morphisms f,g:A,— B, in Algk, let I be the ideal of B generated

by {f(x)-g(x)|x € A}. Then, the quotient map p:B,—B,/I is a

coequalizer of f and g.



Hence Algk is a category with finite colimits, in other words, the
opposite category Algk® of Algk is a category with finite limits.

Thus we can consider the notion of internal categories in Algk"

Definition 1.4
We call an internal groupoid in Algk? a Hopf algebroid.



§2. A brief review on fibered category

Let p:F—C be a functor:
For an object X of C, we denote by Fx the subcategory of F

consisting of objects M of F satisfying p(M)=X and morphisms @

satisfying p(o)=idx.
For a morphism f: X—=Y of C and MeObFx, NeObFy, we put
Fe(M,N)={0eF(M,N)|p(®)=Ff}.

Definition 2.1
Let a:M—N be a morphism in F and set X=p(M), f=p(a).
We call a a cartesian morphism if, for any L€ ObFx, the map

Fx(L,M)—F¢L,N) defined by o— a@ is bijective.



Proposition 2.2
Let a;:Mi—N; (i=1,2) be morphisms in F such that p(M;)=p(M>),

p(N1)=p(N2), p(a1)=p(az) and A:Ni—Nz a morphism in Fyn,).

If a, is cartesian, there exists unique morphism  pM,—L->N;
L:M;—M; in Fpm,) that satisfies oz =Aa. u l)t

M2—>N2
Corollary 2.3

If a;:Mi—N (i=1,2) are cartesian morphisms in F such that
p(M1)=p(M2) and p(ai1)=p(az), there is unique morphism

M :M;— M; such that p(u)=idpm) and = . M1 g,
Moreover, L IS an isomorphism. gu\



Definition 2.4
Let f: X—Y be a morphism in C and NeObFy. If there exists a

cartesian morphism a:M—N such that p(a)=f, M is called an
inverse image of N by f.

We denote M by f*(N) and a by a(N): f*(N)— N.
By (2.3), f*(N) is unique up to isomorphism.
Remark 2.5

For XeObC and NeObFx, since the identity morphism idy of N is
obviously cartesian, the inverse image of N by the identity

morphism idx of X always exists and cxidx(N):idZ'E(N)—>N can be
chosen as the identity morphism of N.

By the uniqueness of idX(N) up to isomorphism, ozidx(N):id’>§(N)—>N
is an isomorphism for any choice of idX(N).



Let f: X—Y be a morphism in C. Assume that cartesian morphisms
ad{N): f*(N)—N and a(N'): f*(N)— N’ which satisfy o (N)

‘ - - f*(N)—/—N
p(a:(N))=p(a((N'))=f exist. Then, for a morphism E
@:N—N"in Fy, there exists unique morphism if*«”)a ) l‘”
F*(@): F*(N)— f*(N’) that makes the right diagram f*(N)——— N’
commurte.

Moreover, for a morphism ¥ :N"—N" in Fy, if an inverse image

f*(N") of N” by f exists, we have the following diagram.
It follows from (2.2) that f*(¥®)=f*(¥)f*(®) holds.

F*(N)% F*(N")
(N %f*m')%
ae(N') ”

—>N

ae(N")

.
N

N———



Proposition 2.6

Let f: X—Y be a morphism in C. Assume that there exists a
cartesian morphism a¢(N): f*(N)—N for any NeEObFy. Then a

correspondence N—f*(N) defines a functor f*:Fy—Fx such that,
for any morphism @:N—N’ in Fy, the following diagram commutes.

pr(N) —2 N\
lf*(co) lco
F*(Nl) aF(N ) Nl

Definition 2.7
If the assumption of (2.6) is satisfied, we say that the functor of

the inverse image by f exists.



Definition 2.8
If a functor p:F—C satisfies the following condition (i), p is called

a prefibered cateqory and if p satisfies both (i) and (ii), p is called
a fibered category.

(i) For any morphism f in C, the functor of the inverse image by f
exI|sts.
(ii) The composition of cartesian morphisms is cartesian.

For categories C and D, we denote by Funct(C,D) the category of
functors from C to D and natural transformations between them.



Definition 2.9
Let p:F—C be a functor. A map

K:MorC —>X,Y|€_|ObCFunc’r(Fy, Fx)

is called a cleavage if k(f) is an inverse image functor f*:Fy— Fx

for (f: X—Y)eMor C.
A cleavage K is said to be normalized if k(idx)=idf, for any XeObC.

A functor p:F—C is called a cloven prefibered category

(resp. normalized cloven prefibered category) if a cleavage

(resp. normalized cleavage) is given.

We assume that all fibered cateqgories below are normalized and
cloven fibered categories.



Let f: X—=Y, g:Z— X be morphisms in C
and N an object of Fy. If p:F—C is a g*{:*(N)M)f*(N)
prefibered category, there exists unique lcfg(N)

morphism cf o(N): g*F*(N)— (fg)*(N) of F: (Fg)*(N) arN) N
which makes the right diagram commute.
Then, we see the following.

Proposition 2.10
For a morphism @:M—N in Fy, the right

Y % Cf,g(M) Y
diagram commutes. In other words, g f (M) ——(fg)"(M)

F %
Cf,q gives a natural transformation l( 9@

g f*— (fg)* of functors from Fy to F-.



Proposition 2.11
Let p:F—C is a prefibered category. Then, p is a hbered category

if and only if c¢4(N) is an isomorphism for any diagram zH XLy
in C and Ne ObFy.

Proposition 2.12
Let p:F—C be a cloven prefibered category. For a diagram

ZHX5HyPswWoin C and an object M of Fw, we have
Ch,idy(M) = tig (id¥h*(M)), Ciaw,n(M) = h*(Qia,(M))
and the following diagram commutes.

(g (M) <2, e ) 22 (g F)* (M)

|| . ||
E*(g*h*) M) —2, % (g * (M) -2, (hg)F)* (M)




Example 2.13
For a commutative ring k, we denote by Modk the category of

graded right k-modules and homomorphisms preserving degrees.
We define a category MOD as follows.

ObMOD consists of triples (R, Mx, @) where R«€ Ob Alg,
M€ ObModk and a:My®RkRx—>My is a right Ry-module structure

of Mw. A morphism from (R, Mg, ) to (Sx,Nx, B) is a pair (A, ®) of
morphisms A € Algk(R,., Sx) and ® € Modk(My, N)

such that the right diagram commutes. M QKR y——> My
Composition of (A, ®):(Re, My, &) = (Ss, Ny, B) lco@n(/l lco
and (V,¥):(Sy,N,, B)—(T,, Ly, ) is defined to N*®k5*i> N

be (’I/A,WCD) : (R*z My, O ) — (T*z Ly, 7 )



Define a functor p:MOD — Algk by p(Rs, My, @)=Ry and p(A,®)=A.
For a morphism A:Sx— Ry in Algk and an object (S, Ny, 8) of MOD,
let Bj: (Nu®s,R)®kRx— Ny R®s R, be the following composition.

(N*®S*R*)®kR* N*®S*(R*®kR*) OB, T N*®S*R*

Here m denotes the multiplication of R,.
Let in.: Ne—>Nx®s,Re be the map defined by in(x)=Xx®1.

Then, (A,in,): (Re, Nx®s.Rs, B1) = (Sx,Nx, B) is a cartesian morphism
in MOD’ and the inverse image functor A*: MODs, —>MODg, is

g'Ven by A*(S*I NXVB):(RXV N*®S* %/ BA) and A*(idSM(D)=(idR>u<D®Sx«ldR*)'

It can be verified that the composition of cartesian morphisms is
cartesian. Hence p°P: MOD* —Algk" is a fibered category.




For a morphism A:Sx—Rx in Algk, we define a functor
Ax: MODRr,— MODs, as follows.

For (Re, My, )€ ObMOD, we put Ax(Rx, Mx, & ) =(Sx, Mx, at(idm, RkA)).
For a morphism (idr,, ®): (Re, My, @) = (Ry, Ny, 8) in MODR,, we put
As(idr,, ®)=(ids,, ®). Then, it is easy to verify that

Asx: MODr,—MODs, is a right adjoint of A*: MODs,— MODk,.

Proposition 2.14
For any morphism A :Rx— Sy« in Algc’, the inverse image functor

A*:MODZ— MODY has a left adjoint Ax: MODm—> MOD<..



§3. Representations of internal categories

Let p:F—C be a fibered category. For a diagram Y<X2Z in C,
we define a functor F,c,g:F$Px Fz—>Set by Frq(M,N)=Fx(f*(M), g*(N))

for MeObFy, NEObFz and Fro(®,¥):Feq(M,N) = Feq(K,L) is defined
to be the following composition for (@:K—M)eMorFy and
(Y:N—L)eMorF-:.

Fx(F*(M), g*(N)) —22 Fx(F* (M), g* (L)) —— 25 Fx(F*(K), g*(N))

For a morphism k:V—X in C, MeObFy and NeObF;, let us define
a map ki n:Feq(M,N)— Fek(M,N) to be the following composition.

Feo(MN) =Fx(FH(M), g“(N) > Fy (M), ki =(N)) 0
Fy((FR*(M), K¥**(N)) 225 By ((FK)*(M), (gk)*(N)) = Fr gk (M)

g



Proposition 3.1
Let :M—L and Y:P—N be morphisms in Fy and Fz, respectively.

Then, the following diagram is commutative.

Fx(F*(L), g*(P)) ——=2— Fy((FK)*(L), (gk)*(P))

[Fr@rg W, L (PR (@) (g ()
Fx(F*(M), g*(N)) —————Fv((FK)*(M), (gk)*(N))

Hence we have a natural transformation K*:Fgq— F o.

Proposition 3.2
For morphisms f:X—=Y, g:X—=Z, k:V—=X, j:W—=V in C and
MeObFy, NeObFz, the following diagram is commutative.

Fx(F*(M), g*(N))—8mn S F ((FkG)* (M), (gkj )*(N))

km Fv((Fk)*(M), (gk)*(N))A




Proposition 3.3
Let f: X—=Y, g: X—=Z, h: X—=W, k:V—X be morphisms in C.

For objects L, M, N of Fy, Fz, Fw, respectively, the following
diagram is commutative. Here, the horizontal maps “comp” are

compositions of morphisms.
Fx(F*(L), g*(M)) >[< Fx(g*(M), h*(N)) ——— Fx(F*(L),[g*(N))
KL,m X Km,N KL N
Fx((FK)*(L), (gk)*(M)) x Fx((gk)*(M), (hK)*(N)) = Ex((FK)*(L), (gk)*(N))

For £€Fro(MN), we denote kirn(&) by &, for short below.



Definition 3.4
Let C=(Co,Ci1;0, T, € 1) be an internal category in C.

A pair (M, &) of an object M of Fc,and a morphism &:0*(M)—T7*(M)
in Fc, is called a representation of C on M if the following

conditions are satisfied.

(A) Let Cl<P—ncGCOC1P—Q> Ci: be a limit of C;—>Co<=C..

Then, the following diagram is commutative.
(OPr* (M) = (O1)*(M) —2— (TL)*(M) = (Tpra)*(M)

£ £
\ (Tpr1)*(M)=(oprz2)*(M) /

(V) &.:M=(0€)*(M)— (T€)*(M)=M coincides with the identity
morphism of M.




Let (M,&) and (N, ) be representations of C on M and N, respectively.
A morphism @:M—N in F¢, is called a morphism of representations
of C if @ makes the following diagram commute.

0*(M)—=—>T*(M)
la*(cp) lr*(co)
0*(N)——7*(N)
Thus we have the category of the representations of C, which we
denote by Rep(C;F).



Let C=(Co,Ci;0,T,€,1), D=(Do,D1;0°, 7', €’,1') be internal categories in
C and f=(fo,f1):D—C an internal functor.
For a representation (M, &) of C on M, we define

Eg: 0™*(Fo(M)) = T*(f5(M))
to be the following composition.
o +(FHM)) <=M, (£ 57V (M) = (O F)*(M) =5 (TF) (M) = (F3T)(M)
LT TH(F(M))

Proposition 3.5

(Fo(M), &) is a representation of D on FoM). If @:(M,E)—(N,Z) is
a morphism of representations of C, then fo(®): fo(M)— f5(N) gives

a morphism Fo(@): (Fo(M),E¢) = (F5(N), C¢) of representations of D.



Definition 3.6
We call (f5(M), &) the restriction of (M,&) along f. It follows from
(3.5) that we have a functor f:Rep(C;F)— Rep(D;F) given by

fi(M,E)=(f5(M), &) and f(@)="f(e).



Let C=(Co,Ci;0,T,€,14), D=(Do,D1;0’, T, €’,./') be internal categories in
C. f=(fo,f1),9=(go.g:1):D—C internal functors and x an internal

natural transformation from f to g. For a representation (M,&) of C
on M, we define a morphism Xy z) : fo(M)— go(M) in Fp, to be

Xt (E): FEM) = (02)*(M) = (20)*(M) = g§(M).

Proposition 3.7
X £) iS @ morphism of representations from f(M,&)=(fo(M),&;) to

g'(M,&)=(g6(M),&g) and the right diagram o)
in Rep(D;F) commutes for a morphism (FO(M)'.EF) —==(fo(N), £¢)
®:(M,E)—(N,Z) of representations of C. [X(M 2 [Xm,m

9@,
Thus we have a natural transformation (g6(M), 59) O(N)’Cg)
x:f—q.



§4. Notion of hbered representable pair

Let p:F—C be a fibered category and YL X227 a diagram in C.
For MeObFy, we define a functor F¢qm:Fz— Set by

Fr.o,M(N)=Fx(f*(M), g*(N)) and Ff,qm(®)=g™(0)x.
For NeObFz, we define a functor FE’Q:F$P—> Set by
Frg(M) =Fx(F*(M), g*(N)) and Frg(w)=F*(w)*
Definition 4.1
If From (resp. Fig) is representable, we call (f,g) a left (resp. right)
fibered representable pair with respect to M (resp. N).
We say that (f,q) is a left (resp. right) fibered representable pair

if (f,g) is a left (resp. right) fibered representable pair with
respect to any MeObFy (resp. Ne ObFy).



Remark 4.2
If g*:Fz—>Fx (resp. f*:Fy—Fx) has a left (resp. right) adjoint

g.:Fx—Fz (resp. fi:Fx—Fy), (f,g) is a left (resp. right) fibered
representable pair for any morphism f: X—Y (resp. g:X—2Z) in C.
It follows from (2.14) that (A,v) is a left fibered representable

pair for any diagram Sw R T i Algk’.



If (f,g) is a left fibered representable pair with respect to

Me ObFy, we choose an object Mt of Fz and denote by
Pr.o(MN:Fx(F*(M), g*(N)) = Fz(M£, g1, N)

a bijection which is natural in NeObF-.

We denote by Lﬁg(M):F*(M)—>g*(M[ﬁgl) the morphism in Fx which

IS mapped to the identity morphism of M4 by

PF,Q(M)M[F,Q] . FX(F*(M)l 9*(M[ﬁg])) — l:Z(M[ﬁg]: M[F,g])-
We note that, if g*:Fz—Fx has a left adjoint g,:Fx—Fz, we can

choose gu(f*(M)) as M(sq. We denote by n:idr,— g*g, the unit of
the adjunction g, g* Then, we have

Lr,g (M) =Tlequy : £ (M) = g¥(g,(f (M) = 0" (Mt g1).



Proposition 4.3
Let @:L—M be a morphism in Fy. Suppose that (f,g) is a left

fibered representable pair with respect to L and M.
Define a morphism @y ;:Lir,g1 Mg of Fz to be the image of
Le o(M)F*(@) by the following map.
Prg(Lw,, : Fx(F *(L), g*(Mif,g) = Fz(Lif g1, Mif,g1)
Then, the following diagram commutes for any Ne ObFz.
Fx(F*(M), g*(N)) 25 Fx(F*(L), g*(N))

Prg(M)N Pt g(L)N
l Dff o] l
Fz(Mif,q), N) +— Fz(Lr,q1, N)

If (f,g) is a left fibered representable pair with respect to Ne ObFy
and Y:M—N is a morphism in Fy, we have (Y @)t q1=V[f,q1PIf q-



Proposition 4.4
Let k:V— X be a morphism in C. Suppose that (f,g) and (fk, gk)

are left fibered representable pairs with respect fo MeObFy.
Define a morphism Mg: Mg gk — Mitq) of Fz to be the image of

kﬁ,M[ﬁg](Lﬁg(M)) by the following map.

Pex, gk(M)m;e  : Fx((FK)*(M), (gK)*(M£,g1)) = Fz(Migk, gk, Mif 1)
Then, the following diagram commutes for any Ne ObFz.
Fx(F*(M), g*(N)) —2— Fy((FK)*(M), (gk)*(N))
lpf,g(M)N lpfk,gk(M)N

Fz(M(f,g1, N) Fz(Mfk,gk1, N)
If (fkh,gkh) is a left fibered representable pair with respect to M
for a morphism h:U—V, Mgn: M(fkn,qkn] = M[£q] Ccoincides with a
composition Mfkn,gkn] Mn, M[Fk,gk]ﬂ) M£,q].

M




From now on, we assume left fibered representability if necessary.

Proposition 4.5 Lifk, qk] —=~—> L{£ g
Under the assumptions of (4.3) and (4.4), lm[Fk “ lgo[Fg]
the right diagram is commutative. Mfk, gkl — k5> M£,q]
Remark 4.6

For morphisms f: X—=Y, g: X =Z, k:V=X, i:W—=Z, j:W—=T,
h:U—=W in C and MeObFy, it follows from the above result that

the following diagram is commutative.

(M[Fk,gk])h
(M#k, gk)ib, jhi— (M(#k, gk1Dii ]

l(Mk)[ih,jh] l(N\k)[i,j]
(Mif o1)iin (Mif, g .
[F,g])[lh,Jh] EEEE— (M[F,g])[l,J]

We denote (M), i(Mifk,gki)h = (Migk, gk)n(M)iin,jhl bY (Mi)h.



Proposition 4.7
For morphisms f: X—=Y, g: X—Z, h:X—W of C and MeObFy, we

define a morphism 6¢gnm: Migh1— (Mi£g))igh in Fw to be the image of
Lg,h(Mif,g1)Le g(M) by

Per(M v oot EXEF¥(M), h*((Mi£,1ig,h1)) = Fw(Mi 1, (Mg, g1ig,h1)-
Then, the following diagram commutes for any Ne ObFy.

Le (M)*
Fx(g*(Mis,g1), h*(N))—=—= Fx(F*(M), h*(N))
lpg,h(N\[ﬁg])N lpf,h(M)N

Fw((Mi£.qDig hl, N)——25— Fw(M£n;, N)



Proposition 4.8

For morphisms f: X =Y, g: X—=Z, h: X—=W, i: X—=V, k:V—=X in C,
M,LEObFy and a morphism @:L—M in Fy, the following diagrams
are commutative.

Of,g,h, o)
Lie n —2—> (L£.q))iq Mk, hk] — 25 (M£k, gk1iak, K]
[CD [f,h] [(CD [f,q] )[g, h] [Mk [(N\k)k
Of gh. Of a,h,M
M n) —22— (M£,g1)ig, b M) —— (M(£.a)ia,h]
Ofqi
M, e L
[6F,h,i,N\ lég,h,i,M[F,g]
(O £.9.n,M)hi]
(Mg, h)h,i (M, gD1g,h)in.i1




Let P be a poset defined as follows. 0
ObP={0,1,2,3,4,5} and P(i,]) is not empty if and Toy/ Loz
only ifi=jori=0or (i,j)=(Q,3),(1,4),(2,4),(2,5). 1 2

y iz or is0or ()=UDLACAERE. L2
We put P(i, j)=1Ti;} if P(i,j) is not empty. X . -

For a functor D:P—C and M€ ObFp3), we
put D(T;;)=fij and define a morphism

eD(N\) : M[F13F01,F25F02] — (M[F13,F14])[F24, fas]
in Fpis) to be the following composition.

(Mf)f02
BN

6F13F01, fiafor, Fas5fo2, M
M [F13FOI/ F25 FOZ] (M [F13F011 F14F01]) [F24F02/ F25 FOZ] (M [F13/ F14] ) [F241 F25]



Proposition 4.9

For a morphism @:L—M of Fy, the following diagram is commutative.

6,(L
L [f13f01, F25f02] #()) (L[Fls,lc14])[lc24, f2s]

lm[F13F01,F25F02] l(CD[F13,F14])[F24,F25]
M (£13F01, F25Fo2] (Mfs3, £14])[Fs, Fos]
Proposition 4.10
Let D,E:P—C be functors which satisfies D(i)=E(i) for i=3,4,5 and
A:D—E a natural transformation which satisfies Ai=idp() for
i=3,4,5. Put D(7;;)=fi; and E(7;;)=gi;. The following diagram is
commutative for M€ Ob Fp(3).

Op(M)

Op(M)
M [£isfor, Fosos - (M £, £1]) [F2, Fos]
lN\Ao 0. l(M)Ll)Az
M [913901,925902] : (M [913,914]) [924,925]



For a diagram YEXDBZzEVDLWin €, let X=X xzV>V be a

limit of X2z <2 V. We define a functor Deghi:P—C by
Df,g,h,i(0) =X X2V, Digh,i(l)=X, Degh,i(2)=V, Dighi(3)=Y, Dfgni(4)=Z,

Dtghi(5)=W and Drgh,i(To1) =prx, Degh,i(Toz) =prv, Dighi(Tis)=f,

Df.g,h,i(T14) =G, Deghi(T24)=h, Dfgn,i(T25)=i.
X XzV

0
:Ol/ \rfOZZ Dt g,h,i Pr>/ \‘PrY

— = 5 X

Y AV

Y
We denote GDf,g,h,i(M):M[]cprx,ipm]—>(M[f,g])[h,i] by B¢,g,n,i(M).



§5. Existence of induced representations

Definition 5.1
For a fibered category p:F—C, we say that an internal category

C=(Co,Ci;0,T,€,1) in C is left (resp. right) fibered representable if

(0,7) and (opri, Tprz) are left (resp. right) fibered representable
pairs.

We assume that internal categories below are left fibered
representable unless otherwise stated.



Proposition 5.2
Suppose that C=(Co,Ci;0,T,€,11) is a left fibered representable

internal category. For MeObF¢, and & €F¢(0*(M),T*(M)), we put
g =Poc(M)M(E ) : Mg 1= M.

Then, (M,£) is a represenfm‘ion of C on M if and only if

a composition M=M(g¢, o], M[GT]LM coincides with the identity

morphism of M and the following diagram is commutative.

N

E[O,T] M[G’T] /é

M
Mo pry, TPr2] = Miou,zu] — Mo, 7]

[GW<M>
(M[G,T ])[G,T]

M



Proposition 5.3
Let (M,&) and (N,Z) be representations of C on M and N,
respectively and @:M—N a morphism in F¢,. We put

E =P/ (MIME): Mior1 =M and £ =Ps(N)MZ) : Nig,z1—> N.

Then, @ defines a morphism @:(M,&)—(N,Z) of representations
if and only if the following diagram is commutative.

AN

Mg, 7] M

[co[m] A [co
4

Nicgij— N




Example 5.4

Consider the fibered category p°°: MOD’*— Algy’.

Let [ =(Ax,[*;0,7,€ 1) be a Hopf algebroid in Algk and M =(Ayx, Mx, Q)
an object of MODa,. Then, we have

M [0, T]= T*(O-*(M )) = ( A*, M*®g*rﬂa aa(' dM*®g*|_* ®|<T))'
Define a map ir,:Mx— Mx®A.M« by ir(X)=x®1. For a morphism
E =(idr., £):0*(M) =M, My @R, A6) = (M, Mu®h, A7) = T(M)
in MODC,’-S, we denote by & :Mx«— Mx®2.[% the following composition.
M*L’M*@)X*F*LM*@&'_*

Then, (ida,£):M— M7 is a morphism in MODa, and this coincides
with a morphism & =P, (MM(£):Mi.z1— M in MODA..



Put B:aa(idm*@@g*r*@kr):(M*®‘Z‘*I',,,)®kA*—> Mx®2.[%. Then we have the
following equalities.

Mio pry, TPral = M[ou, TU]= (Axv M*®LAL? ( |_*®A*|_*), aua(idM*®Kf’(I'*®A*I'*)®liT))
(Mio,71)i0,71 = (Ax, (Mx®a.[ %) 4., Bo(idmegr) 98 r®kT))

Let Boz.00(M): (Me®R.T5) ®n.x = M@ (Me®a. M%) be a map defined
by O7.6: (M) (X®g)R®h)=xR(g®h). B57.52(M) is an isomorphism of
right Ax-modules and 6, 5-(M)=(ida,, 85z5z(M)) holds.

Let im.: Mg Mu®a.Ax be the isomorphism given by im.(x)=x®1.
Morphisms Mg: M =Mgg,re] = Mg, and Myu: Miou,zu)— Mg, 7] In MODC,)A‘*
are given by Me=(idp., im(idw.®a.€)) and Mu=(ida,, idm.Qa.l).

g[g;[]:(M[a,r])[o,f]—>|\/|[o,r] IS glven by §[G,T]=(idA*, é@midp).



It follows from (5.2) that a morphism
€ =(idr,, g) 30*(M) = ([, M*®X*r*, o) = ([, M,@RI’*, Q)= T*(M)
in MODf-f is a representation of [ on M=(Ax, Mx,a) if and only if

the following diagrams in the category of right Ay-modules are
commutative.

g/M*(X)g*I_* > @neldr (Me®A) @A My = M@,
My léo,r, (y) N M, lidw\*@)mg
E-\M*@)g*r* M’ M*®K*G(r*®A*r*) M*®A*A*

We call a pair (M, £ : Me— M, R%.%) of a right A,-module and a
homomorphism of right Ax-modules which makes the above
diagrams commute a right [-comodule.



For MeObF¢,, we assume that
GG,T,G,T(M) : M[GPl”l,TPrz] — (M[G,T ])[G,T ]
IS an isomorphism. Define a morphism
Ap: (Mig1)io,21 ™ Mio,7)
in Fc, to be the following composition.

(V)

M
(M[G,T])[G,T] M[oprl, Tpra2] = Mow,7u] —“>M[0,T]

We put ila= Py, (Mo, 2)Mg o () :0% (Mo,77) = T*(Mio7)).

Let CX¢,Cre=Cy X C1 X . CiE2Cix¢,C1 be a limit of a diagram
C1 X125 CrePCy x ¢ C1.

Proposition 5.5.

If eG,T,Gprl,TPrz(M):M[Gprlprlz,'rprzpr23]_>(M[G,T])[Gpr1,‘[pr2] IS an epimorphism,
(Mio.z1, Mp) is a representation of C.



Theorem 5.6

Let M be an object of F¢, and (N,Z) a representation of C.
Assume that Ooco(L): Liopr,zpr,1 = (Lio,c))o,r] IS an isomorphism for

L=M,N and that 0q,z,0pr,tpro(L) : Ligpripris, 7prapres] — (LiozDiopry,tpr,] IS GN
epimorphism for L=M,N. Then a map

®: Rep(C;F)(Mo,21, M), (N,£)) = Feo(M, N)
defined by ®(®)=(M=Mosre]—=Mior~2>N) is bijective.
Hence if O5:67(L) is an isomorphism and B¢, 1,0pr,7pr:(L) is an
epimorphism for all LeObF¢,, a functor L¢:Fc,— Rep(C;F) defined
by Lc(M)=(Mio,z,4m) and L(@)=@, .1 is a left adjoint of the

forgetful functor Fc¢:Rep(C;F)—Fc, given by Fc¢(M,£)=M and
Feo(®)=0.



Theorem 5.7
Let C,D be internal categories in C and f:D—C an internal functor.

The functor f:Rep(C;F)— Rep(D;F) obtained from the restrictions
of representations of C along f has a left adjoint if the following

conditions are satisfied.

(i) Fc, has coequalizers.

(ii) A functor Fc,— Fc, which maps MeObF¢, to Mg,7] and
® €MorFc, to @, , preserves coequalizers.

(iii) (ow)*:Fc,— Fcxc.c, maps coequalizers to epimorphisms.

(iv) For any diagram Y<i><i>Z<LVL>W in C and any object
M of Fc,, e{:'g,h,i(M):M[{-‘Prx'ier]_>(M[F,g])[h,i] IS an Isomorphism.



Remark 5.8
The fibered category p°*: MOD’?— Algk” of graded k-modules

satisfies the conditions (i) and (iv) of (5.7).

Let [ =(Ax,[%:;0,T,€,1) be a Hopf algebroid in Algk.

If 0:Ax— [« is a flat morphism in Algk, then the conditions (ii) and
(iii) of (5.7) are satisfied.

Hence, for a morphism f:[" — A of Hopf algebroids, the restriction
functor £:Rep(l";F)—Rep(A;F) has a left adjoint if 0:A«—Ix is a
flat morphism in Algk.



§6. Hopf algebroid associated with homology theory

Let E be a commutative ring spectrum with unit 7:S°—E and
product m:EAE—E.

Suppose that the coefficient ring Ex=7(E) is a k-algebra for a
commutative ring k (k=Eo for example) and that ELE =TT (EAE) is flat
over Ey. Then, the functor from the category of spectra to the
category of graded E.-modules given by X—E«(X) Qec.E+E is a

homology theory.
We put hy(X)=Ew(X) ®e.E4E. The product m induces

he(X) = T (XAE) @k T (EAE)Ls T (XAEAEAE)USAMAIdEL 7 (% AEAE)

a natural transformation ¥ :he— (EAE)x of homology theories.



Since Yo hy(S°) — (EAE)W(S®) is an isomorphism, ¥ :hx—>(EAE)x is an
IS an equivalence of homology theories. In other words, we see the
the following fact.

Proposition 6.1.
There is an isomorphism of right Ex-modules

Wx: Ex(X) Qc.ExE = T (XAEAE)
which is natural in X.
Let 0,T:Ex—>ExE, €:ExE = Ex and (: E4E — E4E be the maps induced by

E~EASCAEALEAE, E~SOAELASE
map c:EAE—EAE, respectively.

——EAE, EAE5E and the switching



Let
© Dx: EW(X) =T (XAE) = T (XAEAE)

be the map induced by XAE=XASAE-XATALe, Y AEAE.
Put (=Y EDe: ExE =TT (EAE) = ExE ®:.E4E. Then, it can be verified

that (Ex, ExE;0, T, €, u,1) is a Hopf algebroid in Algk, which we call
the Hopf algebroid associated with E. We denote this by He.

For a spectrum X, we put Ox =W Dx: Ex(X) = Ex(X) ®c.E+E. Then, it
turns out that @y is a structure map of right ExE-comodule on
Ex(X). Hence E-homology theory X—Ey(X) takes the values in the
category Rep(He;MOD™) of representations of He.

That is, E-homology theory is regarded as a functor from

“stable homotopy category” to Rep(He;MOD").
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