Representations of groupoids and generalized homology theory

Atsushi Yamaguchi

Sugimoto Algebra Seminar October 6, 2023

Contents of this slide

- §1. Internal categories and Hopf algebroids (6 slides)
- §2. A brief review on fibered category (12 slides)
- §3. Representations of internal categories (8 slides)
- §4. Notion of fibered representable pair (11 slides)
- §5. Existence of induced representations (10 slides)
- §6. Hopf algebroid associated with homology theory (3 slides)

§1. Internal categories and Hopf algebroids Let C be a category with finite limits. Definition 1.1 An internal category in C consists of the following data. (1) A pair (C_0, C_1) of objects of **C**. (2) Four morphisms $\sigma, \tau: C_1 \rightarrow C_0, \varepsilon: C_0 \rightarrow C_1, \mu: C_1 \times_{C_0} C_1 \rightarrow C_1$ in C_1 , $\sigma \varepsilon = \tau \varepsilon = id_{c_0}$ and the following diagrams commute. $C_1 \xleftarrow{\text{Pri}} C_1 \times C_0 C_1 \xrightarrow{\text{pr}_2} C_1 \qquad C_1 \times C_0 C_1 \times C_0 C_1 \xrightarrow{\text{pr}_2} C_1 \qquad C_1 \times C_0 C_1 \times C_0 C_1 \xrightarrow{\text{pr}_2} C_1 \qquad C_1 \times C_0 C_1 \xrightarrow{\text{pr}_2} C_0 C_1 \xrightarrow{\text{pr}_2} C_0 \xrightarrow{\text{pr}_2} C_0$ id×µ σ $C_1 \times C_0 C_1$ $\tau \rightarrow C_0$ $C_0 \leftarrow \sigma$

- where $C_1 \xleftarrow{\text{pr}_1} C_1 \times_{C_0} C_1 \xrightarrow{\text{pr}_2} C_1$ is a limit of $C_1 \xrightarrow{\tau} C_0 \xleftarrow{\sigma} C_1$, such that
- Here $C_1 \times_{C_0} C_1 \times_{C_0} C_1$ is a limit of a diagram $C_1 \xrightarrow{\tau} C_0 \xleftarrow{\sigma} C_1 \xrightarrow{\tau} C_0 \xleftarrow{\sigma} C_1$.

$$\xrightarrow{\mu \times \mathrm{id}} C_1 \times_{C_0} C_1 \qquad C_1 \times_{C_0} C_1$$

$$\downarrow \mu \qquad (\mathrm{id}, \varepsilon\tau) / \qquad \downarrow \mu \qquad (\varepsilon\sigma, \mu) / \qquad$$

id)

following diagrams commute, we call $(C_0, C_1; \sigma, \tau, \varepsilon, \mu, \iota)$ an internal groupoid in C.

We denote by $(C_0, C_1; \sigma, \tau, \varepsilon, \mu)$ the internal category defined above. Moreover, if there exists a morphism $\iota: C_1 \rightarrow C_1$, which makes the

We also have a notion of internal functors between internal categories. Definition 1.2 Let $C = (C_0, C_1; \sigma, \tau, \varepsilon, \mu)$ and $D = (D_0, D_1; \sigma', \tau', \varepsilon', \mu')$ be internal morphisms $f_0: C_0 \rightarrow D_0$ and $f_1: C_1 \rightarrow D_1$ which make the following diagrams commute.

categories in C. An internal functor from C to D is a pair (f_0, f_1) of

Definition 1.3 Let $f = (f_0, f_1), g = (g_0, g_1): C \rightarrow D$ be internal functors. An internal natural transformation $\varphi: f \rightarrow g$ from f to g is a morphism $\varphi: C_0 \rightarrow D_1$ in C which makes the following diagrams commute.

For objects A_* and B_* of Alg_k , we define maps by $i_1(x) = x \otimes 1$ and $i_2(y) = 1 \otimes y$, respectively. Then, a diagram

is a coproduct of A_* and B_* in Alg_k .

by $\{f(x) - g(x) | x \in A_*\}$. Then, the quotient map $p: B_* \rightarrow B_*/I$ is a

coequalizer of f and g.

- Let k be a commutative ring. We denote by Alg_k the category of commutative graded k-algebras and homomorphisms between them.
 - $i_1: A_* \rightarrow A_* \otimes_k B_*$ and $i_2: B_* \rightarrow A_* \otimes_k B_*$
 - $A \xrightarrow{i_1} A \xrightarrow{k} \otimes_k B \xrightarrow{i_2} B \xrightarrow{k}$
- For morphisms $f,g:A_* \rightarrow B_*$ in Alg_k , let I be the ideal of B generated

Hence Alg_k is a category with finite colimits, in other words, the opposite category Alg_k^{op} of Alg_k is a category with finite limits. Thus we can consider the notion of internal categories in Alg_k^{op} . Definition 1.4 We call an internal groupoid in Alg_k^{op} a Hopf algebroid.

§2. A brief review on fibered category Let $p: F \rightarrow C$ be a functor. For an object X of C, we denote by F_X the subcategory of F satisfying $p(\varphi) = id_X$. For a morphism $f: X \rightarrow Y$ of C and $M \in ObF_X$, $N \in ObF_Y$, we put Definition 2.1 Let $\alpha: M \rightarrow N$ be a morphism in **F** and set X = p(M), $f = p(\alpha)$. We call α a cartesian morphism if, for any $L \in Ob F_X$, the map $F_X(L,M) \rightarrow F_f(L,N)$ defined by $\varphi \mapsto \alpha \varphi$ is bijective.

consisting of objects M of F satisfying p(M) = X and morphisms φ

- $\mathbf{F}_{f}(\mathsf{M},\mathsf{N}) = \{ \varphi \in \mathbf{F}(\mathsf{M},\mathsf{N}) | p(\varphi) = f \}.$

Corollary 2.3 If $\alpha_i: M_i \rightarrow N$ (i=1,2) are cartesian morphisms in **F** such that $p(M_1) = p(M_2)$ and $p(\alpha_1) = p(\alpha_2)$, there is unique morphism $\mu: M_1 \rightarrow M_2$ such that $p(\mu) = id_{p(M_1)}$ and $\alpha_2 \mu = \alpha_1$. Moreover, *U* is an isomorphism.

Proposition 2.2 $p(N_1)=p(N_2)$, $p(\alpha_1)=p(\alpha_2)$ and $\lambda:N_1 \rightarrow N_2$ a morphism in $\mathbf{F}_{p(N_1)}$. If α_2 is cartesian, there exists unique morphism $\mu: M_1 \rightarrow M_2$ in $\mathbf{F}_{p(M_1)}$ that satisfies $\alpha_2 \mu = \lambda \alpha_1$.

- Let $\alpha_i: M_i \rightarrow N_i$ (i=1,2) be morphisms in **F** such that $p(M_1) = p(M_2)$, $M_1 \xrightarrow{\alpha_1} N_1$ $\begin{array}{c}
 \mu \\
 & \lambda \\
 & \alpha_2 \\
 & N_2 \\
 & N_2
 \end{array}$

Definition 2.4 Let $f: X \rightarrow Y$ be a morphism in C and $N \in Ob F_Y$. If there exists a cartesian morphism $\alpha: M \rightarrow N$ such that $p(\alpha) = f$, M is called an inverse image of N by f. We denote M by $f^*(N)$ and α by $\alpha_f(N): f^*(N) \rightarrow N$. By (2.3), $f^*(N)$ is unique up to isomorphism. Remark 2.5 For $X \in ObC$ and $N \in ObF_X$, since the identity morphism id_N of N is obviously cartesian, the inverse image of N by the identity morphism id_X of X always exists and $\alpha_{id_X}(N):id_X(N) \rightarrow N$ can be chosen as the identity morphism of N. By the uniqueness of $id_X^*(N)$ up to isomorphism, $\alpha_{id_X}(N):id_X^*(N) \rightarrow N$ is an isomorphism for any choice of $id_X^*(N)$.

commute. Moreover, for a morphism $\psi: N' \rightarrow N''$ in F_Y , if an inverse image $f^{(N')}$ of N'' by f exists, we have the following diagram. It follows from (2.2) that $f^*(\psi\varphi) = f^*(\psi)f^*(\varphi)$ holds.

Let $f: X \rightarrow Y$ be a morphism in C. Assume that cartesian morphisms $\alpha_f(N): f^*(N) \rightarrow N$ and $\alpha_f(N'): f^*(N') \rightarrow N'$ which satisfy $f^{(N)} \xrightarrow{\alpha_{f}(N)} N$ $p(\alpha_f(N)) = p(\alpha_f(N')) = f$ exist. Then, for a morphism $\varphi: N \rightarrow N'$ in F_Y , there exists unique morphism $f^{*}(\varphi): f^{*}(N) \rightarrow f^{*}(N')$ that makes the right diagram

$$f^{*}(\psi \varphi) \qquad f^{*}(N'') \qquad f^{*}(\psi) \qquad \alpha_{f}(N'') \qquad \beta^{*}(\psi) \qquad \alpha_{f}(N'') \qquad \beta^{*}(\psi) \qquad \alpha_{f}(\eta) \qquad \beta^{*}(\psi) \qquad \beta$$

Proposition 2.6

Let $f: X \rightarrow Y$ be a morphism in C. Assume that there exists a cartesian morphism $\alpha_f(N): f^*(N) \rightarrow N$ for any $N \in Ob F_Y$. Then a correspondence $N \mapsto f^*(N)$ defines a functor $f^*: F_Y \rightarrow F_X$ such that, for any morphism $\varphi: N \rightarrow N'$ in F_Y , the following diagram commutes.

Definition 2.7 If the assumption of (2.6) is satisfied, we say that the functor of the inverse image by f exists.

Definition 2.8

- a fibered category.
- (i) For any morphism f in C, the functor of the inverse image by f exists.
- (ii) The composition of cartesian morphisms is cartesian.

For categories C and D, we denote by Funct(C, D) the category of functors from C to D and natural transformations between them.

If a functor $p: F \rightarrow C$ satisfies the following condition (i), p is called a prefibered category and if p satisfies both (i) and (ii), p is called

Definition 2.9 Let $p: F \rightarrow C$ be a functor. A map for $(f: X \rightarrow Y) \in Mor C$. A functor $p: F \rightarrow C$ is called a cloven prefibered category (resp. normalized cloven prefibered category) if a cleavage (resp. normalized cleavage) is given. cloven fibered categories.

$\kappa: \operatorname{Mor} \mathbf{C} \to \bigcup_{X,Y \in ObC} \operatorname{Funct}(\mathbf{F}_Y, \mathbf{F}_X)$ is called a cleavage if $\kappa(f)$ is an inverse image functor $f^*: F_Y \rightarrow F_X$

- A cleavage κ is said to be normalized if $\kappa(id_X) = id_{F_X}$ for any $X \in Ob C$.
- We assume that all fibered categories below are normalized and

Let $f: X \rightarrow Y$, $g: Z \rightarrow X$ be morphisms in C and N an object of F_Y . If $p: F \rightarrow C$ is a prefibered category, there exists unique morphism $C_{f,g}(N):g^{f}(N) \rightarrow (fg)^{r}(N)$ of F_{Z} which makes the right diagram commute. Then, we see the following.

Proposition 2.10

For a morphism $\varphi: M \rightarrow N$ in F_Y , the right diagram commutes. In other words, Cf,g gives a natural transformation $g^{*}f^{*} \rightarrow (fg)^{*} of functors from F_{Y} to F_{Z}$.

 $g^{f^{(M)}}(M) \xrightarrow{C_{f,g}(M)} (fg)^{(M)} (fg)^{(M)} (fg)^{(fg)^{(\phi)}} (g^{f^{(fg)}}(\varphi)$ $g^{f^{(N)}}(N) \xrightarrow{C_{f,g}(N)} (fg)^{(N)} (fg)^{(N)}$

Proposition 2.11 in C and $N \in ObF_Y$.

Proposition 2.12 Let $p: F \rightarrow C$ be a cloven prefibered category. For a diagram $Z \xrightarrow{g} X \xrightarrow{f} Y \xrightarrow{h} W$ in C and an object M of F_W, we have

and the following diagram commutes.

Let $p: F \rightarrow C$ is a prefibered category. Then, p is a fibered category if and only if $c_{f,g}(N)$ is an isomorphism for any diagram $Z \xrightarrow{g} X \xrightarrow{f} Y$

- $C_{h,id_Y}(M) = \alpha_{id_Y}(id_Y^*h^*(M)), C_{id_W,h}(M) = h^*(\alpha_{id_W}(M))$
- $(f^{*}q^{*})h^{*}(M) \xrightarrow{c_{g,f}(h^{*}(M))} (qf)^{*}h^{*}(M) \xrightarrow{c_{h,gf}(M)} (h(qf))^{*}(M)$ $\int f^{*}(g^{*}h^{*})(M) \xrightarrow{f^{*}(c_{h,g}(M))} f^{*}(hg)^{*}(M) \xrightarrow{c_{hg,f}(M)} ((hg)f)^{*}(M)$

Example 2.13 We define a category MOD as follows. ObMOD consists of triples (R_*, M_*, α) where $R_* \in Ob Alg_k$, morphisms $\lambda \in \operatorname{Alg}_k(R_*, S_*)$ and $\varphi \in \operatorname{Mod}_k(M_*, N_*)$ such that the right diagram commutes. Composition of $(\lambda, \varphi): (\mathsf{R}_{\star}, \mathsf{M}_{\star}, \alpha) \rightarrow (\mathsf{S}_{\star}, \mathsf{N}_{\star}, \beta)$ and $(\nu, \psi): (S_*, N_*, \beta) \rightarrow (T_*, L_*, \gamma)$ is defined to be $(\nu\lambda,\psi\varphi):(\mathsf{R}_{\mathbf{x}},\mathsf{M}_{\mathbf{x}},\alpha)\to(\mathsf{T}_{\mathbf{x}},\mathsf{L}_{\mathbf{x}},\gamma).$

- For a commutative ring k, we denote by Mod_k the category of graded right k-modules and homomorphisms preserving degrees.
- $M_{\star} \in Ob Mod_{k}$ and $\alpha: M_{\star} \otimes_{k} R_{\star} \rightarrow M_{\star}$ is a right R_{\star} -module structure
- of M_{*}. A morphism from (R_*, M_*, α) to (S_*, N_*, β) is a pair (λ, φ) of

Define a functor $p: MOD \rightarrow Alg_k$ by $p(R_*, M_*, \alpha) = R_*$ and $p(\lambda, \varphi) = \lambda$. let $\beta_{\lambda}: (N_{\star} \otimes_{S_{\star}} R_{\star}) \otimes_{k} R_{\star} \rightarrow N_{\star} \otimes_{S_{\star}} R_{\star}$ be the following composition. Here m denotes the multiplication of R_{\star} . Let $i_{N_*}: N_* \rightarrow N_* \otimes_{S_*} R_*$ be the map defined by $i_{N_*}(x) = x \otimes 1$. in MOD^{op} and the inverse image functor $\lambda^*:MOD_{S_*}^{op} \rightarrow MOD_{R_*}^{op}$ is

For a morphism $\lambda: S_* \rightarrow R_*$ in Alg_k and an object (S_*, N_*, β) of MOD,

- $(\mathsf{N}_{\mathsf{X}}\otimes_{\mathsf{S}_{\mathsf{X}}}\mathsf{R}_{\mathsf{X}})\otimes_{\mathsf{K}}\mathsf{R}_{\mathsf{X}}\cong\mathsf{N}_{\mathsf{X}}\otimes_{\mathsf{S}_{\mathsf{X}}}(\mathsf{R}_{\mathsf{X}}\otimes_{\mathsf{K}}\mathsf{R}_{\mathsf{X}})\xrightarrow{\mathsf{id}_{\mathsf{N}_{\mathsf{X}}}\otimes_{\mathsf{S}_{\mathsf{X}}}\mathsf{m}}\mathsf{N}_{\mathsf{X}}\otimes_{\mathsf{S}_{\mathsf{X}}}\mathsf{R}_{\mathsf{X}}$
- Then, $(\lambda, i_{N_*}): (R_*, N_* \otimes_{S_*} R_*, \beta_{\lambda}) \rightarrow (S_*, N_*, \beta)$ is a cartesian morphism
- given by $\lambda^*(S_*, N_*, \beta) = (R_*, N_* \otimes_{S_*} R_*, \beta_{\lambda})$ and $\lambda^*(id_{S_*}, \varphi) = (id_{R_*}, \varphi \otimes_{S_*} id_{R_*})$.
- It can be verified that the composition of cartesian morphisms is cartesian. Hence p^{op} : MOD $^{op} \rightarrow Alg_k^{op}$ is a fibered category.

For a morphism $\lambda: S_* \rightarrow R_*$ in Alg_k, we define a functor $\lambda_*: MOD_{R_*} \rightarrow MOD_{S_*}$ as follows. $\lambda_{\star}(id_{R_{\star}}, \varphi) = (id_{S_{\star}}, \varphi)$. Then, it is easy to verify that $\lambda_*: MOD_{R*} \rightarrow MOD_{S*}$ is a right adjoint of $\lambda^*: MOD_{S*} \rightarrow MOD_{R*}$. Proposition 2.14 $\lambda^*: MOD_{S_*}^{op} \rightarrow MOD_{R_*}^{op}$ has a left adjoint $\lambda_*: MOD_{R_*}^{op} \rightarrow MOD_{S_*}^{op}$.

- For $(R_*, M_*, \alpha) \in ObMOD$, we put $\lambda_*(R_*, M_*, \alpha) = (S_*, M_*, \alpha(id_{M_*} \otimes_k \lambda))$. For a morphism $(id_{R_*}, \varphi): (R_*, M_*, \alpha) \rightarrow (R_*, N_*, \beta)$ in MOD_{R_*} , we put
- For any morphism $\lambda: \mathbb{R}_* \to \mathbb{S}_*$ in Alg_k^{op} , the inverse image functor

§3. Representations of internal categories to be the following composition for $(\varphi: K \rightarrow M) \in Mor F_Y$ and $(\psi: N \rightarrow L) \in Mor \mathbf{F}_Z.$ $F_{f,g}(M,N) = F_X(f^*(M), g^*(N)) \xrightarrow{k^*} F_V(k^*f^*(M), k^*g^*(N)) \xrightarrow{(c_{f,k}(M)^{-1})^*}$

Let $p: F \rightarrow C$ be a fibered category. For a diagram $Y \xleftarrow{f} X \xrightarrow{g} Z$ in C, we define a functor $F_{f,g}: F_Y^{op} \times F_Z \rightarrow Set$ by $F_{f,g}(M,N) = F_X(f^*(M), g^*(N))$ for $M \in ObF_Y$, $N \in ObF_Z$ and $F_{f,q}(\varphi, \psi) : F_{f,q}(M, N) \rightarrow F_{f,q}(K, L)$ is defined

 $\mathbf{F}_{\mathsf{X}}(\mathsf{f}^{*}(\mathsf{M}),\mathsf{g}^{*}(\mathsf{N})) \xrightarrow{\mathsf{g}^{*}(\psi)_{*}} \mathbf{F}_{\mathsf{X}}(\mathsf{f}^{*}(\mathsf{M}),\mathsf{g}^{*}(\mathsf{L})) \xrightarrow{\mathsf{f}^{*}(\varphi)^{*}} \mathbf{F}_{\mathsf{X}}(\mathsf{f}^{*}(\mathsf{K}),\mathsf{g}^{*}(\mathsf{N}))$ For a morphism $k: V \rightarrow X$ in C, $M \in Ob F_Y$ and $N \in Ob F_Z$, let us define a map $k_{M,N}^{\#}$: $F_{f,g}(M,N) \rightarrow F_{fk,gk}(M,N)$ to be the following composition. $F_V((fk)^*(M), k^*g^*(N)) \xrightarrow{c_{g,k}(N)_*} F_V((fk)^*(M), (gk)^*(N)) = F_{fk,gk}(M,N)$

Proposition 3.1 Then, the following diagram is commutative. $\mathbf{F}_{X}(f^{*}(L),g^{*}(P)) \xrightarrow{k_{L,P}^{\#}} \mathbf{F}_{V}((fk)^{*}(L),(gk)^{*}(P))$ Hence we have a natural transformation $k^{\#}: F_{f,q} \rightarrow F_{fk,qk}$. Proposition 3.2 For morphisms $f: X \rightarrow Y$, $g: X \rightarrow Z$, $k: V \rightarrow X$, $j: W \rightarrow V$ in C and $M \in ObF_Y$, $N \in ObF_Z$, the following diagram is commutative. $\mathbf{F}_{X}(\mathbf{f}^{*}(\mathbf{M}),\mathbf{g}^{*}(\mathbf{N})) \longrightarrow \mathbf{F}_{V}((\mathbf{f}\mathbf{k}\mathbf{j})^{*}(\mathbf{M}),(\mathbf{g}\mathbf{k}\mathbf{j})^{*}(\mathbf{N}))$ **k**[#]/_{M,N} [▶]**F**_V((fk)*(M), (gk)*(N))⁻

Let $\varphi: M \rightarrow L$ and $\psi: P \rightarrow N$ be morphisms in \mathbf{F}_{Y} and \mathbf{F}_{Z} , respectively.

JM,N

Proposition 3.3 Let $f: X \rightarrow Y$, $g: X \rightarrow Z$, $h: X \rightarrow W$, $k: V \rightarrow X$ be morphisms in **C**. For objects L, M, N of F_Y , F_Z , F_W , respectively, the following diagram is commutative. Here, the horizontal maps "comp" are compositions of morphisms. $\mathbf{F}_{X}(f^{*}(L), g^{*}(M)) \times \mathbf{F}_{X}(g^{*}(M), h^{*}(N)) \xrightarrow{\text{comp}} \mathbf{F}_{X}(f^{*}(L), g^{*}(N))$ $\int_{k_{L,M}^{\#} \times k_{M,N}^{\#}} \int_{k_{L,N}^{\#}} \int_{k_{L,N}^{\#}} \mathbf{F}_{X}((\mathbf{fk})^{*}(\mathbf{M})) \times \mathbf{F}_{X}((\mathbf{gk})^{*}(\mathbf{M}), (\mathbf{hk})^{*}(\mathbf{N})) \xrightarrow{\text{comp}} \mathbf{F}_{X}((\mathbf{fk})^{*}(\mathbf{L}), (\mathbf{gk})^{*}(\mathbf{N}))$ For $\xi \in F_{f,q}(M,N)$, we denote $k_{M,N}^{\#}(\xi)$ by ξ_k for short below.

Definition 3.4 Let $C = (C_0, C_1; \sigma, \tau, \varepsilon, \mu)$ be an internal category in C. A pair (M, ξ) of an object M of \mathbf{F}_{C_0} and a morphism $\xi: \sigma^*(M) \rightarrow \tau^*(M)$ in \mathbf{F}_{C_1} is called a representation of C on M if the following conditions are satisfied. (A) Let $C_1 \leftarrow C_1 \leftarrow C_1 \times C_0 C_1 \rightarrow C_1$ be a Then, the following diagram $(\sigma pr_1)^*(M) = (\sigma \mu)^*(M) -$ $\frac{\xi_{pr_1}}{(\tau pr_1)^*(N)}$ (U) $\xi_{\varepsilon}: M = (\sigma \varepsilon)^*(M) \rightarrow (\tau \varepsilon)^*(M) = M$ coincides with the identity morphism of M.

limit of
$$C_1 \xrightarrow{\tau} C_0 \xleftarrow{\sigma} C_1$$
.
is commutative.
 $\xi_{\mu} \rightarrow (\tau \mu)^* (M) = (\tau pr_2)^* (M)$
 $\xi_{pr_2} \rightarrow (\sigma pr_2)^* (M)$

of C if ϕ makes the following diagram commute.

 $\sigma^{*}(M) - \int_{\sigma^{*}(\varphi)} \sigma^{*}(\varphi)$

Thus we have the category of the representations of C, which we denote by Rep(C;F).

Let (M, ξ) and (N, ζ) be representations of C on M and N, respectively. A morphism $\varphi: M \rightarrow N$ in F_{C_0} is called a morphism of representations

C and $f = (f_0, f_1) : D \rightarrow C$ an internal functor. For a representation (M, ξ) of C on M, we define

to be the following composition.

$$\sigma'^{\star}(\mathbf{f}_{0}^{\star}(\mathsf{M})) \xrightarrow{c_{\mathbf{f}_{0},\sigma'}(\mathsf{M})} (\mathbf{f}_{0}^{\star}\sigma')^{\star}(\mathsf{M})$$
$$\xrightarrow{c_{\mathbf{f}_{0},\tau'}(\mathsf{M})^{-1}} \tau'^{\star}(\mathbf{f}_{0}^{\star}(\mathsf{M}))$$

Proposition 3.5

- Let $C = (C_0, C_1; \sigma, \tau, \varepsilon, \mu)$, $D = (D_0, D_1; \sigma', \tau', \varepsilon', \mu')$ be internal categories in
 - $\xi_{\mathbf{f}}: \sigma'^{\mathbf{*}}(\mathbf{f}_{0}^{\mathbf{*}}(\mathsf{M})) \to \tau'^{\mathbf{*}}(\mathbf{f}_{0}^{\mathbf{*}}(\mathsf{M}))$

 $= (\sigma f_1)^* (M) \xrightarrow{\xi_{f_1}} (\tau f_1)^* (M) = (f_0^* \tau') (M)$

 $(f_0^*(M), \xi_f)$ is a representation of D on $f_0^*(M)$. If $\varphi: (M, \xi) \rightarrow (N, \zeta)$ is a morphism of representations of C, then $f_0^*(\varphi): f_0^*(M) \rightarrow f_0^*(N)$ gives a morphism $f_0^*(\varphi):(f_0^*(M),\xi_f) \rightarrow (f_0^*(N),\zeta_f)$ of representations of D.

Definition 3.6 (3.5) that we have a functor $f: \operatorname{Rep}(C; F) \rightarrow \operatorname{Rep}(D; F)$ given by

We call $(f_0^*(M), \xi_f)$ the restriction of (M, ξ) along f. It follows from $f'(M,\xi) = (f_0^*(M),\xi_f)$ and $f'(\varphi) = f_0^*(\varphi)$.

 $C, f = (f_0, f_1), g = (g_0, g_1): D \rightarrow C$ internal functors and χ an internal on M, we define a morphism $\chi_{(M,\xi)}: f_0^*(M) \to g_0^*(M)$ in F_{D_0} to be

Proposition 3.7 $\chi_{(M,\xi)}$ is a morphism of representations from $f'(M,\xi) = (f_0'(M),\xi_f)$ to $g(M,\xi) = (g_0(M),\xi_g)$ and the right diagram in Rep(D;F) commutes for a morphism $\varphi:(M,\xi) \rightarrow (N,\zeta)$ of representations of C. Thus we have a natural transformation $\chi:\mathbf{f}\to\mathbf{g}.$

Let $C = (C_0, C_1; \sigma, \tau, \varepsilon, \mu)$, $D = (D_0, D_1; \sigma', \tau', \varepsilon', \mu')$ be internal categories in natural transformation from f to g. For a representation (M, ξ) of C $\chi^{\#}_{M,M}(\xi): f_0^{*}(M) = (\sigma\chi)^{*}(M) \rightarrow (\tau\chi)^{*}(M) = g_0^{*}(M).$

§4. Notion of fibered representable pair For $M \in Ob F_Y$, we define a functor $F_{f,q,M}: F_Z \rightarrow Set$ by

For $N \in Ob \mathbf{F}_Z$, we define a functor $F_{f,q}^N : \mathbf{F}_Y^{op} \rightarrow \mathbf{Set}$ by

Definition 4.1 fibered representable pair with respect to M (resp. N). if (f,g) is a left (resp. right) fibered representable pair with respect to any $M \in ObF_Y$ (resp. $N \in ObF_Z$).

- Let $p: F \rightarrow C$ be a fibered category and $Y \leftarrow f X \rightarrow Z$ a diagram in C. $F_{f,q,M}(N) = F_X(f^*(M), g^*(N)) \text{ and } F_{f,q,M}(\varphi) = g^*(\varphi)_*.$ $F_{f,a}^{N}(M) = F_{X}(f^{*}(M), q^{*}(N))$ and $F_{f,a}^{N}(\psi) = f^{*}(\psi)^{*}$.
- If $F_{f,q,M}$ (resp. $F_{f,q}^{N}$) is representable, we call (f,g) a left (resp. right)
- We say that (f,g) is a left (resp. right) fibered representable pair

Remark 4.2 If $g^*: F_Z \rightarrow F_X$ (resp. $f^*: F_Y \rightarrow F_X$) has a left (resp. right) adjoint $g_{\star}: F_X \rightarrow F_Z$ (resp. $f_!: F_X \rightarrow F_Y$), (f,g) is a left (resp. right) fibered pair for any diagram $S_{*} \stackrel{\lambda}{\leftarrow} R_{*} \stackrel{\nu}{\rightarrow} T_{*}$ in Alg_{k}^{op} .

- representable pair for any morphism $f: X \rightarrow Y$ (resp. $g: X \rightarrow Z$) in C. It follows from (2.14) that (λ, ν) is a left fibered representable

If (f,g) is a left fibered representable pair with respect to $M \in Ob F_Y$, we choose an object $M_{[f,q]}$ of F_Z and denote by a bijection which is natural in $N \in ObF_Z$. is mapped to the identity morphism of $M_{[f,q]}$ by the adjunction $g_* - g^*$. Then, we have

- $P_{f,q}(M)_{N}: F_{X}(f^{*}(M), q^{*}(N)) \rightarrow F_{Z}(M_{[f,q]}, N)$
- We denote by $\iota_{f,q}(M): f^*(M) \rightarrow g^*(M_{[f,g]})$ the morphism in F_X which

 - $\mathsf{P}_{\mathsf{f},\mathsf{q}}(\mathsf{M})_{\mathsf{M}_{[\mathsf{f},\mathsf{q}]}}:\mathbf{F}_{\mathsf{X}}(\mathsf{f}^{*}(\mathsf{M}),\mathsf{g}^{*}(\mathsf{M}_{[\mathsf{f},\mathsf{q}]})) \rightarrow \mathbf{F}_{\mathsf{Z}}(\mathsf{M}_{[\mathsf{f},\mathsf{q}]},\mathsf{M}_{[\mathsf{f},\mathsf{q}]}).$
- We note that, if $g^*: F_Z \rightarrow F_X$ has a left adjoint $g_*: F_X \rightarrow F_Z$, we can
- choose $g_{*}(f^{*}(M))$ as $M_{[f,g]}$. We denote by $\eta: id_{F_{X}} \rightarrow g^{*}g_{*}$ the unit of

 - $l_{f,g}(M) = \eta_{f^{*}(M)} : f^{*}(M) \to g^{*}(g_{*}(f^{*}(M))) = g^{*}(M_{[f,g]}).$

Proposition 4.3 Let $\varphi: L \rightarrow M$ be a morphism in F_Y . Suppose that (f,g) is a left fibered representable pair with respect to L and M. Define a morphism $\varphi_{[f,q]}: L_{[f,g]} \rightarrow M_{[f,g]}$ of F_Z to be the image of $l_{f,g}(M)f^*(\varphi)$ by the following map. Then, the following diagram commutes for any $N \in Ob F_Z$.

 $\mathsf{P}_{\mathsf{f},\mathsf{g}}(\mathsf{L})_{\mathsf{M}_{[\mathsf{f},\mathsf{g}]}}:\mathbf{F}_{\mathsf{X}}(\mathsf{f}^{*}(\mathsf{L}),\mathsf{g}^{*}(\mathsf{M}_{[\mathsf{f},\mathsf{g}]})) \rightarrow \mathbf{F}_{\mathsf{Z}}(\mathsf{L}_{[\mathsf{f},\mathsf{g}]},\mathsf{M}_{[\mathsf{f},\mathsf{g}]})$ $\mathbf{F}_{\mathsf{X}}(\mathsf{f}^{*}(\mathsf{M}),\mathsf{g}^{*}(\mathsf{N})) \xrightarrow{\mathsf{f}^{*}(\varphi)^{*}} \mathbf{F}_{\mathsf{X}}(\mathsf{f}^{*}(\mathsf{L}),\mathsf{g}^{*}(\mathsf{N}))$ $\int_{\mathbb{P}_{f,g}(M)_N} \varphi_{[f,g]}^* \to \mathbf{F}_Z(L[f,g],N)$

If (f,g) is a left fibered representable pair with respect to $N \in Ob F_Y$ and $\psi: M \to N$ is a morphism in F_Y , we have $(\psi \varphi)_{[f,g]} = \psi_{[f,g]} \varphi_{[f,g]}$.

Proposition 4.4 Define a morphism $M_k: M_{[fk,gk]} \rightarrow M_{[f,g]}$ of F_z to be the image of $k_{M,M[f,q]}^{\#}(\iota_{f,q}(M))$ by the following map. Then, the following diagram commutes for any $N \in Ob F_Z$. $\int_{P_{f,g}(M)_N} M_k^* \longrightarrow F_Z(M_{[f,g]}, N) \longrightarrow F_Z(M_{[fk,gk]}, N)$ for a morphism h: $U \rightarrow V$, $M_{kh}: M_{[fkh,gkh]} \rightarrow M_{[f,g]}$ coincides with a composition $M[fkh,gkh] \xrightarrow{M_h} M[fk,gk] \xrightarrow{M_k} M[f,g]$.

- Let $k: V \rightarrow X$ be a morphism in C. Suppose that (f,g) and (fk,gk) are left fibered representable pairs with respect to $M \in Ob \mathbf{F}_{Y}$.
 - $\mathsf{P}_{\mathsf{fk},\mathsf{gk}}(\mathsf{M})_{\mathsf{M}_{[\mathsf{f},\mathsf{g}]}}:\mathbf{F}_{\mathsf{X}}((\mathsf{fk})^{*}(\mathsf{M}),(\mathsf{gk})^{*}(\mathsf{M}_{[\mathsf{f},\mathsf{g}]}))\to\mathbf{F}_{\mathsf{Z}}(\mathsf{M}_{[\mathsf{fk},\mathsf{gk}]},\mathsf{M}_{[\mathsf{f},\mathsf{g}]})$ $\mathbf{F}_{\mathsf{X}}(\mathsf{f}^{*}(\mathsf{M}),\mathsf{g}^{*}(\mathsf{N})) \xrightarrow{k_{\mathsf{M},\mathsf{N}}^{\#}} \mathbf{F}_{\mathsf{V}}((\mathsf{f}k)^{*}(\mathsf{M}),(\mathsf{g}k)^{*}(\mathsf{N}))$
- If (fkh, gkh) is a left fibered representable pair with respect to M

From now on, we assume left fibered representability if necessary. Proposition 4.5 $L[fk,gk] \xrightarrow{L_k} L[f,g]$ Under the assumptions of (4.3) and (4.4), the right diagram is commutative. Remark 4.6 For morphisms $f: X \rightarrow Y$, $g: X \rightarrow Z$, $k: V \rightarrow X$, $i: W \rightarrow Z$, $j: W \rightarrow T$, $h: U \rightarrow W$ in C and $M \in Ob F_Y$, it follows from the above result that the following diagram is commutative. $(M_{[fk,gk]})_h$ $(M_{[fk,gk]})_{[ih,jh]} \longrightarrow (M_{[fk,gk]})_{[i,j]}$ We denote $(M_k)_{[i,j]}(M_{[fk,gk]})_h = (M_{[fk,gk]})_h(M_k)_{[ih,jh]} by (M_k)_h$.

Proposition 4.7 For morphisms $f: X \rightarrow Y$, $g: X \rightarrow Z$, $h: X \rightarrow W$ of **C** and $M \in Ob F_Y$, we define a morphism $\delta_{f,g,h,M}: M_{[f,h]} \rightarrow (M_{[f,g]})_{[g,h]}$ in F_W to be the image of $l_{g,h}(M_{[f,g]})l_{f,q}(M)$ by $\mathsf{P}_{f,h}(M)_{(M_{[f,a]})_{[g,h]}}: \mathbf{F}_{X}(f^{*}(M), h^{*}((M_{[f,g]})_{[g,h]})) \to \mathbf{F}_{W}(M_{[f,h]}, (M_{[f,g]})_{[g,h]}).$ Then, the following diagram commutes for any $N \in Ob F_W$. $F_{X}(g^{*}(M_{[f,g]}),h^{*}(N)) \xrightarrow{\iota_{f,g}(M)^{*}} F_{X}(f^{*}(M),h^{*}(N))$ $\downarrow^{P_{g,h}(M_{[f,g]})_{N}} \qquad \qquad \downarrow^{P_{f,h}(M)_{N}}$ $F_{W}((M_{[f,g]})_{[g,h]},N) \xrightarrow{\delta_{f,g,h,M}^{*}} F_{W}(M_{[f,h]},N)$

Proposition 4.8 are commutative.

For morphisms $f: X \rightarrow Y$, $g: X \rightarrow Z$, $h: X \rightarrow W$, $i: X \rightarrow V$, $k: V \rightarrow X$ in C, $M, L \in Ob F_Y$ and a morphism $\varphi: L \rightarrow M$ in F_Y , the following diagrams

Let P be a poset defined as follows. $ObP = \{0, 1, 2, 3, 4, 5\}$ and P(i, j) is not empty if and only if i = j or i = 0 or (i, j) = (1, 3), (1, 4), (2, 4), (2, 5).We put $P(i,j) = \{\tau_{ij}\}$ if P(i,j) is not empty.

For a functor $D: P \rightarrow C$ and $M \in Ob F_{D(3)}$, we put $D(\tau_{ij}) = f_{ij}$ and define a morphism

in $F_{D(5)}$ to be the following composition.

 $\theta_{D}(M): M_{[f_{13}f_{01}, f_{25}f_{02}]} \rightarrow (M_{[f_{13}, f_{14}]})_{[f_{24}, f_{25}]}$

 $M_{[f_{13}f_{01},f_{25}f_{02}]} \xrightarrow{\delta_{f_{13}f_{01},f_{14}f_{01},f_{25}f_{02},M}} (M_{[f_{13}f_{01},f_{14}f_{01}]})_{[f_{24}f_{02},f_{25}f_{02}]} \xrightarrow{(M_{f_{01}})_{f_{02}}} (M_{[f_{13},f_{14}]})_{[f_{24},f_{25}]}$

Proposition 4.9 For a morphism $\varphi: L \rightarrow M$ of F_Y , the following diagram is commutative. $L [f_{13}f_{01}, f_{25}f_{02}] \xrightarrow{\theta_{D}(L)} (L [f_{13}, f_{14}]) [f_{24}, f_{25}]$ $\int \varphi_{[f_{13}f_{01}, f_{25}f_{02}]} \xrightarrow{\theta_{D}(M)} (M_{[f_{13}, f_{14}]})_{[f_{24}, f_{25}]} \xrightarrow{\theta_{D}(M)} (M_{[f_{13}, f_{14}]})_{[f_{24}, f_{25}]}$ Proposition 4.10 Let D, E: $P \rightarrow C$ be functors which satisfies D(i) = E(i) for i = 3,4,5 and $\lambda: D \rightarrow E$ a natural transformation which satisfies $\lambda_i = id_{D(i)}$ for i = 3,4,5. Put $D(\tau_{i,i}) = f_{i,j}$ and $E(\tau_{i,i}) = g_{i,j}$. The following diagram is commutative for $M \in ObF_{D(3)}$. $M[f_{13}f_{01}, f_{25}f_{02}] \xrightarrow{\theta_{D}(M)} (M[f_{13}, f_{14}])[f_{24}, f_{25}]$ $(M_{\lambda_1})_{\lambda_2} \rightarrow (M_{g_{13},g_{14}})[g_{24},g_{25}]$ M_{λ_0} $\theta_{\rm E}({\rm M})$ M[g13g01,g25g02]

limit of $X \xrightarrow{g} Z \xleftarrow{h} V$. We define a functor $D_{f,q,h,i}: P \rightarrow C$ by $D_{f,g,h,i}(5) = W$ and $D_{f,g,h,i}(\tau_{01}) = pr_X$, $D_{f,g,h,i}(\tau_{02}) = pr_V$, $D_{f,g,h,i}(\tau_{13}) = f$, $D_{f,g,h,i}(\tau_{14}) = g, D_{f,g,h,i}(\tau_{24}) = h, D_{f,g,h,i}(\tau_{25}) = i.$

We denote $\theta_{D_{f,g,h,i}}(M): M_{[fpr_X,ipr_Y]} \rightarrow (M_{[f,g]})_{[h,i]} by \theta_{f,g,h,i}(M).$

For a diagram $Y \xleftarrow{f} X \xrightarrow{g} Z \xleftarrow{h} V \xrightarrow{i} W$ in C, let $X \xleftarrow{pr_X} X \times_Z V \xrightarrow{pr_V} V$ be a $D_{f,g,h,i}(0) = X \times_Z V, D_{f,g,h,i}(1) = X, D_{f,g,h,i}(2) = V, D_{f,g,h,i}(3) = Y, D_{f,g,h,i}(4) = Z,$

§5. Existence of induced representations Definition 5.1 For a fibered category $p: F \rightarrow C$, we say that an internal category $C = (C_0, C_1; \sigma, \tau, \varepsilon, \mu)$ in C is left (resp. right) fibered representable if (σ,τ) and $(\sigma pr_1,\tau pr_2)$ are left (resp. right) fibered representable pairs.

We assume that internal categories below are left fibered representable unless otherwise stated.

Proposition 5.2 Suppose that $C = (C_0, C_1; \sigma, \tau, \varepsilon, \mu)$ is a left fibered representable internal category. For $M \in Ob \mathbf{F}_{C_0}$ and $\xi \in \mathbf{F}_{C_1}(\sigma^*(M), \tau^*(M))$, we put Then, (M, ξ) is a representation of C on M if and only if a composition $M = M_{[\sigma \varepsilon, \tau \varepsilon]} \xrightarrow{M_{\varepsilon}} M_{[\sigma, \tau]} \xrightarrow{\hat{\xi}} M$ coincides with the identity

morphism of M and the following diagram is commutative.

- $\hat{\xi} = P_{\sigma,\tau}(M)_{M}(\xi) : M_{[\sigma,\tau]} \to M.$

Proposition 5.3 Let (M, ξ) and (N, ζ) be representations of C on M and N, respectively and $\varphi: M \rightarrow N$ a morphism in F_{c_0} . We put

if and only if the following diagram is commutative.

- $\hat{\xi} = P_{\sigma,\tau}(M)_{M}(\xi): M_{[\sigma,\tau]} \rightarrow M \text{ and } \hat{\zeta} = P_{\sigma,\tau}(N)_{N}(\zeta): N_{[\sigma,\tau]} \rightarrow N.$
- Then, φ defines a morphism $\varphi:(M,\xi) \rightarrow (N,\zeta)$ of representations

Example 5.4 Consider the fibered category p^{op} : MOD^{op} \rightarrow Alg^{op}_k. an object of MOD_{A_*} . Then, we have Define a map $i_{\Gamma_*}: M_* \rightarrow M_* \otimes_{A_*}^{\tau} \Gamma_*$ by $i_{\Gamma_*}(x) = x \otimes 1$. For a morphism with a morphism $\hat{\xi} = P_{\sigma,\tau}(M)_M(\xi) : M_{[\sigma,\tau]} \to M$ in $MOD_{A_*}^{op}$.

- Let $\Gamma = (A_*, \Gamma_*; \sigma, \tau, \varepsilon, \mu)$ be a Hopf algebroid in Alg_k and $M = (A_*, M_*, \alpha)$
 - $M_{[\sigma,\tau]} = \tau_{\star}(\sigma^{\star}(M)) = (A_{\star}, M_{\star} \otimes_{A_{\star}}^{\sigma} \Gamma_{\star}, \alpha_{\sigma}(\mathsf{id}_{M_{\star} \otimes_{A_{\star}}^{\sigma}} \Gamma_{\star} \otimes_{k} \tau)).$
 - $\xi = (\mathrm{id}_{\Gamma_*}, \tilde{\xi}): \sigma^*(\mathsf{M}) = (\Gamma_*, \mathsf{M}_* \otimes_{\mathsf{A}_*}^{\sigma} \Gamma_*, \alpha_{\sigma}) \to (\Gamma_*, \mathsf{M}_* \otimes_{\mathsf{A}_*}^{\tau} \Gamma_*, \alpha_{\tau}) = \tau^*(\mathsf{M})$
- in $MOD_{\Gamma_*}^{op}$, we denote by $\xi: M_* \rightarrow M_* \otimes_{A_*}^{\sigma} \Gamma_*$ the following composition.
 - $M_{\star} \xrightarrow{i_{\Gamma_{\star}}} M_{\star} \otimes A_{\star} \Gamma_{\star} \xrightarrow{\xi} M_{\star} \otimes A_{\star} \Gamma_{\star}$
- Then, $(id_{A_*}, \xi): M \to M_{[\sigma, \tau]}$ is a morphism in MOD_{A*} and this coincides

Put $\beta = \alpha_{\sigma}(id_{M_*\otimes_{A_*}^{\sigma}\Gamma_*}\otimes_k \tau):(M_*\otimes_{A_*}^{\sigma}\Gamma_*)\otimes_k A_* \to M_*\otimes_{A_*}^{\sigma}\Gamma_*$. Then we have the following equalities. $M_{[\sigma pr_1, \tau pr_2]} = M_{[\sigma \mu, \tau \mu]} = (A_{\star}, M_{\star} \otimes A_{\star}^{\mu\sigma} (\Gamma_{\star} \otimes A_{\star} \Gamma_{\star}), \alpha_{\mu\sigma} (id_{M_{\star} \otimes A_{\star}}^{\mu\sigma} (\Gamma_{\star} \otimes A_{\star} \Gamma_{\star}))$ $(\mathsf{M}_{[\sigma,\tau]})_{[\sigma,\tau]} = (\mathsf{A}_{\star}, (\mathsf{M}_{\star} \otimes \overset{\sigma}{\mathsf{A}_{\star}} \Gamma_{\star}) \otimes \overset{\sigma}{\mathsf{A}_{\star}} \Gamma_{\star}, \beta_{\sigma}(\mathsf{id}_{(\mathsf{M}_{\star} \otimes \overset{\sigma}{\mathsf{A}_{\star}} \Gamma_{\star}) \otimes \overset{\sigma}{\mathsf{A}_{\star}} \Gamma_{\star} \otimes \mathsf{K}\tau))$

Let $\bar{\theta}_{\sigma,\tau,\sigma,\tau}(M):(M_{\star}\otimes_{A_{\star}}^{\sigma}\Gamma_{\star})\otimes_{A_{\star}}\Gamma_{\star} \rightarrow M_{\star}\otimes_{A_{\star}}^{\mu\sigma}(\Gamma_{\star}\otimes_{A_{\star}}\Gamma_{\star})$ be a map defined by $\bar{\theta}_{\sigma,\tau,\sigma,\tau}(M)((x \otimes g) \otimes h) = x \otimes (g \otimes h)$. $\bar{\theta}_{\sigma,\tau,\sigma,\tau}(M)$ is an isomorphism of right A_{*}-modules and $\theta_{\sigma,\tau,\sigma,\tau}(M) = (id_{A_*}, \theta_{\sigma,\tau,\sigma,\tau}(M))$ holds.

Let $i_{M_*}: M_* \rightarrow M_* \otimes_{A_*} A_*$ be the isomorphism given by $i_{M_*}(x) = x \otimes 1$. Morphisms $M_{\varepsilon}: M = M_{[\sigma \varepsilon, \tau \varepsilon]} \rightarrow M_{[\sigma, \tau]}$ and $M_{\mu}: M_{[\sigma \mu, \tau \mu]} \rightarrow M_{[\sigma, \tau]}$ in $MOD_{A_*}^{op}$ are given by $M_{\varepsilon} = (id_{A_*}, i_{M_*}^{-1}(id_{M_*} \otimes_{A_*} \varepsilon))$ and $M_{\mu} = (id_{A_*}, id_{M_*} \otimes_{A_*} \mu)$.

 $\xi_{[\sigma,\tau]}: (M_{[\sigma,\tau]})_{[\sigma,\tau]} \to M_{[\sigma,\tau]} \text{ is given}$

by
$$\hat{\xi}_{[\sigma,\tau]} = (\mathrm{id}_{A*}, \xi \otimes_{A*} \mathrm{id}_{\Gamma*}).$$

It follows from (5.2) that a morphism commutative.

We call a pair $(M_*, \xi: M_* \rightarrow M_* \otimes_{A_*}^{\sigma} \Gamma_*)$ of a right A_* -module and a homomorphism of right A_{*} -modules which makes the above diagrams commute a right Γ_{\star} -comodule.

 $\xi = (\mathrm{id}_{\Gamma_*}, \tilde{\xi}) : \sigma^*(\mathsf{M}) = (\Gamma_*, \mathsf{M}_* \otimes_{\mathsf{A}_*}^{\sigma} \Gamma_*, \alpha_{\sigma}) \to (\Gamma_*, \mathsf{M}_* \otimes_{\mathsf{A}_*}^{\tau} \Gamma_*, \alpha_{\tau}) = \tau^*(\mathsf{M})$ in $MOD_{\Gamma_*}^{op}$ is a representation of Γ on $M = (A_*, M_*, \alpha)$ if and only if the following diagrams in the category of right A_{\star} -modules are

For $M \in Ob F_{C_0}$, we assume that is an isomorphism. Define a morphism in \mathbf{F}_{C_0} to be the following composition. $(\mathsf{M}_{[\sigma,\tau]})_{[\sigma,\tau]} \xrightarrow{\theta_{\sigma,\tau,\sigma,\tau}(\mathsf{M})^{-1}} \to \mathsf{M}_{[\sigma\mathsf{pr}_1,\tau\mathsf{pr}_2]} = \mathsf{M}_{[\sigma\mu,\tau\mu]} \xrightarrow{\mathsf{M}_{\mu}} \mathsf{M}_{[\sigma,\tau]}$ We put $\mu_{M}^{l} = P_{\sigma,\tau}(M_{[\sigma,\tau]})_{M_{[\sigma,\tau]}}^{-1}(\hat{\mu}_{M}):\sigma^{*}(M_{[\sigma,\tau]}) \rightarrow \tau^{*}(M_{[\sigma,\tau]}).$ Let $C_1 \times_{C_0} C_1 \xleftarrow{pr_{12}}{C_1} C_1 \times_{C_0} C_1 \times_{C_0} C_1 \xrightarrow{pr_{23}}{C_1} C_1 \times_{C_0} C_1$ be a limit of a diagram $C_1 \times_{C_0} C_1 \xrightarrow{pr_2} C_1 \xleftarrow{pr_1} C_1 \times_{C_0} C_1.$

Proposition 5.5. $(M_{[\sigma,\tau]},\mu_M)$ is a representation of C.

- $\theta_{\sigma,\tau,\sigma,\tau}(\mathsf{M}):\mathsf{M}_{[\sigma \mathrm{pr}_{1},\tau \mathrm{pr}_{2}]} \to (\mathsf{M}_{[\sigma,\tau]})_{[\sigma,\tau]}$ $\hat{\mu}_{\mathsf{M}}: (\mathsf{M}_{[\sigma,\tau]})_{[\sigma,\tau]} \to \mathsf{M}_{[\sigma,\tau]}$

If $\theta_{\sigma,\tau,\sigma pr_1,\tau pr_2}(M): M_{[\sigma pr_1 pr_{12},\tau pr_2 pr_{23}]} \rightarrow (M_{[\sigma,\tau]})_{[\sigma pr_1,\tau pr_2]}$ is an epimorphism,

Theorem 5.6 Let M be an object of F_{C_0} and (N,ζ) a representation of C. epimorphism for L = M, N. Then a map defined by $\Phi(\varphi) = (M = M_{[\sigma \varepsilon, \tau \varepsilon]} \xrightarrow{M_{\varepsilon}} M_{[\sigma, \tau]} \xrightarrow{\varphi} N)$ is bijective. Hence if $\theta_{\sigma,\tau,\sigma,\tau}(L)$ is an isomorphism and $\theta_{\sigma,\tau,\sigma pr_1,\tau pr_2}(L)$ is an by $\mathcal{L}_{C}(M) = (M_{[\sigma,\tau]}, \mu_{M}^{I})$ and $\mathcal{L}_{C}(\phi) = \phi_{[\sigma,\tau]}$ is a left adjoint of the forgetful functor \mathcal{F}_{C} : Rep(C; F) \rightarrow F_{C0} given by $\mathcal{F}_{C}(M, \xi) = M$ and $\mathcal{F}_{\mathcal{C}}(\varphi) = \varphi.$

- Assume that $\theta_{\sigma,\tau,\sigma,\tau}(L): L_{[\sigma pr_1,\tau pr_2]} \rightarrow (L_{[\sigma,\tau]})_{[\sigma,\tau]}$ is an isomorphism for L = M, N and that $\theta_{\sigma, \tau, \sigma pr_1, \tau pr_2}(L): L_{[\sigma pr_1 pr_{12}, \tau pr_2 pr_{23}]} \rightarrow (L_{[\sigma, \tau]})_{[\sigma pr_1, \tau pr_2]}$ is an

 - $\Phi: \operatorname{Rep}(C; F)((M_{[\sigma,\tau]}, \mu_M), (N,\zeta)) \to F_{c_0}(M, N)$
- epimorphism for all $L \in Ob F_{C_0}$, a functor $\mathcal{L}_C : F_{C_0} \rightarrow Rep(C; F)$ defined

Theorem 5.7 Let C,D be internal categories in C and $f:D \rightarrow C$ an internal functor. The functor $f: \operatorname{Rep}(C; F) \rightarrow \operatorname{Rep}(D; F)$ obtained from the restrictions of representations of C along f has a left adjoint if the following conditions are satisfied.

(i) F_{C_0} has coequalizers.

(ii) A functor $\mathbf{F}_{C_0} \rightarrow \mathbf{F}_{C_0}$ which maps $M \in Ob \mathbf{F}_{C_0}$ to $M_{[\sigma,\tau]}$ and $\varphi \in Mor \mathbf{F}_{C_0}$ to $\varphi_{[\sigma,\tau]}$ preserves coequalizers.

(iii) $(\sigma\mu)^*: \mathbf{F}_{C_0} \to \mathbf{F}_{C_1 \times_{C_0} C_1}$ maps coequalizers to epimorphisms.

- (iv) For any diagram $Y \xleftarrow{f} X \xrightarrow{g} Z \xleftarrow{h} V \xrightarrow{i} W$ in **C** and any object
 - M of \mathbf{F}_{C_0} , $\theta_{f,g,h,i}(M): M_{[fpr_X,ipr_Y]} \rightarrow (M_{[f,g]})_{[h,i]}$ is an isomorphism.

Remark 5.8 The fibered category $p^{op}: MOD^{op} \rightarrow Alg_k^{op}$ of graded k-modules satisfies the conditions (i) and (iv) of (5.7). Let $\Gamma = (A_{\star}, \Gamma_{\star}; \sigma, \tau, \varepsilon, \mu)$ be a Hopf algebroid in Alg_k. (iii) of (5.7) are satisfied. flat morphism in Alg_k .

- If $\sigma: A_* \rightarrow \Gamma_*$ is a flat morphism in Alg_k, then the conditions (ii) and
- Hence, for a morphism $f: \Gamma \rightarrow \Delta$ of Hopf algebroids, the restriction functor $f: \operatorname{Rep}(\Gamma; F) \rightarrow \operatorname{Rep}(\Delta; F)$ has a left adjoint if $\sigma: A_* \rightarrow \Gamma_*$ is a

§6. Hopf algebroid associated with homology theory Let E be a commutative ring spectrum with unit $\eta: S^0 \rightarrow E$ and product m: $E \land E \rightarrow E$. Suppose that the coefficient ring $E_* = \pi_*(E)$ is a k-algebra for a commutative ring k (k = E₀ for example) and that $E_*E = \pi_*(E \land E)$ is flat over E_{\star} . Then, the functor from the category of spectra to the category of graded E_* -modules given by $X \mapsto E_*(X) \otimes_{E_*} E_*E$ is a homology theory. We put $h_{*}(X) = E_{*}(X) \otimes_{E_{*}} E_{*}E$. The product m induces $h_{*}(X) = \pi_{*}(X \land E) \otimes_{E_{*}} \pi_{*}(E \land E) \xrightarrow{\wedge} \pi_{*}(X \land E \land E \land E) \xrightarrow{(id_{X} \land m \land id_{E})_{*}} \pi_{*}(X \land E \land E)$ a natural transformation $\psi: h_* \rightarrow (E \land E)_*$ of homology theories.

the following fact.

Proposition 6.1. There is an isomorphism of right E_{\star} -modules which is natural in X.

map $c: E \land E \rightarrow E \land E$, respectively.

Since $\psi_{S^0}: h_*(S^0) \to (E \land E)_*(S^0)$ is an isomorphism, $\psi: h_* \to (E \land E)_*$ is an is an equivalence of homology theories. In other words, we see the

$\psi_{\mathsf{X}}: \mathsf{E}_{\mathsf{X}}(\mathsf{X}) \otimes_{\mathsf{E}_{\ast}} \mathsf{E}_{\mathsf{X}} \mathsf{E} \to \pi_{\mathsf{X}}(\mathsf{X} \land \mathsf{E} \land \mathsf{E})$

Let $\sigma, \tau: E_* \rightarrow E_*E, \varepsilon: E_*E \rightarrow E_*$ and $\iota: E_*E \rightarrow E_*E$ be the maps induced by $E \simeq E \land S^0 \xrightarrow{id_E \land \eta} E \land E, E \simeq S^0 \land E \xrightarrow{\eta \land id_E} E \land E, E \land E \xrightarrow{m} E \text{ and the switching}$

Let

be the map induced by $X \wedge E \simeq X \wedge S^0 \wedge E \xrightarrow{id_X \wedge \eta \wedge id_E} X \wedge E \wedge E$.

the Hopf algebroid associated with E. We denote this by H_E . category Rep(H_E ; MOD^{op}) of representations of H_E . That is, E-homology theory is regarded as a functor from "stable homotopy category" to $Rep(H_E; MOD^{op})$.

 $D_X: E_X(X) = \pi_X(X \land E) \rightarrow \pi_X(X \land E \land E)$ Put $\mu = \psi_E^{-1} D_E : E_*E = \pi_*(E \wedge E) \rightarrow E_*E \otimes_{E_*} E_*E$. Then, it can be verified that $(E_*, E_*E; \sigma, \tau, \varepsilon, \mu, \iota)$ is a Hopf algebroid in Alg_k, which we call For a spectrum X, we put $\varphi_X = \psi_X^{-1} D_X : E_{\star}(X) \to E_{\star}(X) \otimes_{E_{\star}} E_{\star} E_{\star}$. Then, it turns out that φ_X is a structure map of right E_{*}E-comodule on $E_{*}(X)$. Hence E-homology theory $X \mapsto E_{*}(X)$ takes the values in the

References in Mathematics, vol.99, Springer-Verlag, 1969, 1-138.

[4] A. Yamaguchi, The structure of the Hopf algebroid associated with the elliptic homology theory, Osaka Journal of Mathematics, vol.33, (1996), 57–68.

Journal of Mathematics Vol.62, No.1, (2008) 139-169.

- [1] J. F. Adams, Lectures on generalised cohomology, Lecture Notes
- [2] J. F. Adams, Stable homotopy and generalised homology, Chicago
 - Lectures in Mathematics, The University of Chicago Press, 1974
- [3] A. Grothendieck, Catégorie fibrées et Descente, Lecture Notes
 - in Mathematics, vol.224, Springer-Verlag, 1971, 145-194.

[5] A. Yamaguchi, Representations of internal categories, Kyushu

Thank you for listening and your patience.