Representations of groupoids and generalized homology theory

Atsushi Yamaguchi
Sugimoto Algebra Seminar October 6, 2023

Contents of this slide
§1. Internal categories and Hopf algebroids (6 slides)
§2. A brief review on fibered category (12 slides)
§3. Representations of internal categories (8 slides)
§4. Notion of fibered representable pair (11 slides)
§5. Existence of induced representations (10 slides)
§6. Hopf algebroid associated with homology theory (3 slides)
§1. Internal categories and Hopf algebroids Let C be a category with finite limits.
Definition 1.1
An internal category in \mathbf{C} consists of the following data.
(1) A pair $\left(C_{0}, C_{1}\right)$ of objects of C.
(2) Four morphisms $\sigma, \tau: C_{1} \rightarrow C_{0}, \varepsilon: C_{0} \rightarrow C_{1}, \mu: C_{1} \times C_{0} C_{1} \rightarrow C_{1}$ in C, where $C_{1} \stackrel{\text { pr1 }}{ } C_{1} \times C_{0} C_{1} \xrightarrow{\mathrm{pr} r_{2}} C_{1}$ is a limit of $C_{1} \xrightarrow{\tau} C_{0} \stackrel{\sigma}{\square} C_{1}$, such that $\sigma \varepsilon=\tau \varepsilon=\mathrm{id} c_{0}$ and the following diagrams commute. Here $C_{1} \times C_{0} C_{1} \times C_{0} C_{1}$ is a limit of a diagram $C_{1} \xrightarrow{\tau} C_{0} \stackrel{\sigma}{\leftrightarrows} C_{1} \xrightarrow{\tau} C_{0} \stackrel{\sigma}{\curvearrowleft} C_{1}$.

We denote by $\left(C_{0}, C_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ the internal category defined above. Moreover, if there exists a morphism $\iota: C_{1} \rightarrow C_{1}$, which makes the following diagrams commute, we call ($\left.C_{0}, C_{1} ; \sigma, \tau, \varepsilon, \mu, l\right)$ an internal groupoid in C.

We also have a notion of internal functors between internal categories.
Definition 1.2
Let $C=\left(C_{0}, C_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ and $D=\left(D_{0}, D_{1} ; \sigma^{\prime}, \tau^{\prime}, \varepsilon^{\prime}, \mu^{\prime}\right)$ be internal categories in C. An internal functor from C to D is a pair $\left(f_{0}, f_{1}\right)$ of morphisms $f_{0}: C_{0} \rightarrow D_{0}$ and $f_{1}: C_{1} \rightarrow D_{1}$ which make the following diagrams commute.

$$
\begin{aligned}
& C_{0} \stackrel{\sigma}{\longleftrightarrow} C_{1} \xrightarrow{\tau} C_{0} \\
& \stackrel{\mathrm{f}_{0}}{\mathrm{D}_{0} \stackrel{\sigma^{\prime}}{\longleftrightarrow}} \stackrel{\mathrm{D}_{1}}{\mathrm{f}_{1}} \xrightarrow{\tau^{\prime}} \underset{\mathrm{D}_{0}}{\downarrow_{\mathrm{f}}}
\end{aligned}
$$

Definition 1.3

Let $f=\left(f_{0}, f_{1}\right), g=\left(g o, g_{1}\right): C \rightarrow D$ be internal functors.
An internal natural transformation $\varphi: f \rightarrow g$ from f to g is a morphism $\varphi: C_{0} \rightarrow D_{1}$ in C which makes the following diagrams commute.

$$
\underset{\substack{C_{1} \\ D_{1} \times \times_{D_{0}}, D_{1} \xrightarrow{\left(\varphi \sigma, g_{1}\right)} \\ \mu^{\prime}}}{D_{1} \times{ }_{C_{0}} D_{1}} \underset{D_{1}}{D_{1}}
$$

Let k be a commutative ring. We denote by Alg $_{k}$ the category of commutative graded K -algebras and homomorphisms between them. For objects A_{*} and B_{*} of Alg $_{k}$, we define maps

$$
i_{1}: A_{*} \rightarrow A_{*} \otimes_{k} B_{*} \text { and } i_{2}: B_{*} \rightarrow A_{*} \otimes_{k} B_{*}
$$

by $i_{1}(x)=x \otimes 1$ and $i_{2}(y)=1 \otimes y$, respectively. Then, a diagram

$$
A_{*} \xrightarrow{i_{1}} A_{*} \otimes_{k} B_{*} \stackrel{i_{2}}{2} B_{*}
$$

is a coproduct of A_{*} and B_{*} in $A l g_{k}$.
For morphisms $f, g: A_{*} \rightarrow B_{*}$ in A_{k}, let I be the ideal of B generated by $\left\{f(x)-g(x) \mid x \in A_{*}\right\}$. Then, the quotient map $p: B_{*} \rightarrow B_{*} / I$ is a coequalizer of f and g.

Hence $\mathrm{Alg}_{\mathrm{k}}$ is a category with finite colimits, in other words, the opposite category $\mathrm{Alg}_{\mathrm{k}}^{\mathrm{p}}$ of $\mathrm{Alg}_{\mathrm{k}}$ is a category with finite limits. Thus we can consider the notion of internal categories in Algk. ${ }_{k}^{p}$.

Definition 1.4
We call an internal groupoid in Alge ${ }_{k}^{\text {p }}$ a Hopf algebroid.
§2. A brief review on fibered category
Let $p: F \rightarrow C$ be a functor.
For an object X of C, we denote by $F \times$ the subcategory of F consisting of objects M of F satisfying $p(M)=X$ and morphisms φ satisfying $p(\varphi)=i d x$.

For a morphism $f: X \rightarrow Y$ of C and $M \in O b F x, N \in O b F y$, we put

$$
F_{f}(M, N)=\{\varphi \in F(M, N) \mid p(\varphi)=f\} .
$$

Definition 2.1
Let $\alpha: M \rightarrow N$ be a morphism in F and set $X=p(M), f=p(\alpha)$.
We call α a cartesian morphism if, for any $L \in O b F x$, the map $F_{X}(L, M) \rightarrow F_{f}(L, N)$ defined by $\varphi \mapsto \alpha \varphi$ is bijective.

Proposition 2.2

Let $\alpha_{i}: M_{i} \rightarrow N_{i}(i=1,2)$ be morphisms in F such that $p\left(M_{1}\right)=p\left(M_{2}\right)$, $p\left(N_{1}\right)=p\left(N_{2}\right), p\left(\alpha_{1}\right)=p\left(\alpha_{2}\right)$ and $\lambda: N_{1} \rightarrow N_{2}$ a morphism in $F_{p}\left(N_{1}\right)$.
If α_{2} is cartesian, there exists unique morphism $\mu: M_{1} \rightarrow M_{2}$ in $F_{p\left(M_{1}\right)}$ that satisfies $\alpha_{2} \mu=\lambda \alpha_{1}$.

Corollary 2.3
If $\alpha_{i}: M_{i} \rightarrow N(i=1,2)$ are cartesian morphisms in F such that $p\left(M_{1}\right)=p\left(M_{2}\right)$ and $p\left(\alpha_{1}\right)=p\left(\alpha_{2}\right)$, there is unique morphism $\mu: M_{1} \rightarrow M_{2}$ such that $p(\mu)=i d_{p\left(M_{1}\right)}$ and $\alpha_{2} \mu=\alpha_{1}$. Moreover, μ is an isomorphism.

Definition 2.4

Let $f: X \rightarrow Y$ be a morphism in C and $N \in O b F_{Y}$. If there exists a cartesian morphism $\alpha: M \rightarrow N$ such that $p(\alpha)=f, M$ is called an inverse image of N by f .
We denote M by $f^{*}(N)$ and α by $\alpha_{f}(N): f^{*}(N) \rightarrow N$.
By (2.3), $f^{*}(N)$ is unique up to isomorphism.

Remark 2.5

For $X \in O b C$ and $N \in O b F_{x}$, since the identity morphism id ${ }_{N}$ of N is obviously cartesian, the inverse image of N by the identity morphism idx of X always exists and $\alpha_{i d x}(N): i d_{x}^{*}(N) \rightarrow N$ can be chosen as the identity morphism of N . By the uniqueness of id ${ }_{x}^{*}(N)$ up to isomorphism, $\alpha_{i d x}(N): i d_{x}^{*}(N) \rightarrow N$ is an isomorphism for any choice of id ${ }_{x}^{\star}(\mathbb{N})$.

Let $f: X \rightarrow Y$ be a morphism in C. Assume that cartesian morphisms $\alpha_{f}(N): f^{*}(N) \rightarrow N$ and $\alpha_{f}\left(N^{\prime}\right): f^{*}\left(N^{\prime}\right) \rightarrow N^{\prime}$ which satisfy $p\left(\alpha_{f}(N)\right)=p\left(\alpha_{f}\left(N^{\prime}\right)\right)=f$ exist. Then, for a morphism $\varphi: N \rightarrow N^{\prime}$ in F_{Y}, there exists unique morphism $f^{*}(\varphi): f^{*}(N) \rightarrow f^{*}\left(N^{\prime}\right)$ that makes the right diagram
 commute. Moreover, for a morphism $\psi: N^{\prime} \rightarrow N^{\prime \prime}$ in F_{Y}, if an inverse image $f^{*}\left(N^{\prime \prime}\right)$ of $N^{\prime \prime}$ by f exists, we have the following diagram.
It follows from (2.2) that $f^{*}(\psi \varphi)=f^{*}(\psi) f^{*}(\varphi)$ holds.

Proposition 2.6

Let $f: X \rightarrow Y$ be a morphism in C. Assume that there exists a cartesian morphism $\alpha_{f}(N): f^{*}(N) \rightarrow N$ for any $N \in O b F_{Y}$. Then a correspondence $N \mapsto f^{*}(N)$ defines a functor $f^{*}: F_{Y} \rightarrow F_{X}$ such that, for any morphism $\varphi: N \rightarrow N^{\prime}$ in F_{Y}, the following diagram commutes.

Definition 2.7
If the assumption of (2.6) is satisfied, we say that the functor of the inverse image by f exists.

Definition 2.8

If a functor $p: F \rightarrow C$ satisfies the following condition (i), p is called a prefibered category and if p satisfies both (i) and (ii), p is called a fibered category.
(i) For any morphism f in C, the functor of the inverse image by f exists.
(ii) The composition of cartesian morphisms is cartesian.

For categories C and D, we denote by Funct(C, D) the category of functors from C to D and natural transformations between them.

Definition 2.9

Let $p: F \rightarrow C$ be a functor. A map

$$
\kappa: \operatorname{Mor} C \rightarrow \bigsqcup_{X, Y \in O b c} F u n c t\left(F_{Y}, F_{X}\right)
$$

is called a cleavage if $\kappa(f)$ is an inverse image functor $f^{*}: F_{Y} \rightarrow F_{X}$ for $(f: X \rightarrow Y) \in$ Mor C.
A cleavage κ is said to be normalized if $\kappa(i d x)=i d_{F x}$ for any $X \in O b C$.
A functor $p: F \rightarrow C$ is called a cloven prefibered category
(resp. normalized cloven prefibered category) if a cleavage (resp. normalized cleavage) is given.
We assume that all fibered categories below are normalized and cloven fibered categories.

Let $f: X \rightarrow Y, g: Z \rightarrow X$ be morphisms in C and N an object of F_{Y}. If $p: F \rightarrow C$ is a prefibered category, there exists unique morphism $C_{f, g}(N): g^{*} f^{*}(N) \rightarrow(f g)^{*}(N)$ of F_{z}
 which makes the right diagram commute.
Then, we see the following.

Proposition 2.10

For a morphism $\varphi: M \rightarrow N$ in F_{Y}, the right diagram commutes. In other words, $c_{f, g}$ gives a natural transformation $g^{*} f^{*} \rightarrow(f g)^{*}$ of functors from F_{y} to F_{z}.

$$
\begin{aligned}
& g^{*} f^{*}(M) \xrightarrow{c_{f, g}(M)}(\mathrm{fg})^{*}(M) \\
& \mid{ }^{*}\left(\mathrm{Mf} f^{*}(\varphi)\right. \\
& \mathrm{g}^{*} f^{*}(\mathrm{~N}) \xrightarrow{c_{f, g}(\mathrm{~N})}(\mathrm{fg}){ }^{*}(\varphi) \\
& (\mathrm{fg})^{*}(\mathrm{~N})
\end{aligned}
$$

Proposition 2.11

Let $p: F \rightarrow C$ is a prefibered category. Then, p is a fibered category if and only if $c_{f, g}(N)$ is an isomorphism for any diagram $Z \xrightarrow{g} X \xrightarrow{f} Y$ in C and $N \in O b F y$.

Proposition 2.12
Let $p: F \rightarrow C$ be a cloven prefibered category. For a diagram
$Z \xrightarrow{\mathrm{~g}} X \xrightarrow{\mathrm{f}} Y \xrightarrow{h} W$ in C and an object M of F_{W}, we have

$$
c_{h, d_{Y}}(M)=\alpha_{i d_{Y}}\left(\mathrm{id}_{Y}^{*} h^{*}(M)\right), c_{i d w, h}(M)=h^{*}\left(\alpha_{\mathrm{id}}^{w}(M)\right)
$$

and the following diagram commutes.

$$
\begin{aligned}
& \left(f^{*} g^{*}\right) h^{*}(M) \xrightarrow{c_{g, f}\left(h^{*}(M)\right)}(g f)^{*} h^{*}(M) \xrightarrow{c_{h, g f}(M)}(h(g f))^{*}(M) \\
& \| \\
& f^{*}\left(g^{*} h^{*}\right)(M) \xrightarrow{f^{*}\left(c_{h, g}(M)\right)} f^{*}(h g)^{*}(M) \xrightarrow{c_{h g, f}(M)}((h g) f)^{*}(M)
\end{aligned}
$$

Example 2.13

For a commutative ring k, we denote by Modk the category of graded right k-modules and homomorphisms preserving degrees. We define a category MOD as follows.
ObMOD consists of triples (R_{*}, M_{*}, α) where $R_{*} \in O b$ Alg $_{k}$,
$M_{*} \in O b M_{k} d_{k}$ and $\alpha: M_{*} \otimes_{k} R_{*} \rightarrow M_{*}$ is a right R_{*}-module structure of M_{*}. A morphism from ($\mathrm{R}_{\star}, M_{*}, \alpha$) to (S_{*}, N_{*}, β) is a pair (λ, φ) of morphisms $\lambda \in \operatorname{Alg}_{k}\left(\mathrm{R}_{*} \mathrm{~S}_{\star}\right)$ and $\varphi \in \operatorname{Mod}_{k}\left(\mathrm{M}_{*}, \mathrm{~N}_{*}\right)$
such that the right diagram commutes.
Composition of $(\lambda, \varphi):\left(R_{*}, M_{*}, \alpha\right) \rightarrow\left(S_{*}, N_{*}, \beta\right)$ and $(\nu, \psi):\left(S_{*}, N_{*}, \beta\right) \rightarrow\left(T_{*}, L_{*}, \gamma\right)$ is defined to
 be $(\nu \lambda, \psi \varphi):\left(\mathrm{R}_{*}, M_{*}, \alpha\right) \rightarrow\left(T_{*}, L_{*}, r\right)$.

Define a functor $p:$ MOD \rightarrow Algk by $p\left(R_{*}, M_{*}, \alpha\right)=R_{*}$ and $p(\lambda, \varphi)=\lambda$. For a morphism $\lambda: S_{*} \rightarrow R_{*}$ in $A l g_{k}$ and an object (S_{*}, N_{*}, β) of MOD, let $\beta_{\lambda}:\left(N_{*} \otimes s_{*} R_{*}\right) \otimes_{k} R_{*} \rightarrow N_{*} \otimes s_{*} R_{*}$ be the following composition.

$$
\left(N_{*} \otimes s_{*} R_{*}\right) \otimes{ }_{k} R_{*} \cong N_{*} \otimes s_{*}\left(R_{*} \otimes{ }_{k} R_{*}\right) \xrightarrow{i d N_{*} \otimes s_{s} m} N_{*} \otimes s_{*} R_{*}
$$

Here m denotes the multiplication of R_{*}.
Let $i_{N_{*}}: N_{*} \rightarrow N_{*} \otimes s_{*} R_{*}$ be the map defined by $i_{N_{*}}(x)=x \otimes 1$.
Then, $\left(\lambda, i_{N_{*}}\right):\left(R_{*}, N_{*} \otimes s_{*} R_{*}, \beta_{\lambda}\right) \rightarrow\left(S_{*}, N_{*}, \beta\right)$ is a cartesian morphism in MOD ${ }^{\circ p}$ and the inverse image functor $\lambda^{*}:$ MOD $_{S_{*}}^{\circ p} \rightarrow$ MOD $_{R_{*}}^{o p}$ is given by $\lambda^{*}\left(S_{*}, N_{*}, \beta\right)=\left(R_{*}, N_{*} \otimes s_{*} R_{* j} \beta_{\lambda}\right)$ and $\lambda^{\star}\left(\mathrm{id}_{s_{k}} \varphi\right)=\left(i d_{R_{*}} \varphi \otimes \otimes_{s_{k}} i d_{R_{*}}\right)$. It can be verified that the composition of cartesian morphisms is cartesian. Hence $\mathrm{P}^{\mathrm{OP}:} \mathrm{MOD}^{\mathrm{OP}} \rightarrow \mathrm{Alg}_{k}^{\circ \mathrm{P}}$ is a fibered category.

For a morphism $\lambda: S_{*} \rightarrow R_{*}$ in A_{k}, we define a functor $\lambda_{*}:$ MOD $_{R_{*}} \rightarrow$ MOD $_{S_{*}}$ as follows.
For $\left(R_{*_{1}} M_{*_{1}} \alpha\right) \in$ ObMOD, we put $\lambda_{*}\left(R_{*_{l}} M_{*_{1}} \alpha\right)=\left(S_{*_{1}} M_{*_{1}} \alpha\left(i_{M_{*}} \otimes_{k} \lambda\right)\right)$. \left. For a morphism (id ${R_{*},} \varphi\right):\left(R_{*}, M_{*}, \alpha\right) \rightarrow\left(R_{*}, N_{*}, \beta\right)$ in $M O D_{R_{* \prime}}$, we put $\lambda_{*}\left(\mathrm{id}_{\mathrm{R}_{{ }^{\prime}}} \varphi\right)=\left(\mathrm{id}_{\mathrm{s}^{\prime}} \varphi\right)$. Then, it is easy to verify that
$\lambda_{*}:$ MOD $_{R_{*}} \rightarrow$ MOD $_{s_{*}}$ is a right adjoint of $\lambda^{*}:$ MOD $_{s_{*}} \rightarrow$ MOD $_{R_{*}}$.
Proposition 2.14
For any morphism $\lambda: \mathrm{R}_{*} \rightarrow \mathrm{~S}_{*}$ in Alg $_{\mathrm{k}}^{\mathrm{p}}$, the inverse image functor $\lambda^{*}:$ MOD $_{S_{*}}^{\circ p} \rightarrow$ MOD $_{R_{*}}^{\circ p}$ has a left adjoint $\lambda_{*}:$ MOD $_{R_{*}}^{\circ p} \rightarrow$ MOD $_{S_{*}}^{\circ p}$.
§3. Representations of internal categories
Let $p: F \rightarrow C$ be a fibered category. For a diagram $Y \stackrel{f}{f} X \xrightarrow{9} Z$ in C, we define a functor $F_{f, g}: F_{Y}^{\circ p} \times F_{z} \rightarrow$ Set by $F_{f, g}(M, N)=F_{x}\left(f^{*}(M), g^{*}(N)\right)$ for $M \in O b F_{Y}, N \in O b F_{Z}$ and $F_{f, g}(\varphi, \psi): \mathrm{F}_{\mathrm{f}, \mathrm{g}}(\mathrm{M}, \mathrm{N}) \rightarrow \mathrm{F}_{\mathrm{f}, \mathrm{g}}(\mathrm{K}, \mathrm{L})$ is defined to be the following composition for $(\varphi: K \rightarrow M) \in M o r F_{Y}$ and $(\psi: N \rightarrow \mathrm{~L}) \in$ MorFz.

$$
F_{x}\left(f^{*}(M), g^{*}(N)\right) \xrightarrow{g^{*}\left(()_{x}\right.} F_{x}\left(f^{*}(M), g^{*}(L)\right) \xrightarrow{f^{*}(\varphi)^{*}} F_{x}\left(f^{*}(K), g^{*}(N)\right)
$$

For a morphism $k: V \rightarrow X$ in $C, M \in O b F_{Y}$ and $N \in O b F_{Z}$, let us define a map $k_{M, N}^{\#}: F_{f, g}(M, N) \rightarrow F_{f k, g k}(M, N)$ to be the following composition.

$$
F_{f, g}(M, N)=F_{x}\left(f^{*}(M), g^{*}(N)\right) \xrightarrow{k^{*}} F_{v}\left(k^{*} f^{*}(M), k^{*} g^{*}(N)\right) \xrightarrow{\left(c_{f x}(M)^{-1}\right)^{*}}
$$

$$
F_{v}\left((f k)^{*}(M), k^{*} g^{*}(N)\right) \xrightarrow{c_{0}, k(N)_{*}} F_{v}\left((f k)^{*}(M),(g k)^{*}(N)\right)=F_{f k, g k}(M, N)
$$

Proposition 3.1

Let $\varphi: M \rightarrow L$ and $\psi: P \rightarrow N$ be morphisms in F_{Y} and F_{Z}, respectively. Then, the following diagram is commutative.

$$
\begin{aligned}
& F_{x}\left(f^{*}(L), g^{*}(P)\right) \xrightarrow{k_{L, P}^{+}} F_{V}\left((f k)^{*}(L),(g k)^{*}(P)\right) \\
& \downarrow^{*}(\varphi)^{*} g^{*}(\psi)_{*} \downarrow^{*} \quad \downarrow^{\prime}(f k)^{*}(\varphi)^{*}(g k)^{*}(\psi)_{*} \\
& F_{x}\left(f^{*}(M), g^{*}(N)\right) \xrightarrow{k_{M}^{*}, N} F_{V}\left((f k)^{*}(M),(g k)^{*}(N)\right)
\end{aligned}
$$

Hence we have a natural transformation $k^{\#}: F_{f, g} \rightarrow F_{f k, g k}$.
Proposition 3.2
For morphisms $f: X \rightarrow Y, g: X \rightarrow Z, k: V \rightarrow X, j: W \rightarrow V$ in C and $M \in O b F_{Y}, N \in O b F_{z}$, the following diagram is commutative.

Proposition 3.3

Let $f: X \rightarrow Y, g: X \rightarrow Z, h: X \rightarrow W, k: V \rightarrow X$ be morphisms in C. For objects L, M, N of F_{Y}, F_{Z}, F_{W}, respectively, the following diagram is commutative. Here, the horizontal maps "comp" are compositions of morphisms.

$$
\begin{aligned}
& F_{x}\left(f^{*}(L), g^{*}(M)\right) \times F_{x}\left(g^{*}(M), h^{*}(N)\right) \xrightarrow{c o m p} F\left(f^{*}(L), g^{*}(N)\right) \\
& \mathrm{k}_{\mathrm{L}, \mathrm{M}}^{\mathrm{M}} \times \mathrm{k}_{\mathrm{M}, \mathrm{~N}}^{\#} \\
& F_{x}\left((\mathrm{fk})^{*}(\mathrm{~L}),(\mathrm{gk})^{*}(\mathrm{M})\right) \times \mathrm{F}_{x}\left((\mathrm{gK})^{*}(\mathrm{M}),(\mathrm{hk})^{*}(\mathrm{~N})\right) \xrightarrow{\text { comp }} \mathrm{F}_{x}\left((\mathrm{fk})^{*}(\mathrm{~L}),(\mathrm{gK})^{*}(\mathrm{~N})\right)
\end{aligned}
$$

For $\xi \in F_{f, g}(M, N)$, we denote $k_{M, N}^{\#}(\xi)$ by ξ_{k} for short below.

Definition 3.4

Let $C=\left(C_{0}, C_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ be an internal category in C.
A pair (M, ξ) of an object M of $F_{C_{0}}$ and a morphism $\xi: \sigma^{*}(M) \rightarrow \tau^{*}(M)$ in $\mathrm{F}_{\mathrm{C}_{1}}$ is called a representation of C on M if the following conditions are satisfied.
(A) Let $C_{1} \stackrel{\text { pr }}{\xrightarrow{2}} C_{1} \times C_{0} C_{1} \xrightarrow{\mathrm{pr}_{2}} C_{1}$ be a limit of $C_{1} \xrightarrow{\tau} C_{0} \leftarrow C_{1}$.

Then, the following diagram is commutative.

$$
\begin{gathered}
\left.\left(\sigma p r_{1}\right)^{*}(M)=(\sigma \mu)^{*}(M) \xrightarrow{\xi_{\mu}(\tau \mu)^{*}(M)=\left(\tau p r_{2}\right)^{*}(M)} \begin{array}{c}
\xi_{\text {pri }} \\
\left(\tau p r_{1}\right)^{*}(M)=\left(\sigma p r_{2}\right)^{*}(M)
\end{array}\right)
\end{gathered}
$$

(U) $\xi_{\varepsilon}: M=(\sigma \varepsilon)^{*}(M) \rightarrow(\tau \varepsilon)^{*}(M)=M$ coincides with the identity morphism of M.

Let (M, ξ) and (N, ζ) be representations of C on M and N, respectively. A morphism $\varphi: M \rightarrow N$ in $F_{c_{0}}$ is called a morphism of representations of C if φ makes the following diagram commute.

Thus we have the category of the representations of C, which we denote by $\operatorname{Rep}(C ; F)$.

Let $C=\left(C_{0}, C_{1} ; \sigma, \tau, \varepsilon, \mu\right), D=\left(D_{0}, D_{1} ; \sigma^{\prime}, \tau^{\prime}, \varepsilon^{\prime}, \mu^{\prime}\right)$ be internal categories in C and $\mathrm{f}=\left(\mathrm{f}_{\mathrm{o}}, \mathrm{f}_{1}\right): \mathrm{D} \rightarrow \mathrm{C}$ an internal functor.
For a representation (M, ξ) of C on M, we define

$$
\xi_{f}: \sigma^{\prime *}\left(f_{\sigma}^{*}(M)\right) \rightarrow \tau^{* *}\left(f_{0}^{*}(M)\right)
$$

to be the following composition.

$$
\begin{aligned}
& \sigma^{* *}\left(f_{0}^{*}(M)\right) \xrightarrow{c_{f_{0}} \cdot(M)}\left(f_{0}^{*} \sigma^{\prime}\right)^{*}(M)=\left(\sigma f_{1}\right)^{*}(M) \xrightarrow{\xi_{5}}\left(\tau f_{1}\right)^{*}(M)=\left(f_{0}^{*} \tau^{\prime}\right)(M) \\
& \xrightarrow{\mathrm{c}_{\mathrm{F}_{2}, \tau}(\mathrm{M})^{-1}} \tau^{\prime *}\left(\mathrm{f}_{\mathrm{f}}^{*}(\mathrm{M})\right)
\end{aligned}
$$

Proposition 3.5

(ffól$\left.(M), \xi_{f}\right)$ is a representation of D on $f_{0}^{*}(M)$. If $\varphi:(M, \xi) \rightarrow(N, \zeta)$ is
a morphism of representations of C, then $f^{*}(\varphi): f^{*}(M) \rightarrow f_{0}^{*}(N)$ gives
a morphism fố $(\varphi):\left(f_{0}^{*}(M), \xi_{f}\right) \rightarrow\left(f_{0}^{*}(N), \zeta_{f}\right)$ of representations of D.

Definition 3.6
We call ($f_{0}^{*}(M), \xi_{f}$) the restriction of (M, ξ) along f. It follows from (3.5) that we have a functor $f: \operatorname{Rep}(C ; F) \rightarrow \operatorname{Rep}(D ; F)$ given by

$$
f^{\prime}(M, \xi)=\left(f^{*}(M), \xi_{f}\right) \text { and } f^{\prime}(\varphi)=f_{o}^{*}(\varphi) .
$$

Let $C=\left(C_{0}, C_{1} ; \sigma, \tau, \varepsilon, \mu\right), D=\left(D_{0}, D_{1} ; \sigma^{\prime}, \tau^{\prime}, \varepsilon^{\prime}, \mu^{\prime}\right)$ be internal categories in $C, f=\left(f_{0}, f_{1}\right), g=\left(g_{0}, g_{1}\right): D \rightarrow C$ internal functors and χ an internal natural transformation from f to g. For a representation (M, ξ) of C on M, we define a morphism $\chi_{(M, \xi)}: f_{0}^{*}(M) \rightarrow g_{0}^{*}(M)$ in $F_{D_{0}}$ to be

$$
\chi_{M, M}^{\#}(\xi): f_{o}^{*}(M)=(\sigma \chi)^{*}(M) \rightarrow(\tau \chi)^{*}(M)=g_{o}^{*}(M) .
$$

Proposition 3.7

$\chi_{(M, \xi)}$ is a morphism of representations from $f^{\prime}(M, \xi)=\left(f^{*}(M), \xi_{f}\right)$ to $g^{\prime}(M, \xi)=\left(g_{0}^{*}(M), \xi_{g}\right)$ and the right diagram in $\operatorname{Rep}(D ; F)$ commutes for a morphism $\varphi:(M, \xi) \rightarrow(N, \zeta)$ of representations of C. Thus we have a natural transformation
 $\chi^{\prime}: \mathbf{f}^{\prime} \rightarrow \mathbf{g}^{\prime}$.
§4. Notion of fibered representable pair
Let $p: F \rightarrow C$ be a fibered category and $Y \stackrel{f}{\leftarrow} \times \xrightarrow{g} Z$ a diagram in C. For $M \in O b F_{Y}$, we define a functor $\mathrm{F}_{\mathrm{f}, \mathrm{M}}: \mathrm{F}_{\mathrm{z}} \rightarrow$ Set by

$$
F_{f, g, M}(N)=F_{x}\left(f^{*}(M), g^{*}(N)\right) \text { and } F_{f, g, M}(\varphi)=g^{*}(\varphi)_{*} \text {. }
$$

For $N \in O b F_{Z}$, we define a functor $F_{f, g}^{N}: F_{Y}^{O P} \rightarrow$ Set by

$$
F_{f, g}^{N}(M)=F_{x}\left(f^{*}(M), g^{*}(N)\right) \text { and } F_{f, g}^{N}(\psi)=f^{*}(\psi)^{*} \text {. }
$$

Definition 4.1
If $\mathrm{F}_{\mathrm{f}, \mathrm{M}, \mathrm{M}}$ (resp. $\mathrm{F}_{\mathrm{f}, \mathrm{g}}^{\mathrm{N}}$) is representable, we call (f, g) a left (resp. right) fibered representable pair with respect to M (resp. N). We say that (f, g) is a left (resp. right) fibered representable pair if (f, g) is a left (resp. right) fibered representable pair with respect to any $M \in O b F_{y}$ (resp. $N \in O b F_{z}$). pair for any diagram $S_{*} \stackrel{\lambda}{\sim} \mathrm{R}_{*} \xrightarrow{\nu} \mathrm{~T}_{*}$ in $\mathrm{Alg}_{\mathrm{k}}^{\mathrm{op}}$.

If (f, g) is a left fibered representable pair with respect to $M \in O b F_{Y}$, we choose an object $M_{[f, g]}$ of F_{Z} and denote by

$$
P_{f, g}(M)_{N}: F_{x}\left(f^{*}(M), g^{*}(N)\right) \rightarrow F_{z}\left(M_{[f, g l}, N\right)
$$

a bijection which is natural in $N \in O b F_{z}$.
We denote by $\iota_{f, g}(M): f^{*}(M) \rightarrow g^{*}\left(M_{[f, g]}\right)$ the morphism in $F x$ which is mapped to the identity morphism of $M_{[f, g]}$ by

$$
P_{f, g}(M)_{M_{[f, g}}: F_{x}\left(f^{*}(M), g^{*}\left(M_{[f, g]}\right)\right) \rightarrow F_{z}\left(M_{[f, g]}, M_{[f, g]}\right) .
$$

We note that, if $g^{*}: F_{z} \rightarrow F_{x}$ has a left adjoint $g_{x}: F_{x} \rightarrow F_{z}$, we can choose $g_{*}\left(f^{*}(M)\right)$ as $M_{[f, g]}$. We denote by $\eta: i_{F_{x}} \rightarrow g^{*} g_{*}$ the unit of the adjunction $g_{*}-g^{*}$. Then, we have

$$
\iota_{f, g}(M)=n_{f^{*}(M)}: f^{*}(M) \rightarrow g^{*}\left(g_{*}\left(f^{*}(M)\right)\right)=g^{*}\left(M_{[f, g]}\right) .
$$

Proposition 4.3

Let $\varphi: L \rightarrow M$ be a morphism in F_{Y}. Suppose that (f, g) is a left fibered representable pair with respect to L and M.
Define a morphism $\varphi_{[f, g]}: L_{[f, g]} \rightarrow M_{[f, g]}$ of F_{z} to be the image of $\iota_{f, g}(M) f^{*}(\varphi)$ by the following map.

$$
P_{f, g}(L)_{M_{[f, g]}}: F_{x}\left(f^{*}(L), g^{*}\left(M_{[f, g}\right)\right) \rightarrow F_{z}\left(L_{[f, g]}, M_{[f, g]}\right)
$$

Then, the following diagram commutes for any $N \in O b F_{z}$.

$$
\begin{aligned}
& F_{x}\left(f^{*}(M), g^{*}(N)\right) \xrightarrow{f^{*}(\varphi)^{*}} F_{x}\left(f^{*}(L), g^{*}(N)\right)
\end{aligned}
$$

If (f, g) is a left fibered representable pair with respect to $N \in O b F_{Y}$ and $\psi: M \rightarrow N$ is a morphism in F_{Y}, we have $(\psi \varphi)_{[f, g]}=\psi_{[f, g]} \varphi_{[f, g]}$.

Proposition 4.4

Let $k: V \rightarrow X$ be a morphism in C. Suppose that (f, g) and ($f k, g k$) are left fibered representable pairs with respect to $M \in O b F_{Y}$. Define a morphism $M_{k}: M_{[f k, g k]} \rightarrow M_{[f, g]}$ of F_{z} to be the image of $k_{M, M_{[f, g]}}^{\#}\left(l_{f, g}(M)\right)$ by the following map.

$$
P_{f k, g k}\left(M_{M_{[f, g}}: F_{x}\left((f k)^{*}(M),(g k)^{*}\left(M_{[f, g]}\right)\right) \rightarrow F_{z}\left(M_{[f k, g k]}, M_{[f, g]}\right)\right.
$$

Then, the following diagram commutes for any $N \in O b F_{z}$.

$$
\begin{aligned}
& F_{x}\left(f^{*}(M), g^{*}(N)\right) \xrightarrow{k_{M}^{*} N} F_{v}\left((f k)^{*}(M),(g k)^{*}(N)\right) \\
& \underset{F_{Z}\left(M_{[f, g]}, N\right)}{\downarrow P_{f g}(M)_{N}} \xrightarrow{M_{k}^{*}} \xrightarrow{\downarrow} F_{Z}\left(M_{[f k, g k]}, N\right)
\end{aligned}
$$

If ($\mathrm{fkh}, \mathrm{gkh}$) is a left fibered representable pair with respect to M for a morphism $h: U \rightarrow V, M_{k h}: M_{[f k h, g k h]} \rightarrow M_{[f, g]}$ coincides with a composition $M_{[f k h, g k h]} \xrightarrow{M_{h}} M_{[f k, g k]} \xrightarrow{M_{k}} M_{[f, g]}$.

From now on, we assume left fibered representability if necessary.
Proposition 4.5
Under the assumptions of (4.3) and (4.4), the right diagram is commutative.

Remark 4.6
For morphisms $f: X \rightarrow Y, g: X \rightarrow Z, k: V \rightarrow X, i: W \rightarrow Z, j: W \rightarrow T$, $h: U \rightarrow W$ in C and $M \in O b F y$, it follows from the above result that the following diagram is commutative.

We denote $\left(M_{k}\right)_{[i, j]}\left(M_{[f k, g k]}\right)_{h}=\left(M_{[f k, g k]}\right)_{h}\left(M_{k}\right)_{[i h, j h]}$ by $\left(M_{k}\right)_{h}$.

Proposition 4.7

For morphisms $f: X \rightarrow Y, g: X \rightarrow Z, h: X \rightarrow W$ of C and $M \in O b F_{Y}$, we define a morphism $\delta_{f, g, h, M}: M_{[f, h]} \rightarrow\left(M_{[f, g]}\right)_{[g, h]}$ in F_{W} to be the image of $\iota_{g, h}\left(M_{[f, g]}\right) \iota_{f, g}(M)$ by

$$
P_{f, h}\left(M_{\left.\left(M_{[f, g}\right)_{[g, ~}\right]} \cdot F_{x}\left(f^{*}(M), h^{*}\left(\left(M_{[f, g}\right)[g, h]\right)\right) \rightarrow F_{W}\left(M_{[f, h],}\left(M_{[f, g]}\right)_{[g, h]}\right) .\right.
$$

Then, the following diagram commutes for any $N \in O b F w$.

$$
\begin{aligned}
& F_{x}\left(g^{*}\left(M_{[f, g]}\right), h^{*}(N)\right) \xrightarrow{\iota_{f, g}(M)^{*}} F_{x}\left(f^{*}(M), h^{*}(N)\right)
\end{aligned}
$$

Proposition 4.8
For morphisms $f: X \rightarrow Y, g: X \rightarrow Z, h: X \rightarrow W, i: X \rightarrow V, k: V \rightarrow X$ in C, $M, L \in O b F_{Y}$ and a morphism $\varphi: L \rightarrow M$ in F_{Y}, the following diagrams are commutative.

Let P be a poset defined as follows.
Ob $P=\{0,1,2,3,4,5\}$ and $P(i, j)$ is not empty if and only if $\mathrm{i}=\mathrm{j}$ or $\mathrm{i}=0$ or $(\mathrm{i}, \mathrm{j})=(1,3),(1,4),(2,4),(2,5)$. We put $P(i, j)=\left\{\tau_{i j}\right\}$ if $P(i, j)$ is not empty.

For a functor $D: P \rightarrow C$ and $M \in O b F_{D(3)}$, we put $D\left(\tau_{i j}\right)=f_{i j}$ and define a morphism

$$
\theta_{D}(M): M_{\left[f_{13} f_{01}, f_{25 f_{02}}\right]} \rightarrow\left(M_{\left[f_{3},\right.}, f_{14}\right)_{\left[f_{24}, f_{25}\right]}
$$

in $F_{D(5)}$ to be the following composition.

Proposition 4.9

For a morphism $\varphi: L \rightarrow M$ of F_{Y}, the following diagram is commutative.

$$
\begin{aligned}
& L_{\left[f_{13} f_{01}, f_{25} f_{02}\right]} \xrightarrow{\theta_{D}(L)}\left(L_{\left[f_{13}, f_{14}\right]}\right)_{\left[f_{24}, f_{25}\right]}
\end{aligned}
$$

Proposition 4.10

Let $D, E: P \rightarrow C$ be functors which satisfies $D(i)=E(i)$ for $i=3,4,5$ and $\lambda: D \rightarrow E$ a natural transformation which satisfies $\lambda_{i}=i d_{D(i)}$ for $\mathrm{i}=3,4,5$. Put $\mathrm{D}\left(\tau_{\mathrm{ij}}\right)=\mathrm{f}_{\mathrm{ij}}$ and $\mathrm{E}\left(\tau_{\mathrm{ij}}\right)=\mathrm{g}_{\mathrm{ij}}$. The following diagram is commutative for $M \in O b F_{D(3)}$.

$$
\begin{aligned}
& M_{\left[f_{13} f_{01}, f_{25} f_{02}\right]} \xrightarrow{\theta_{\mathrm{D}}(M)}\left(M_{\left[f_{13}, f_{44}\right]}\right)_{\left[f_{24}, f_{25}\right]}
\end{aligned}
$$

For a diagram $Y \stackrel{f}{\leftarrow} X \xrightarrow{g} Z \stackrel{h}{-} V \stackrel{i}{\rightarrow} W$ in C, let $X \stackrel{\text { prx }}{\leftrightarrows} X \times_{Z} V \xrightarrow{\text { prv }} V$ be a limit of $X \xrightarrow{g} Z \stackrel{h}{\leftarrow} V$. We define a functor $D_{f, g, h, i}: P \rightarrow C$ by
$D_{f, g, h, i}(0)=X \times_{z} V, D_{f, g, h, i}(1)=X, D_{f, g, h, i}(2)=V, D_{f, g, h ; i}(3)=Y, D_{f, g, h, i}(4)=Z$,
$D_{f, g, h, i}(5)=W$ and $D_{f, g, h ;}\left(\tau_{01}\right)=p r_{x}, D_{f, g, h, i}\left(\tau_{02}\right)=p r_{v}, D_{f, g, h, i}\left(\tau_{13}\right)=f$, $D_{f, g, h, i}\left(\tau_{14}\right)=g, D_{f, g, h ;}\left(\tau_{24}\right)=h, D_{f, g, h, i}\left(\tau_{25}\right)=\mathrm{i}$.

We denote $\theta_{D_{f, g, i}}(M): M_{[f p r x, i p r y]} \rightarrow\left(M_{[f, g]}\right)_{[h, i]}$ by $\theta_{f, g, h, i}(M)$.
§5. Existence of induced representations

Definition 5.1

For a fibered category $\mathrm{p}: \mathrm{F} \rightarrow \boldsymbol{C}$, we say that an internal category $C=\left(C_{0}, C_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ in C is left (resp. right) fibered representable if (σ, τ) and ($\sigma p r_{1}, \tau p r_{2}$) are left (resp. right) fibered representable pairs.

We assume that internal categories below are left fibered representable unless otherwise stated.

Proposition 5.2

Suppose that $C=\left(C_{0}, C_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ is a left fibered representable internal category. For $M \in O b F_{c_{0}}$ and $\xi \in F_{c_{1}}\left(\sigma^{*}(M), \tau^{*}(M)\right)$, we put

$$
\hat{\xi}=P_{\sigma, \tau}(M)_{M}(\xi): M_{[\sigma, \tau]} \rightarrow M .
$$

Then, (M, ξ) is a representation of C on M if and only if
a composition $M=M_{[\sigma \varepsilon, \tau \varepsilon]} M_{\varepsilon} M_{[\sigma, \tau]} \xrightarrow{\hat{\xi}} M$ coincides with the identity morphism of M and the following diagram is commutative.

Proposition 5.3

Let (M, ξ) and (N, ζ) be representations of C on M and N, respectively and $\varphi: M \rightarrow N$ a morphism in $F_{c_{0}}$. We put

$$
\hat{\xi}=P_{\sigma, \tau}(M)_{M}(\xi): M_{[\sigma, \tau]} \rightarrow M \text { and } \hat{\zeta}=P_{\sigma, \tau}(N)_{N}(\zeta): N_{[\sigma, \tau]} \rightarrow N .
$$

Then, φ defines a morphism $\varphi:(M, \xi) \rightarrow(N, \zeta)$ of representations if and only if the following diagram is commutative.

Example 5.4

Consider the fibered category $\mathrm{p}^{0 P:} \mathrm{MOD}{ }^{\circ P} \rightarrow$ Alg $_{k}^{o p}$.
Let $\Gamma=\left(A_{*}, \Gamma_{*} ; \sigma, \tau, \varepsilon, \mu\right)$ be a Hopf algebroid in Alg_{k} and $\mathrm{M}=\left(\mathrm{A}_{*}, M_{*}, \alpha\right)$ an object of MOD A_{*}. Then, we have

$$
M_{[\sigma, \tau]}=\tau_{*}\left(\sigma^{*}(\mathrm{M})\right)=\left(\mathrm{A}_{*}, M_{*} \otimes_{A_{*}}^{\sigma} \Gamma_{*}, \alpha_{\sigma}\left(\mathrm{id}_{M_{*} \otimes_{A .}}^{\sigma} \Gamma_{*} \otimes k \tau\right)\right) .
$$

Define a map $i_{\Gamma_{*}}: M_{*} \rightarrow M_{*} \otimes_{A_{*}}^{\tau} \Gamma_{*}$ by $i_{\Gamma_{*}}(x)=x \otimes 1$. For a morphism

$$
\xi=\left(i d_{*}, \tilde{\xi}\right): \sigma^{*}(\mathrm{M})=\left(\Gamma_{*}, M_{*} \otimes_{A_{*}}^{\sigma} \Gamma_{*}, \alpha_{\sigma}\right) \rightarrow\left(\Gamma_{*}, M_{*} \otimes_{A_{*},}^{\tau} \Gamma_{*}, \alpha_{\tau}\right)=\tau^{*}(\mathrm{M})
$$

in $\mathrm{MOD}_{\Gamma_{*}}^{\mathrm{OP}}$ we denote by $\bar{\xi}: M_{*} \rightarrow M_{*} \otimes_{A_{*}}^{\sigma} \Gamma_{*}$ the following composition.

$$
M_{*} \xrightarrow{i_{\Gamma_{*}}} M_{*} \otimes_{A_{*}}^{\tau} \Gamma_{*} \xrightarrow{\tilde{\xi}} M_{*} \otimes_{A_{*}}^{\sigma} \Gamma_{*}
$$

Then, $\left(\operatorname{id}_{A_{*}} \bar{\xi}\right): M \rightarrow M_{[\sigma, \tau]}$ is a morphism in $M_{A_{A_{*}}}$ and this coincides with a morphism $\hat{\xi}=P_{\sigma, \tau}(M) M(\xi): M_{[\sigma, \tau]} \rightarrow M$ in $M_{A_{*}}^{\circ P}$.

Put $\beta=\alpha_{\sigma}\left(\mathrm{id}_{M_{*} \otimes \otimes_{A}^{\sigma} \cdot \Gamma_{*}} \otimes_{k} \tau\right):\left(M_{*} \otimes_{A_{*}}^{\sigma} \Gamma_{*}\right) \otimes_{k} A_{*} \rightarrow M_{*} \otimes_{A_{*}}^{\sigma} \Gamma_{*}$. Then we have the following equalities.
$M_{\left[\sigma p r_{1}, \tau p r_{2}\right]}=M_{[\sigma \mu, \tau \mu]}=\left(A_{*}, M_{*} \otimes_{A_{*}}^{\mu \sigma}\left(\Gamma_{*} \otimes_{A_{*}} \Gamma_{*}\right), \alpha_{\mu \sigma}\left(\mathrm{id}_{M_{*}} \otimes_{A_{*}}^{\mu \sigma}\left(\Gamma_{*} \otimes_{A_{.}}, \Gamma_{*}\right) \otimes_{k} \mu \tau\right)\right)$ $\left(M_{[\sigma, \tau]}\right)[\sigma, \tau]=\left(A_{*}\left(M_{*} \otimes_{A_{*}}^{\sigma} \Gamma_{*}\right) \otimes_{A_{*}}^{\sigma} \Gamma_{* 1} \beta_{\sigma}\left(\mathrm{id}\left(M_{*} \otimes_{A_{.}}^{\sigma} \Gamma_{*}\right) \otimes_{A_{.}}^{\sigma} \Gamma_{*} \otimes_{k} \tau\right)\right)$
Let $\bar{\theta}_{\sigma, \tau, \sigma, \tau}(M):\left(M_{*} \otimes_{A_{*}}^{\sigma} \Gamma_{*}\right) \otimes_{A_{*}} \Gamma_{*} \rightarrow M_{*} \otimes_{A_{*}}^{\mu \sigma}\left(\Gamma_{*} \otimes_{A_{*}} \Gamma_{*}\right)$ be a map defined by $\bar{\theta}_{\sigma, \tau, \sigma, \tau}(M)((x \otimes \mathrm{~g}) \otimes h)=\mathrm{x} \otimes(\mathrm{g} \otimes \mathrm{h}) . \bar{\theta}_{\sigma, \tau, \sigma, \tau}(\mathrm{M})$ is an isomorphism of right A_{*}-modules and $\theta_{\sigma, \tau, \sigma, \tau}(M)=\left(\operatorname{id}_{A_{*}} \bar{\theta}_{\sigma, \tau, \sigma, \tau}(M)\right)$ holds.
Let $i_{M_{*}}: M_{*} \rightarrow M_{*} \otimes A_{*} A_{*}$ be the isomorphism given by $i_{M_{*}}(x)=x \otimes 1$. Morphisms $\mathrm{M}_{\varepsilon}: \mathrm{M}=\mathrm{M}_{[\sigma \varepsilon, \tau \varepsilon]} \rightarrow \mathrm{M}_{[\sigma, \tau]}$ and $\mathrm{M}_{\mu}: \mathrm{M}_{[\sigma \mu, \tau \mu]} \rightarrow \mathrm{M}_{[\sigma, \tau]}$ in $\mathrm{MOD}_{A_{*}}^{\circ \mathrm{P}}$ are given by $M_{\varepsilon}=\left(i d_{A_{*}} i_{M_{*}}^{-1}\left(i d_{M_{*}} \otimes_{A_{*}} \varepsilon\right)\right)$ and $M_{\mu}=\left(i d_{A_{*}}, i d_{M_{*}} \otimes_{A_{*}} \mu\right)$.
$\hat{\xi}_{[\sigma, \tau]}:\left(\mathrm{M}_{[\sigma, \tau]}\right)_{[\sigma, \tau]} \rightarrow \mathrm{M}_{[\sigma, \tau]}$ is given by $\hat{\xi}_{[\sigma, \tau]}=\left(\right.$ id $\left._{A_{*}}, \bar{\xi}_{\otimes_{A *}} \mathrm{id}_{\Gamma^{*}}\right)$.

It follows from (5.2) that a morphism

$$
\xi=\left(\mathrm{id} \Gamma_{*}, \tilde{\xi}\right): \sigma^{*}(\mathrm{M})=\left(\Gamma_{*}, M_{*} \otimes_{A}^{\sigma} \Gamma_{*}, \alpha_{\sigma}\right) \rightarrow\left(\Gamma_{*}, M_{*} \otimes_{A_{*}}^{\tau} \Gamma_{*}, \alpha_{\tau}\right)=\tau^{*}(\mathrm{M})
$$

in $M O D_{\Gamma}^{\text {op }}$ is a representation of Γ on $M=\left(A_{*}, M_{*}, \alpha\right)$ if and only if the following diagrams in the category of right A_{\star}-modules are commutative.

We call a pair ($M_{*}, \bar{\xi}: M_{*} \rightarrow M_{*} \otimes_{A_{*}}^{\sigma} \Gamma_{*}$) of a right A_{*}-module and a homomorphism of right A_{\star}-modules which makes the above diagrams commute a right Γ_{*}-comodule.

For $M \in O b F_{c_{0}}$, we assume that

$$
\theta_{\sigma, \tau, \sigma, \tau}(M): M_{\left[\sigma p r_{1}, \tau p_{2}\right]} \rightarrow\left(M_{[\sigma, \tau]}\right)_{[\sigma, \tau]}
$$

is an isomorphism. Define a morphism

$$
\hat{\mu}_{M}:\left(M_{[\sigma, \tau]}\right)[\sigma, \tau] \rightarrow M_{[\sigma, \tau]}
$$

in $\mathrm{F}_{\mathrm{C}_{0}}$ to be the following composition.

$$
\left(M_{[\sigma, \tau]}\right)[\sigma, \tau] \xrightarrow{\theta_{\sigma, \tau, \sigma \tau}(M)^{-1}} M_{\left[\sigma p r_{1}, \tau \mathrm{pr}_{2}\right]}=\mathrm{M}_{[\sigma \mu, \tau \mu]} \xrightarrow{\mathrm{M}_{\mu}} \mathrm{M}_{[\sigma, \tau]}
$$

We put $\mu_{M}^{\prime}=P_{\sigma, \tau}\left(M_{[\sigma, \tau]}\right)_{[\sigma, \tau]}^{-1}\left(\hat{\mu}_{M}\right): \sigma^{*}\left(M_{[\sigma, \tau]}\right) \rightarrow \tau^{*}\left(M_{[\sigma, \tau]}\right)$.
Let $C_{1} \times C_{0} C_{1} \stackrel{p p_{12}}{ } C_{1} \times{ }_{C_{0}} C_{1} \times C_{0} C_{1} \xrightarrow{p r_{23}} C_{1} \times C_{0} C_{1}$ be a limit of a diagram $C_{1} \times C_{0} C_{1} \xrightarrow{\mathrm{pr}_{2}} C_{1} \stackrel{{ }^{\mathrm{pr}}{ }_{1}}{ } C_{1} \times C_{0} C_{1}$.
Proposition 5.5.
If $\theta_{\sigma, \tau, \sigma p r_{1}, \tau \mathrm{pr}_{2}}(M): M_{\left[\sigma p r_{1} \mathrm{pr}_{12}, \tau \mathrm{pr}_{2} \mathrm{pr}_{23}\right]} \rightarrow\left(\mathrm{M}_{[\sigma, \tau]}\right)_{\left[\sigma \mathrm{pr}_{1}, \tau \mathrm{pr}_{2}\right]}$ is an epimorphism, $\left(M_{[\sigma, \tau]}, \mu_{M}^{\prime}\right)$ is a representation of C.

Theorem 5.6

Let M be an object of $F_{c_{0}}$ and (N, ζ) a representation of C. Assume that $\theta_{\sigma, \tau, \sigma, \tau}(\mathrm{L}): \mathrm{L}_{\left[\sigma p r_{1}, \tau \mathrm{pr}_{2}\right]} \rightarrow\left(\mathrm{L}_{[\sigma, \tau]}\right)[\sigma, \tau]$ is an isomorphism for $\mathrm{L}=\mathrm{M}, \mathrm{N}$ and that $\left.\theta_{\sigma, \tau, \sigma p r_{1}, \tau \mathrm{pr}}^{2}(\mathrm{~L}): \mathrm{L}_{\left[o p r_{1} \mathrm{pr}_{12}, \tau \mathrm{pr}_{2} \mathrm{pr}_{23}\right]} \rightarrow\left(\mathrm{L}_{[\sigma, \tau]}\right)_{\left[\sigma \mathrm{pr}_{1}, \tau \mathrm{pr}\right.}^{2}\right]$ is an epimorphism for $L=M, N$. Then a map

$$
\Phi: \operatorname{Rep}(C ; F)\left(\left(M_{[\sigma, \tau]}, \mu_{M}^{\prime}\right),(N, \zeta)\right) \rightarrow F_{c_{0}}(M, N)
$$

defined by $\Phi(\varphi)=\left(M=M_{[\sigma \varepsilon, \tau \varepsilon]} \xrightarrow{M_{s}} M_{[\sigma, \tau]} \xrightarrow{\varphi} N\right)$ is bijective.
Hence if $\theta_{\sigma, \tau, \sigma, \tau}(\mathrm{L})$ is an isomorphism and $\theta_{\sigma, \tau, \sigma p r_{1}, \tau r_{2}}(\mathrm{~L})$ is an epimorphism for all $L \in O b F_{c_{0}}$ a functor $\mathcal{L}_{C}: F_{C_{0}} \rightarrow \operatorname{Rep}(C ; F)$ defined by $\mathcal{L}_{c}(M)=\left(M_{[\sigma, \tau],} \mu_{M}\right)$ and $\mathcal{L}_{c}(\varphi)=\varphi_{[\sigma, \tau]}$ is a left adjoint of the forgetful functor $\mathcal{F}_{c}: \operatorname{Rep}(C ; F) \rightarrow F_{c_{0}}$ given by $\mathcal{F}_{c}(M, \xi)=M$ and $\mathcal{F}_{c}(\varphi)=\varphi$.

Theorem 5.7

Let C, D be internal categories in C and $f: D \rightarrow C$ an internal functor. The functor $f: \operatorname{Rep}(C ; F) \rightarrow \operatorname{Rep}(D ; F)$ obtained from the restrictions of representations of C along f has a left adjoint if the following conditions are satisfied.
(i) $\mathrm{F}_{c_{0}}$ has coequalizers.
(ii) A functor $F_{c_{0}} \rightarrow F_{c_{0}}$ which maps $M \in O b F_{c_{0}}$ to $M[\sigma, \tau]$ and $\varphi \in \operatorname{Mor} F_{c_{0}}$ to $\varphi_{[\sigma, \tau]}$ preserves coequalizers.
(iii) $(\sigma \mu)^{*}: F_{c_{0}} \rightarrow F_{c_{1} x_{c_{0}} c_{1}}$ maps coequalizers to epimorphisms.
(iv) For any diagram $Y \stackrel{f}{\leftarrow} X \xrightarrow{g} Z \stackrel{h}{-} V \stackrel{i}{\rightarrow} W$ in C and any object M of $F_{c_{0},} \theta_{f, g, h, i}(M): M_{[f p r x, i p r y]} \rightarrow\left(M_{[f, g]}\right)_{[h, i]}$ is an isomorphism.

Remark 5.8

The fibered category $p^{\circ p}:$ MOD $^{\circ p} \rightarrow$ Algk $_{k}^{\text {op }}$ of graded k-modules satisfies the conditions (i) and (iv) of (5.7).
Let $\Gamma=\left(A_{*}, \Gamma_{*} ; \sigma, \tau, \varepsilon, \mu\right)$ be a Hopf algebroid in $A_{I_{k}}$.
If $\sigma: A_{*} \rightarrow \Gamma_{*}$ is a flat morphism in Algk, $_{k}$ then the conditions (ii) and
(iii) of (5.7) are satisfied.

Hence, for a morphism $f: \Gamma \rightarrow \Delta$ of Hopf algebroids, the restriction functor $f: \operatorname{Rep}(\Gamma ; F) \rightarrow \operatorname{Rep}(\Delta ; F)$ has a left adjoint if $\sigma: A_{*} \rightarrow \Gamma_{*}$ is a flat morphism in Algk.
§6. Hopf algebroid associated with homology theory Let E be a commutative ring spectrum with unit $\eta: S^{0} \rightarrow E$ and product $\mathrm{m}: \mathrm{E} \wedge \mathrm{E} \rightarrow \mathrm{E}$.
Suppose that the coefficient ring $\mathrm{E}_{*}=\pi_{*}(\mathrm{E})$ is a k-algebra for a commutative ring k ($k=E_{0}$ for example) and that $\mathrm{E}_{\star} \mathrm{E}=\pi_{\star}(\mathrm{E} \wedge E)$ is flat over E_{\star}. Then, the functor from the category of spectra to the category of graded E_{\star}-modules given by $X \mapsto \mathrm{E}_{\star}(X) \otimes E_{.} \mathrm{E}_{*} \mathrm{E}$ is a homology theory.
We put $h_{*}(X)=E_{*}(X) \otimes E_{-} E_{*} E$. The product m induces $h_{*}(X)=\pi_{*}(X \wedge E) \otimes E_{*} \pi_{*}(E \wedge E) \wedge \pi_{*}(X \wedge E \wedge E \wedge E) \xrightarrow{(\text { id } \alpha \wedge m \wedge i d)_{4}} \pi_{*}(X \wedge E \wedge E)$ a natural transformation $\psi: h_{*} \rightarrow(E \wedge E)_{*}$ of homology theories.

Since $\psi_{S^{0}}: h_{*}\left(S^{0}\right) \rightarrow(E \wedge E)_{*}\left(S^{0}\right)$ is an isomorphism, $\psi: h_{*} \rightarrow(E \wedge E)_{*}$ is an is an equivalence of homology theories. In other words, we see the the following fact.

Proposition 6.1.
There is an isomorphism of right E_{\star}-modules

$$
\psi_{X}: E_{*}(X) \otimes_{E_{*}} E_{*} E \rightarrow \pi_{*}(X \wedge E \wedge E)
$$

which is natural in X .
Let $\sigma, \tau: E_{*} \rightarrow E_{*} E, \varepsilon: E_{*} E \rightarrow E_{*}$ and $\iota: E_{\star} E \rightarrow E_{*} E$ be the maps induced by $E \simeq E \wedge S^{0} \xrightarrow{i d_{E} \wedge \eta} E \wedge E, E \simeq S^{0} \wedge E \xrightarrow{\eta \wedge i d_{E}} E \wedge E, E \wedge E \xrightarrow{m} E$ and the switching map $c: E \wedge E \rightarrow E \wedge E$, respectively.

$$
D_{x}: E_{*}(X)=\pi_{*}(X \wedge E) \rightarrow \pi_{*}(X \wedge E \wedge E)
$$

be the map induced by $X \wedge E \simeq X \wedge S^{0} \wedge E \xrightarrow{i d_{X} \wedge \eta \wedge i d e} X \wedge E \wedge E$. Put $\mu=\psi_{E}^{-1} D_{E}: E_{\star} E=\pi_{\star}(E \wedge E) \rightarrow E_{\star} E \otimes_{E_{*}} E_{\star} E$. Then, it can be verified that ($E_{*}, E_{\star} E ; \sigma, \tau, \varepsilon, \mu, \iota$) is a Hopf algebroid in Alg $_{k}$, which we call the Hopf algebroid associated with E. We denote this by H_{E}. For a spectrum X, we put $\varphi_{X}=\psi_{X}^{-1} D_{x}: E_{*}(X) \rightarrow E_{*}(X) \otimes_{E_{*}} E_{*} E$. Then, it turns out that φ_{X} is a structure map of right $E_{*} E$-comodule on $E_{*}(X)$. Hence E-homology theory $X \mapsto E_{*}(X)$ takes the values in the category Rep $\left(H_{E} ; M O D^{\circ p}\right)$ of representations of H_{E}.
That is, E-homology theory is regarded as a functor from "stable homotopy category" to $\operatorname{Rep}\left(H_{E} ; M O D^{\circ P}\right)$.

References

[1] J. F. Adams, Lectures on generalised cohomology, Lecture Notes in Mathematics, vol.99, Springer-Verlag, 1969, 1-138.
[2] J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, The University of Chicago Press, 1974
[3] A. Grothendieck, Catégorie fibrées et Descente, Lecture Notes in Mathematics, vol.224, Springer-Verlag, 1971, 145-194.
[4] A. Yamaguchi, The structure of the Hopf algebroid associated with the elliptic homology theory, Osaka Journal of Mathematics, vol.33, (1996), 57-68.
[5] A. Yamaguchi, Representations of internal categories, Kyushu Journal of Mathematics Vol.62, No.1, (2008) 139-169.

Thank you for listening

 and your patience.