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§1. Fibered category of morphisms
Let 0. F — € be a functor. For an object X of &, we denote by
Fy a subcategory of Fy given as follows.

ObF={E€0bF | @(E)=X}
Mor Fy={@p €Mor F | (@) =1dy}

For a morphism f: X— Y in € and objects E, F of Fy, Fy,
respectively, we denote by P/‘f}(E, F) a subset of #(E, F) defined by
FAE.F)={p € F(E.F)| p@)=f).

Definition 1.1 ([1])

Let a:E — F be a morphism in &# and set go(E)=X, go(a)=7.
We call a a cartesian morphism if, for any G € ObFy, the map
F (G, E)—>$‘7}(G, I') defined by @ — a@ is bijective.



Definition 1.2 ([1))
A functor go:F — € is called a fibered category if 4o satisfies

the following conditions.

(i) For any morphism f: X— Y in € and any object F of Fy,
there exist an object E of %y and a cartesian morphism
a:E — F which maps to f: X—=Y by €.

(ii) The composition of cartesian morphisms is cartesian.



Proposition 1.3 ([1])
Let f: X — Y be a morphismin ¢ and a;: E;— F. (i=1,2) morphisms

in # such that go(a,) =% (a,)=f, hence g(E,)=¢(E,)=X and
go(I')=go(l,)=Y.

Assume that &, Is a cartesian morphism.

For a morphism @ :F, — F, in Fy, there exists unique morphism

yw.E,— E, in # that makes the following diagram commute.

E, _ 4, F,
1% [cv
4 az

L, > I



Corollary 1.4 ([1])
Ifa.:E.—F, (i=1,2) are cartesian morphisms in & such that

@(E,)=%EFE,)=X and g(a;)=%(a,), there exists unique
morphism y:E, - E, in 5 that makes the following diagram

commute. Moreover, ¥/ Is an isomorphism.




Let 0. F — € be a fibered category and f: X — Y a morphism in €.
For an object F of &y, there exist an object E of Fy and a

cartesian morphism a:E — F which maps to f: X— Y by €.

It follows from (1.4) that E is unique up to isomorphism.

We choose such E and a:E — F for each object F of #y and
denote E by f*(F) and a: E — F by af(F):f*(F)—>F.
For a morphism @ :F — G in &y, there exist uniqgue morphism

Q.. *(F)— f*(G) in Fy that makes F
e iy PR L
the right diagram commute by (1.3). :
We denote @;: f*(F)— f*(G) by { [(0
v alG)

(@) f*(F) = f*(G) below. fF(G)——6G



For a morphism yw:G— H in &%,, we have the following diagram.
It follows from (1.3) that f*(w@)= f*(y) *(@) holds.

*(p)
J*(F) [*(H)
o, (F) W]“TG) % o (H)
af(G)

I G Y .H
It also follows from (1.3) that f*(idg): f*(FF)— f*(F) is the
identity morphism of f*(F).

Thus we have a functor f*: %y, — F, which is called the inverse

image functor associated with f: X—Y.



Remark 1.5
For an object X of 6 and an object E of Fy, since the identity

morphism idg:E — E of E is a cartesian morphism which is mapped
to the identity morphism idy: X — X of X by ¢2:F — &, it follows

from (1.4) that a;,; (E): id;(E)— E is an isomorphism in Fy.

We usually choose E as an inverse image idZ(E) of E by
idy: X = X unless otherwise stated.

In this case, a; (E): id7(E)— E is the identity morphism of E.



For morphisms f: X—Y, g:Z— X in € and F an object of Fy,
there exists unique morphism cﬁg(F):g*f*(F)e(fg)*(F) in F,
that makes the following diagram commute by (1.3).

g pr(F) ) | ey
lcf,g(F ) afg(F) laf(F )
(fg)*(F) F

. . a,(f*(F)) a(F)
We remark that, since composition g*f*(F) —— f*(F) — F

is cartesian, it follows from (1.4) that cﬁg(F):g*f*(F)ﬁ(fg)*(F)

IS an iIsomorphism.



Proposition 1.6 ([1])
For a morphism @ : FF— G in Fy, the following diagram commutes.

g pr(F) —24D L (foyi(R)
* f f <¢>cﬁg(G) |72 (@)
g*f*(G) (fg)*™(G)

Thus we have ¢, a natural equivalence ¢;,: 8™ f* —(fg)*.



For morphisms f: X—Y, g:X— Z in €, we define a functor
Fr .. FPXF,— Set as follows.

Put F; (E, F)=F(f"(E), g*(F)) for E€ObFy and F € ObF,.
For morphisms @ :E— G, w.H—F in 5y, &, respectively,
Ff,g(¢9 W) Fx([*(G), g*(H)) —> F(f*(E), g*(F)) maps

G: f*(G)—g*(H) to g*(W) f*(@):.f*(E)— g*(F).

Let [ X—>Y, g:X—>Z, k:V— X be morphisms in ¢ and E, F
objects of Fy, F,, respectively.

For a morphism &: f*(E)— g*(F) in &y, we define a morphism
'g'k:(fk)*(E)—>(gk)*(F) in #,, to be the following composition.

(o (E) LED sy KO, g1y 8, (gpy()



Hence a correspondence € &, defines a map
K. o2 Fy (B, F) = Fpy ((E, F).

It follows from (1.6) fhcnL the above map is natural in £ and F.
Thus we have a natural transformation kﬂ:Fﬁg%ka,gk.

Proposition 1.7 ([10] Proposition 1.1.15)
Let [ X—>Y, g: X—>Z, h:X—> W, k:V— X be morphisms in 6.
For objects E, I, G of &y, F,, F, respectively and morphisms

Eif*(E)*g*(F), G:8*(F)—=h*(G) in Fy,
£ \66) =(88): (JR)*(E)— (hk)*(F)

coincides with a composuhon

(5)

f
(F*(E) £, (ghys(F) Lr6®

(hk)*(G).



Proposition 1.8 ([10] Proposition 1.1.16)

Let [ X—>Y, g:X—>Z, k:V—X, j: U—V be morphisms in 6.
For objects E, F of &y, #,, respectively, the following diagram is
commutative. Hence (kj)ﬁ = jﬂk1j holds.

ki,

Fx(f*(E), g*(I)) F((fk)*(E), (8kp)*(I))

3
kEﬂ,X /E,F

FY(JR)*(E), (gk)*(I"))



Definition 1.9 ([1])
A functor go:F — € is called a cofibered cateqgory if the functor

@ . FP - EP defined from ¢:F — € is a fibered category.
If ¢9:F — € is a fibered category and a cofibered category,

€. F — 6 is called a bifibered category.

Proposition 1.10 ([1])
A fibered category ¢0:F — € is a bifibered category if and only

if the inverse image functor f*: %, — 5 has a left adjoint for

any morphism f: X—Y in 6.



For a category G, let €'* be the category of morphisms in €
defined as follows.

Put Ob%'? =Mor € and a morphism from E=(E > X) to
F=(FL Y)is a pair ((:E—F,f:X—Y) of morphisms in &
which satisfies pé= fx.

The composition of morphisms (&, f):E—F and ({,2): F—>G is

defined to be (&, ¢f):E—G.

gt gt g L,
ool [
Xy X—-y-£t.7

Define a functor g: €% - € by ¢(E > X)=X and (&, f))=Ff



If € has finite limits, g0: €'¥ = € is a fibered category as we

explain below.
For a morphism f:X— Y in € and an object F = (F5Y) of 9?;2),

consider the following cartesian square in 6.

FxyX—2 \ F

|7 I
x—L .y
We put f*(F) = (FXYX L X) and a (F)=(f,f).[*(F)—F.
Proposition 1.11

a([) is a cartesian morphism, that is, for any object E of %(2)

the map af(F)* (2)(E f*(F))—>C{€(2)(E I') defined by
a(F) G af(F)’g' is bijective.




For morphisms f: X—Y, g:Z— X in € and an object F=(F£> Y)
of %;2), suppose that the left and right rectangles of the following
diagram are cartesian. Equivalently, (f..f):f*(FF)—>F and

(gpf,g) . g*f*(F)—f*(F) are cartesian morphisms in 6.

8
7—=& x—I .y
Then, the outer rectangle of the above diagram is also cartesian.
(8 8) o]

This shows that the composition g*f*(F)——f*(F)———F is
cartesian. Thus we have the following result.

Proposition 1.12 ([1])
¢ : €'Y > € is a fibered category.



For a morphism f: X — Y in &, define a Funcforﬁ:%)((z)e%l(,z) by
i . .

fE)=(E 5 Y) and £u({&, idy))=(&, idy): f(E)— fi(F) for an

object E=(E 5 X) of %J(f) and a morphism (&, idy): E — F in %)((2).

Proposition 1.13 ([1])

ﬁk:%)((z)%%;z) is a left adjoint oFf*:%I(/Z)%%)((Z).

Hence @:%(2)_)% IS a bifibered category.

For an object E of ‘[5)((2) and an object F of €%, we define a map
Oy CX(E, F) > GO (L(E), F) by Oy o((£.£))= (£, idy). which

is a natural bijection. It follows from (1.11) that we have a natural

bijection @y p a(F).: G, (E, f*(F))— G, (fE), F).



§2. Representations of groupoids

Let € be a category with finite limits. szyiqf
Consider the right cartesian square in 6. lgf lg
If morphisms h:V—>Xand i:V—>Y in ¢ x—I .7

satisfy fh=gi, we denote by (h,1):V— XX Y unique morphism

that make the following diagram commute.




Suppose that the following diagrams are cartesian.

Uy Vs Xx, Y255y
L b
U—w x—L-7

If morphisms j:U—X, k:V—>Y and [:W—Z in € satisfies fj=I[h
and gk=1i, we denote (Ji;, kh;) by jX, k: UXyV—>XX,Y.

If W=Z and [=id,, we denote jX;; k by jX k.



Suppose that a pair (Gy, G|) of objects of & and four morphisms
O, T. Gl — G()’ €. GO — Gl and . Gl XGOGI — Gl in 6 are given.
Here the following diagram is cartesian.

I
GleOGl—’p — G,

[Pr. |o

Gl - GO




Definition 2.1
We say that (G, G; 0,7, €, 1) is an internal category in € if the

following diagrams are commutative.

G, <—G1—> Gy  G«———Gx;G—=—G,
/ l" ; ”l ) 7
GO
d d d
G X601 X604 SR, G Xg, 0 (l Akl Gle 22

0
|idg, X, m y ) % %
G X6 0 G

Here G| X G X Gy is a limit of the following diagram.
Gl—)GO(—Gl—)Go(—Gl



Definition 2.2
Let (Gy, Gy; 0,7, €, 1) be an internal category in 6.

If a morphism 1:G;— G in € makes the following diagrams
commute, we call (Gy, Gy;0,7,€,1,1) an internal groupoid in € or

a groupoid in 6 for short.

Gy <—G1—> Gy Lo, —— G GOGI S )G1

N N S Y




We also have a notion of internal functors between internal
categories.

Definition 2.3
Let G=(Gy, G;0,71,6,4) and H=(H,, H,; 0,7, €, ') be internal

categories in €. An internal functor from G to H is a pair (fy, /)
of morphisms fy: Gy— Gy and f,: G, — G, in € which make the

following diagrams commute.
G()(LGIAGO GleGlLG1<—8GO

| | | [fleofl | |
H, —%—H,—— H| HleHl—,’Hﬁ—,Ho



Definition 2.4
Let f=(fy./1),2=(g0, &) :G— H be internal functors.

An internal natural transformation y: f—g from f to g is a

morphism y:Gy— H; in 6 which makes the following diagrams
commute.

Ho‘lGog—O’Ho G—— AN 1) X 11
v |20 [u
o' T ,l/t,
I1 ) Xy H)j—— M

Let ¢0: F — € be a fibered category and assume that G is a
category with finite limits below.



Definition 2.5 ([9], [10] Definition 3.1.2)

Let G=(G,, Gy;0,7,¢&, 1) be an internal category in 6.

A pair (E, ) of an object E of F; and a morphism
E:0*(E)— t*(E)

in F is called a representation of G on E if the following

diagrams are commutative.

(o1 (E) = (o) *(E) —2 (1)* (E) = (zpry) “(E)

B e, = opry )~ e
(idg, ) *(E) = (0e)*(E) —= (ze)*(E) = (idg, * (E)

ME%

dg, dg,



Definition 2.6 ([9], [10] Definition 3.1.2)
Let (E, &) and (F,{) be representations of G on E and F'.

A morphism @ :E — F in #; is called a morphism of
representations of G if @ : E — F makes the following diagram

commurte. :
o*(E) r*(E)
10-*«0) 11*«0)
o#(F)—— %(F)

Thus we have the category of representations of GG, which we

denote by Rep(G).



Let G=(G,, G{;0,7,¢,14) and H=(Hy, H; 06,7, €', u’) be internal
categories in € and f=(/,,f;):H— G be an internal functor.
For a representation (E, &) of G on E, we define

ot fH(E) > T(E)

to be the following composition.

/ Cfoaf"(E) / gfl /
o fq (E) (foo ) *(E)=(af )" (E)— (/)" (E) = (fo7)*(E)

C

fo,r’(E)_l (]%T’)*(E) — T/>I<f61< (E)




Proposition 2.7 ([9], [10] Proposition 3.2.1)
(f(;k(E),ff) is a representation of H on f(>)’<(E).

If :(E,&— (F,Q) is a morphism of representations of G, then
f§(¢):f§(E) —>f6’<(F) gives a morphism
fE (@) (fEE), &) — (f¥(F), &)

of representations of H.

Definition 2.8 ([9], [10] Definition 3.2.3)
Define a functor f°:Rep(G)— Rep(H) by f*(E, ’g’)=(f6‘<(E),§f)

for an object (E, &) of Rep(G) and f‘(qo):f(;k(qo) for a
morphism @ : (E, &) — (F, ) in Rep(G).
We call this functor the restriction functor along f:H — G.



Let G=(G,, G{;0,7,¢,14) and H=(Hy, H; 06,7, €', u’) be internal
categories in €, f=(/y./1),&=(8gy, &) : H— G be internal functors
and y: f— g an internal natural transformation.

For a representation (E, ) of G on E, we define a morphism
)((.Eg)f(;k(E)—)gg(E) In gHo to be

7 (E)=E,: [H(E)=(cy)*(E) = (t)*(E) = g(E).



Proposition 2.9 ([10] Proposition 3.2.5)
X(£g) 1S @ morphism of representations from f*(E, &) =(f;(E), &)

to g°(F, €)= (g*(E) ‘g’ ) and the following diagram in Rep(H) is

commutative for a morphism @ : (E,&) — (I, ) of representations

of G.
(f(E), £)-L 2 (£5(F), &)
[Z EH [Z s
(g(E), &) £ (g*(F), &)

Thus we have a natural transformation y*: f*—g°.



83. Recollections on Grothendieck site

We denote by der the category of sets and maps.
For a category &, we call a functor 6P — Set presheaf on 6.

For an object X of €, let hy: 6P — Set be a functor defined by

hy(U)=€¢(U, X) for an object U of € and
h(f:U=V)=(*:6(V,X)=>E(U,X))

for a morphism f:U—V in 6.

Here, 6 (U, X) denotes the set of morphisms in € from U to X.

We call Ay : 6P — Set the presheaf on € represented by X.

For a morphism @:X—Y in €, let h,:hy— hy be a natural
transformation defined by (%,),=¢:: € (U,X)—>E (U, Y).



For a morphism f in a category &, let us denote by dom(f) the
source of f and codom(f) the target of /.

For set valued functors F, G:6 — Set, if F(U) is a subset of G(U)
for any object U of & and the inclusion map i;;: F(U)— G(U)

defines a natural transformation i:F — G, we call F' a subfunctor
of G. If F'is a subfunctor of G, we denote this by F CG.

For an object X of a category &, we call a subfunctor of Ay a
sieve on X.



Definition 3.1
Let € be a category. For each X€ Ob®%, a set J(X) of sieves on X

is given. If the following conditions are satisfied, a correspondence
J: X J(X) is called a (Grothendieck) topology on €. A category

G with a topology J is called a site which we denote by (6, J).
(T1) For any X€ Ob¥€, hyeJ(X).

(T2) For any X€Ob%¢, ReJ(X) and morphism f: Y — X of &,
a subfunctor hf_l(R) of hy defined below belongs to J(Y).

W (RYZ)=(g:Z— Y| [g€R(Z)
(T3) A sieve S on X belongs to J(X), if there exists Re€ J(X)
such that h7'(S) €J(dom(f)) for any fEODbR.



Proposition 3.2
Consider the following conditions on J.

(T3') A sieve S on X belongs to J(X), if there exists R€ J(X)

such that S is a subfunctor of R and hf_l(S)EJ(dom(f))

for feObR.
(T4) A sieve S on X belongs to J(X) if it has a subfunctor

which belongs to J(X).
(T5) Suppose that R€J(X) and that RfEJ(d()m(f)) is given

for each f€ODbR. Then, {fg|f€ObR, g€ Ob R/} € J(X).
(1) (T2) and (T3) imply (T4). (T1) and (T3) imply (T5).
(2) (T4) and (T5) imply (T3). (T3') and (T4) imply (T3).



Proposition 3.3
For a set R of morphlsms in € with target X, we put

U Im(hf hdom( 1) — X)

fER
In other words, R is the set of all morphisms of the form fg such

that f€R, g&eMor € and codom(g)=dom(f).
Then, R is the smallest sieve containing R.

Definition 3.4
Let (6,J) be a site.

(1) For a set R of morphisms in € with target X, we call R the
sieve generated by K.

(2) A family of morphisms (f;: X.— X),; is called a covering of X
if the sieve generated by f.'s belongs to J(X).



&4. Plots on a set

Definition 4.1 ([11] Definition 1.1)
Let € be a category and F': ¢ — Set a functor.

For a set X, we define a presheaf Iy on 6 to be a composition
G A Set? —— Set.

Here we denote by F°P: 6P — Set”? a functor defined by

FP(U)=F(U) for UeOb® and F°P(f)=F(f) for feMor €.

An element of |l F,(U) is called an F-parametrization of X.
UeOb®

We note that Fy is given by Fy(U)=3det(F(U),X) for U€Ob¥
and Fy(f)(@)=aF(f) for (f:U—=V)eMor € and a€ Fy(V).



Definition 4.2 ([11] Definition 1.2)

Let (6,J) be a site, X a set and F': 6 — Set a functor.
Assume that € has a terminal object 1o, and that F(1y) consists

of a single element. If a subset & of UI(_)IbngX(U) satisfies the
=

following conditions, we call &4 a the-ology on X.

(1) 2D Fx(lg)

(i) For a morphism f: U— V in €, the map Fy(f): Fx(V)— Fy(U)
induced by f maps DNFy(V) into DNF(U).

(ii1) For an object U of ¢, an element x of Fy(U) belongs to
DNFy(U) if there exists a covering (f;: U;— U)..; such that

Fy(f.): Fx(U)—= F5x(U;) maps x into DNF(U.) for any i€1.



We call a pair (X, ) a the-ological object and call an element of
< an F-plot of (X, ).

Proposition 4.3 ([11] Proposition 1.4)
Condition (ii1) is of (4.2) is equivalent to the following condition if

we assume condition (i1).

(ii1") For an object U of €, an element x of Fy(U) belongs to
INF(U) if there exists R€J(U) such that

Fy(f): Fx(U)— Fy(dom(f)) maps x into I NFy(dom(f))
for any fER.

For a map @ :X—Y and a functor F': 6 — Set, we define a
morphism £ : Fy— Fy of presheaves by

(F,)y=s: Fy(U) = Set(F(U), X) = Set(F(U), Y)=F(U).



Definition 4.4 ([11] Definition 1.7)

Let (6,J) be a site, X a set and F:6 — Set a functor.

(1) Let (X, ) and (Y, &) be the-ological objects.
If the map (qu)U:FX(U)—>FY(U) induced by a map ¢: X—Y
maps DNFy(U) into ENF(U) for each U€ ObLE,
we call ¢ a morphism of the-ological objects.

We denote this by ¢ : (X, D) — (Y, &).
(2) We define a category &°.(¢,J) of the-ological objects as

follows. Objects of (€, J) are the-ological objects and
morphisms of (€, J) are morphism of the-ological objects.



For a the-ological object (X, J) and U€ Ob®%, we put
Fo,(U)=9NFy(U). Then U Fg(U) defines a presheaf Iy, on &.
Remark 4.5 ([11] Remark 1.8)

Let ¢: (X, D)— (Y, &) be a morphism of the-ological objects.
It follows from the definition of a morphism of the-ological
objects that (F¢)U:FX(U)—>FY(U) defines a map

(F,)y:Fg(U) = Fe(U) which is natural in U€ Ob%. Thus we
have a morphism [ ,: I'q; = I of presheaves.

Definition 4.6 ([11] Definition 1.9)

For the-ologies & and & on X, we say that O is finer than &
and that & is coarser than & if Y C&.



Remark 4.7 ([11] Remark 1.10)

We put @COWSE,X=U€]6[% Fy(U). 1t is clear that 9, x is the

coarsest the-ology on X. For a map f/:Y— X and a the-ology & on
Y, f:(Y, &)= (X, D purse x) 18 a morphism of the-ologies.

Proposition 4.8 ([11] Proposition 1.11)
Let (,);-; be a family of the-ologies on a set X. Then, QSZZ- is a
&

the-ology on X that is the finest the-ology among the-ologies on

X which are coarser than & for any i €1.



For a set X, we denote by &, (€, J)y a subcategory of &.(6,J)
consisting of objects of the form (X, ) and morphisms of the

form idy: (X, D) — (X, &). Then, (€, J)y is regarded as an
ordered set of the-ologies on X.

We often denote by & an object (X, ) of &.(€,J)y for short.
It follows from (4.7) that (X, <, .. x) is the maximum (terminal)

object of &L(G,J)y-

Corollary 4.9 ([11] Corollary 1.12)
P(E,J)y is complete as an ordered set.



Proposition 4.10 ([11] Proposition 1.13)

Let & be a subset of LI Fy(U) which contains Fy(1.,).
UeOb¥®%

For f€Mor@, define a subset &; of Fy(dom(f)) by

Sy=Fy(f)(S N Fy(codom(/))).
For U€ Ob¢, we define a subset &(U) of Fy(U) by

S(U)= {xEFX(U) ‘ There exists ReJ(U) such that
Fy(g)(x) € U Sr for all gER.}.

feMor¢

If we put £(S)= U SU) and T={DEeP(E,)) | DD S},

Ue0b ¢
then we have (&) =1nt 2 € Pu(E, J)y.



Remark 4.11 ([11] Remark 1.14)

(1) For U€Ob®%, the subset &(U) of Fy(U) defined in (4.10)
coincides with the following set.

{xEFX(U ) ‘ There exists a covering (U, 2U )iy Such that
Fy(g)(x) € U Cch’f for all iEI.}

fEMor

(2) Let 2 be a non-empty subset of & (€,J)y and put
S(Z)=@UZ§Z. Then & (2)(U) coincides with the following set.
=

{xEFX(U ) ‘ There exists a covering (U, 2U )iy Such that
FX(gi)(x)E@U D for all iEI.}
=)
Hence sup2X=56(8(2))= UU%CS) (2)(U) holds.



Definition 4.12 ([11] Definition 1.15)
For a subset & of |l Fy(U) containing Fy(1,), we call E(S)

UeOb¢
defined in (4.10) the the-ology generated by &

Definition 4.13 ([11] Definition 1.16)

Let (6,J) be a site and X a set. We put @diSC’X:@EObQ . &,

and call this the discrete the-ology on X. ;.. y is the finest
the-ology on X.

Remark 4.14 ([11] Remark 1.17)
For any map /: X — Y and a the-ology & on Y,

(X, Dyise x) = (Y, &) is a morphism of the-ologies.



Remark 4.15 ([11] Remark 1.17)
(1) Since ;. xD Fx(1g), D5 x contains the image of the map

FX(OU)FX(lg) —)FX(U) iInduced by the Unique map OU: U— 1%
for any U€ Obé. Hence every constant map in Fy(U) belongs

fo 9disc X
(2) Let &. .., be the set of all constant maps in U](_)[bchX(U). Then
CS(),‘onstz U ( onst)f Thus @dlSC XnFX(U) @( onst)nFX(U)

feMor €
coincides with the following set.

{xEFX(U) | There exists a covering (U, 5 U)..; such that

Fy(g.)(x) is a contant map for all i EI.}



§5. Category of f-plots

For amap f:X—=Y and (Y, &) €0Ob P(€,J), we define a
the-ology & on X to be the coarsest the-ology such that
(X, &)= (Y, &) is a morphism of the-ologies.

Proposition 5.1 ([11] Proposition 2.1)
For amap f: X—=Y and (Y, &) €Ob (€, J), &/ is as follows.

&= 11 (Ff)_l(gﬂFy(U))— L {(PEFx(U) | fo € gﬂFy(U)}

UeOb¥% UeOb¥¢

Proposition 5.2 ([11] Proposition 2.2)
Let (%)iel a family of the-ologies on a set Y. For a map f: X—Y,

(ﬂ%) = & holds.

1= el !



We define a forgetful functor I': P (€,J)— Set by 1'(X,D)=X
for (X,2)e0bP(€,J) and I'(¢: (X, D)= (Y,E))=(p:X—Y)
for a morphism @: (X, )= (Y, &) in P(E,J).

It is clear that | is faithful. In other words, if we put
FHE, NAX, D), (Y, &) =T (HNPAE,I)NX, D), (Y, &))

for amap f: X—Y and (X, 9), (Y, &) €0b P.(€,J),
PG, J)A(X, D), (Y, &)) has at most one element.

SP(6, J)A(X, D), (Y, &)) is not empty if and only if LD C &
which is equivalent that &.(€,J)((X, D), (X, &) is not empty.



Proposition 5.3 ([11] Proposition 2.3)
For maps f: X—Y, g:W— X and an object (Y, &) of &.(€,J)y,

&/8 = (&8 holds and [':P(€,J)— Set is a fibered category.

In fact, f:(X, &) — (Y, &) is unique cartesian morphism over a map
f:X—Y whose target is (Y, &). Hence the inverse image functor

P PAC, T)y— PG, )y
associated with f is given by f*(Y, &) =(X, &) and
FE(idy: (Y, &)= (Y, ©))=(idy: (X, &) — (X, &)).
It is clear that &8=(&')® holds, which implies (fg)*=g*f*.



For amap f: X—=Y and (X, 9)€0b P(E,J), we define a
the-ology & on Y to be the finest the-ology such that
(X, 2)-(Y, @f) is a morphism of the-ologies, that is,
D= [1&, where

&EX

2={&€0bP(C,N)y| ED I (F)y(DnFxU))}.

UeOb¥%



Remark 5.4 ([11] Remark 2.4)
For U€Obé, the subset &'(U) of Fy(U) defined in (4.9) is the

set of elements x of Fy(U) which satisfy the following condition
(%) if /:X—Y is surjective.
(x) There exists ReJ(U) such that, for each h€R, there exists
yeEDNFy(dom(h)) which satisfies Fy(h)(x)=(Fy)gompm(V)-

If we put Z(8)= Ll SU), we have @fzf(c?).

UeOb¥



Proposition 5.5 ([11] Proposition 2.5)
[:9(6,J)— Set is a bifibered category.

For a map f: X —=Y, define a functor f.: (6, J)y— P(E,J)y as
follows. For (X, ) € ObF (6, J)x, we put f(X,D)=(Y, D).

If (X,9),(X,2)€0bP(€,J)y satishes D CYD’, then @fc QZJZ
holds. Hence, for a morphism idy: (X, ) — (X, D) in PP(E,J)y,
we put fi(idy: (X, D) — (X, D)) =(idy: (Y, @f) — (Y, @]Z))

It can be verified that &.(€,J)(f«(X, D), (Y, &)) is not empty
if and only if (€,J)y(X,9D),f*(Y, &)) is not empty.

This shows that f. is a left adjoint of f*.



Proposition 5.6 ([11] Proposition 2.6)
Let p:F — € be a prefibered category. If F has an initial

object for any object X of &, then p has a left adjoint.

Corollary 5.7 ([11] Corollary 2.7)
Let p:F — € be a bifibered category. If F has a terminal

object for any object X of €, then p has a right adjoint.

Corollary 5.8 ([11] Corollary 2.9)
[': P(€,J)— Set has left and right adjoints.



Let {(X;, D)) }.c; be a family of objects of (€, J).
We denote by pr;: HXJ-—>XZ- the projection to the i-th component

jel
and .: X.— |1 X; the inclusion fo the i-th summand.
jel
Put @' = ﬂl Di. Then, D" is the finest the-ology such that
jE

pr;: (HX], QZI)—> X, D) is a morphism in P(E€,J) for any iE1.
iel

Let ) be the coarsest the-ology on Ll X: such that
jel
L (X, D) — (HX], S’Z,) is a morphism in &P(€,J) for any i€1.
jel

If we put &= { &€ 0b P, J)1x | & U(@j)l}, ther
2= N &. < :

EES;



Proposition 5.9 ([11] Proposition 2.11)
1) ((I1x, 2") S (X, D)) _ is a product of {(X, D))},

%
el !

(2) ((Xl-, @i) i) (g%’ @1))

i€l
is a coproduct of {(X;, .}

el

Proposition 5.10 ([11] Proposition 2.14)
Let /,2:(X, D) — (Y, &) be morphisms in PP(E,J). Then,
equalizers and coequalizers of f and g exist.

In fact, if Z L Xis an equalizer of f and g in the category of sets,
then (Z, 2" = (X, D) is an equalizer of f and g in &P (6, J).

IfFYS Wis a coequalizer of f and g in the category of sets,
then (Y, &) KN (W, %q) is a coequalizer of f and g in PP (E, J).



Since (€, J) has finite limits by (5.9) and (5.10), we can consider
the fibered category 40: 9L(6, J)(Z)AL@F(‘(?, J) of morphisms in
SPA(€,J) by (1.12).

It follows from (1.13) that the inverse image functors of this
fibered category have left adjoints.

The inverse image functors also have right adjoints, namely we
can show the following fact.

Proposition 5.11 ([11] Proposition 3.18)
For a morphism @ :(X,2)— (Y, F) in &P(6€,J), the inverse
functor @™ : (6, J)E?@)%@F(Cg, J)g(),%) has a right adjoint

¢ PAE, J)gg on = PH(E, J)ggg).



In fact, @,: P(E, J)g() @)%@F(%ﬂ, J)g/)g) is constructed as follows.

For ye Y, we denote by ly:(p_l(y)—>X the inclusion map and
consider a the-ology " on qﬂ_l(y).

For an object E=((E, &) S (X, D)) of P(E, NP, we define a

subset E(¢;y) of (€, )) (¢~ (y), DY), (E, E)) by
E(p;n)={ae P&, )) (¢~ (), D), (E, 8)) | na=1)

if 7' (V)# D and E(@;y)=@ if 7' (y)=0.

Put E(¢p)= L1l E(¢;y) and define map ¢\;: E(¢)—Y by @ p(a)=y

yeyY

if a€ E(p;y).



We consider the following cartesian square (*) in det.
E(p) Xy X —E— E(¢)
(%) l% l(P!E
X Y
Define a map elf:”:E((p) Xy X — E by elf:”(a, x)=a(x) if aeE(gp;y)
and xE@~(y) for yeY.

4

Let 2 , the set of all the-ologies < on E(@) such that £ C F e
and DPENLPEC E hold.

Note that SZEZE:(QF and only if ¢r: (E(p),L)— (Y, F) and
eg:(E((p) Xy X, DPENLVE)— (E, &) are morphisms in Pu(E, J).



For U€Ob &, we consider the following condition (LE) on an
element y of FE((p)(U).

(LE) If V, WeOb €, feE6(W,U), geE(W,V) and yeDNFy (V)

satisfy @uF(g)=@ryF(f), a composition

8§”
Fow) 2 oy x X £ E
DE

belongs to ENF(W) and a composition F(U) RN E(p) =Y
belongs to FNFy(U).

Define a set C@E,w of F-parametrizations of a set E(¢) so that
Dg oNFE,»)(U) is a subset of Fp,(U) consisting of elements

which satisfy the above condition (LE) for any U€Ob €.



Proposition 5.12 ([11] Proposition 3.11)
Dy, is maximum element of 2y .

let E=((E, &) 5 (X, D)), G=((G, %) 5 (X, D)) be objects of

PG, ])g()’@) and @ : (X, D)— (Y, F) a morphism in L(E,J).

Let E=(&,idy):E — G be a morphism in &(6, J)g(),@).

If a€E(p;y) for yeY, we have pca=rna =1, hence ca€ G(¢;y).

Thus we can define a map §¢:E(¢)—>G(gﬂ) by p(&)(a)=~C,a.

We define by ¢,(E)=((E(p), D) — (Y, F)) and

P\(8) = (S, idy) : p(E) = ¢(G).



§6. Representations of groupoids in the category of plots
let {1 (X, )Y, Y), g X, V)> L, Z) and k:(V,7)> (X, T)
be morphisms in &(¢,J) and E=((E, &) 5 (Y, 7)) an object of
PAE,J)?)_ . We consider the following commutative diagram in

Y.%)
S(€,J) whose outer trapezoid and lower rectangle are cartesian.

(EXyV, 80T/ )
\*\ . (fk)yz'
~\“~\l~dEXYk

T EX X, En2T L (. @)
) R
(V,7) (X, ) (Y, ¥)



There exists unique morphism
id,Xyk:(EXyV, E/0NY ) = (Exy X, ENIL)
that makes the above diagram commute. Since objects

(gk)«(fk)*(E) and g«f*(E) of &L(E, J)E?SZ’) are given by
gk,

(gk)«(fR)*(E)=((EXyV, Y0 77) “= (Z, F))

8¢

g fHE)=(EXy X, &N > (Z, F)),
we define a morphism E, : (gk).(fk)*(E) = g«f*(E) in (6, J)gz)



Let /: (X, X)—= (Y, Y) be a morphism in P(E, J).

We denote by 7/ id@F(Cg,J)g&) —*f, and & i f,f* — id@F(gg,J)%?% the

unit and the counit of the adjunction f* - f,, respectively.
Let f1(X, L) =Y, ), g: (X, X)—> (£, Z£) and k:(V, 7)) = (X, X)

be morphisms in &.(6¢,J) and E an object of SP,(E, ])E?z).

Define a morphism E*: f,g*(E) — (fk),(gk)*(E)* in P8, ])g)?)
to be the following composition.

fk

£ (E) 2B (10, fhy*(fig*(E))

(fk)!(cﬁk(f!g*(E)))_l

(JROKTT118™ ()

(1) g *(B) L= es

(fk)\(gk)*(E)




let (X, ) => X, Y), g X, X)> L, L), h.(V,7' )= (Z, F)
and 1:(V, 7" )= (W, #) be morphisms in &.(E,J).
We consider the following cartesian square in &, (6, J).

(XX, V, X780 ——s (V, 7)

2 |F

X, & o (Z, F)




For an object E=((E, &) S (Y, Y)) of P(E, J)g/)%, we consider

the following commutative diagrams in & (6, J) whose rectangles
are all cartesian.

h
(EX (XX, V), V(XN 8r) 1) e (E, &)

o, !

(XxzV, X" ‘7“”’2)—>(X )Ly, %

(Exy X)X, V,(E-NLH) Y (g”f)h) (Exy X, &N ”f)—>(E &)

(871 (X{;iﬂ)—f’(yval?)
g
(V,7) L Z, F)




Thus we have the following equalities.
ié’h”fhg

(igp)+(fh)*(E)=((EXy(XXzV), EUNn (X7 8n) ey —S (W, W)

g, PHE) = (X, X)X, V., (0210 76wy 70 (w997

We define a morphism 6y , , (E): (ig))«(fh,)*(E) = ish* g f*(E) in

Proposition 6.1

O o 1. i(E) 1 (181)+(fh,)*(E) — 117 g« f*(E) is an isomorphism which
is natural in E.

In fact, (idEthg, ghnfhg):E><Y(X><ZV)—>(E><YX)><ZV maps

(u, (x,v)) € EXy(XX,V) to (1, x),v)E(EXy X)X, V.



let (X, ) => X, Y), g X, X)> L, L), h.(V,7' )= (Z, F)
and 1:(V, 7" )= (W, #) be morphisms in &.(E,J).
We consider the following cartesian square in &, (6, J).

(XX, V, X780 ——s (V, 7)

2 |F

X, & o (Z, F)




For an object E of &.(6, J)E%)/W) we define a morphism

OPSME): fig*hi*(E) — (fhy) (ig,)*(E)

in 9.(6, J)g/)%fo be the adjoint of the following composition with

respect to the adjunction (fh,)* = (fh,),.
k(£ okl 1% cﬁhg(ﬁg*h’i*(E))_l k £% £ ok 1%
(fh)*(fig*hyi*(E)) B f g hyi*(E)

(el (hi*(E))
( hii (E)) h* *h l*(E) g,h L (gh )>X<h l*(E) (hgh)*h l*(E)
c; (E)

gyt (B) ST g () S5t i, ()

Proposition 6.2 ([10] Remark 1.5.5)
Hﬁg’h’i(E):f!g*h!i*(E)—>(fhg)!(igh)*(E) is an isomorphism which

is natural in E.

Ch gh(h.z*(E))_




Let G—((GO, 50),(G,G);0,7,€,1,1) be a groupoid in P(E,J),
=((E, &) S (Gy, &) an object of PL(E, )2 and

(Go» ?o)
’g’.(f*(E)—w*(E) a morphism in (6, J)EZG) )
[~ 1

We denote by éIT*G*(E)—)E and é:E—>0!T*(E) the adjoint of &€

with respect to the adjunctions 7. —17* and o™ -0, respectively.



Proposition 6.3 ([10] Proposition 3.3.2)
& makes the upper diagram of (2.5) commute if and only if E

makes the following diagram commute.

(zprs)s(opry ) F(E) Lozt ¢ str % (B) 27, ¢ 5% (E)

| E, - /¢
(71)+(op)™(E) 7.0~ (E) E

& makes the lower diagram of (2.5) commute if and only if a

Lk
composition E=(Te)*(de)*(E)—gwm*(E)LE coincides with

the identity morphism of E.



Proposition 6.4 ([10] Proposition 3.4.2)
& makes the upper diagram of (2.5) commute if and only if E

makes the following diagram commute.
0,7 (€)

\ "4

E 3 o7 (E) o, 70,7 (E)
E ” |oreo@)
0,7*(F) (o) (7)™ (E)=—=(opr,)(7pry)*(£)

& makes the lower diagram of (2.5) commute if and only if a
composition EL G!T*(E)—8>(ae)!(18)*(E)=E coincides with
the identity morphism of E.



The next result follows from the naturality of the adjointness.

Proposition 6.5

Let (E£,E) and (F, ) be representations of G.

If a morphism @:E—=F in &.(6, J)%) <) makes one of the
0>~ 0

following diagrams commute, the other two diagrams also commute.

H(E)——tHE) 1.0 (E)—2—E E— s 604E)
lg* (@) lT* (@) lf*d* (@) lﬁ” lqﬂ § ld!z'* (@)
o (F)— > 5(F)  1.0*(F)—>—F  F—* . 6,0%(F)



Consider the following diagrams whose rectangles are all cartesian.

E X2 (G Xg,G)) W g E Xt Gi———E
lﬂ' ou = Topr, - lﬂ' lﬂT lﬁ'
G X G —F—"1L G, G, = G,
GTJZ O T
(E xZ, G))XE, G A
|7 |
(TﬂG)G Gl ° GO
|
G, - G,



Then, we have the following equalities.
r.0%(E)=((E X%, G, NG = (G, %))
(z10)(op)*(E) = ((zprp)«(opry ) *(E)
0] O ' IH\TT T’uﬂdﬂ
=((EXZ(GXG). E (G NG —3 (G, Gy))

1.0%1.0%(E) = ((E X5,G) X5, Gy, (8N &™) =n ) 2% (G, G)
If we put €=(¢,id ) and E= (& id ) for morphisms

5: (EX%OGl, g()—”ﬂ 5671[6) —> (EXZ;OGl, %T”n 56]1[7) and

ENEXE G, NG > (E, &) in PHE.J), then E is a

composition EX¢ G AN EXq G 2 E.



Remark 6.6 ([11] Remark 8.14)
The diagram of (6.3) is commutative if and only if the following

diagram is commuftative.

idy Xy PTy, PIH7 X~ 1d
Exdprl(Gl XG Gl)( y PT1, PIp7T GPI‘1 (EXG 1)XG Glé Gy "Gy EXG Gl

Ex‘gf) (G X5 GY)

JNe>
b
I

idpX g, 1

EX; Gy

. A
A composition E =(t¢)«(ce)*(E) — 1.0*(E) —§> I coincides with

the identity morphism of E if and only iF a composition

dr-,
0

coincides with the identity morphism of L.



Hence if a morphism ’g’ 7.0 () = E in &.(6, J)EzG) <) satisfies
00
both conditions of (6.3), we may call a pair (£, ’g’ 7.0°(E)—>FE) a

representation of G on E.

Example 6.7 ([11] Example 8.16)
For an epimorphism E =((E, %)—>(GO, Go) in P(E, J)?), consider

the groupoid G(E)—((GO, G0, (G(E), Gr); o, Tp, €p» Ui 1)
associated with E. Let fE EXGOGI(E)—>E be the map defined by
é‘E(e g)=g(e) and deﬁne a morphlsm ’g’E g0 (E) > E in

It can be verlﬁed that (F, ‘g'E) is a representation of G(E) on E.
We call (E, ’g’E) the canonical representation on E.



Proposition 6.8 ([11] Proposition 8.17)

Llet E=((E, &) 5 (Gy, &y)) be an object of (6, J)EZG) ¢\ such
00

that x is surjective and (LI, ‘g’ 7.0 °(lY) = E) a representation of
G=((Gy, &y, (G, G );0,7,€,1u,1) on E.
There exists a morphism f=(f,,f): G—>G(E) of groupoids in
SP(E,J) such fha’rfo—ldGO and that (£, ‘g’) coincides with the
restriction of the canonical representation (F, ’g'E) along f.
Moreover, if g=(ldGO, 21):G—= G(E) is a morphism of groupoids
in PA€,J) such that (E,E) coincides with the restriction of
the canonical representation (F, EE) along g, then g = f holds.



Theorem 6.9 ([10] Proposition 3.5.16, Proposition 3.6.15)

Let f:H— G be a morphism of groupoids in &(6,J).

The restriction functor f°:Rep(G) — Rep(H) along f has a left
adjoint and a right adjoint.

Let G=(G,, G;0,7,¢,1u), H=(H,,H;0',7',¢', ") be groupiods in
SP(6,J) and f:H— G a homomorphism of groupoids.
A left adjoint f,:Rep(H ) — Rep(G) of the restiction functor

J*:Rep(H)— Rep(G) along f is consrtructed as follows.

For an object E=((E, &) 5 (Hy, #)) of PG, J)g; oy We
0°7¢ 0

consider the following diagrams whose rectangles are cartesian.



EXy;(H X, G
| lﬂ;o ) EXGOH1—>E E X7, G—"> LN
Iy _ ]Z-G
H X, G pr, l lﬂ l(foﬂ) lfoﬂ
| R AT
G, - lfOT
GO
(E X9, H)X;;(H e,
: n(HoX s G))——=>E X (
ln:xfoom(,o 1 l?,OHl EXp{HyXg,G))— S
- c o
H, X G, il H, H ><l G, % lﬂ
i E T
HyXq Gy i l(f())g lfo
) H, G, ——
| GO




Thus (7( fo)a(T/XGOidGl))*(U/ﬁrl)*(E) is the following morphism
/ d N ~ ~ ,
(Exg (H X Gy), & W&ol (g0 A GP2) o)

T(fb)a(f, XGO idGl)ﬂG/pvrl

(G()a S6())
in &.(6,J). We also have .
o6

T*U* (fi))*(E) — ((EXGO Gl? ggfoﬂn Cg(lﬂ'f())a) . (G()’ Cg))



Suppose that (E,f:uﬁa’*(E)eE) is a representation of H.
We put ‘g’=<c§, idHO) and define morphisms

a,ﬁ ) (T(fb)G(T,XGOidGl))*(G,ﬁrl)*(E) —> T*U*(ﬁ))*(E)
by X = <(§(ldEXHOﬁr1), ﬁrzﬂgfﬁrl) ) EXGO(HI XGOGI) —> EXGOGl’ idG())
p=idpgXy u(fiXg idg ) EXg (H X5 G)) = EXg Gy, idg ),
respectively.

Let Pé g):Tm*(fO)*(E) — (E, ) be a coequalizer of & and .

We can give a structure éfzf*a*((E, ‘g’)f)—>(E, ‘g’)f of a
representation of G on (E,&); and f,(E, é) is defined to be (E, &)r.



On the other hand, a right adjoint f,: Rep(H)— Rep(G) of the

restriction functor is constructed as follows.

Consider the Following diagrams whose rectangles are cartesian.
pr;

G Xg,H, _’H1 G Xg,H, I1
lp h lfOG lidG1XG00/ 7, lf()

T 0
G Gy G X, Hy I1,
| /o

G




For a representation (E,&:06™(E)— t™*(E)) of H, we denote by
é:E—>0{T’*(E) the adjoint of & with respect to the adjunction

c* =0, and by ¥ the following composition.

(G(f )T)!T*(g) )
(6(fo)o)7, () (f? (6(fo)o)7; 0T (E)
96 0 T,TfO,G T

OB, (o f3) (i X, ) (TPrp) H(E)
Let E{; " (E, §)f—> (G(ﬁ))f)!ffj(E) be an equalizer of ¥ and
EV e (o f)), 7 (E) = (0(fo) lide, X c,0 (T Pry) *(E).
We can give a structure éf: (E, ‘g’)f — 0,7 ((E, ’g’)f ) of a

representation of G on (E, €Y and f\(E, €) is defined to be (E, E.
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