Representations of groupoids in the category of plots

Atsushi Yamaguchi

Building-up Differential Homotopy Theory in Osaka March 5, 2024

Contents of this slide
§1. Fibered category of morphisms
§2. Representations of groupoids
§3. Recollections on Grothendieck site
§4. Plots on a set
§5. Category of F-plots
§6. Representations of groupoids in the category of plots
§1. Fibered category of morphisms Let $\wp: \mathscr{F} \rightarrow \mathscr{C}$ be a functor. For an object X of \mathscr{C}, we denote by \mathscr{F}_{X} a subcategory of \mathscr{F}_{X} given as follows.

$$
\mathrm{Ob}_{X}=\{\boldsymbol{E} \in \mathrm{Ob} \mathscr{F} \mid \wp(\boldsymbol{E})=X\}
$$

$$
\text { Mor } \mathscr{F}_{X}=\left\{\boldsymbol{\varphi} \in \operatorname{Mor} \mathscr{F} \mid \delta(\boldsymbol{\varphi})=i d_{X}\right\}
$$

For a morphism $f: X \rightarrow Y$ in \mathscr{C} and objects $\boldsymbol{E}, \boldsymbol{F}$ of $\mathscr{F}_{X}, \mathscr{F}_{Y}$,
respectively, we denote by $\mathscr{F}_{f}(\boldsymbol{E}, \boldsymbol{F})$ a subset of $\mathscr{F}(\boldsymbol{E}, \boldsymbol{F})$ defined by

$$
\mathscr{F}_{f}(\boldsymbol{E}, \boldsymbol{F})=\{\boldsymbol{\varphi} \in \mathscr{F}(\boldsymbol{E}, \boldsymbol{F}) \mid \wp(\boldsymbol{\varphi})=f\} .
$$

Definition 1.1 ([1])
Let $\boldsymbol{\alpha}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ be a morphism in \mathscr{F} and set $\wp(\boldsymbol{E})=X, \delta(\boldsymbol{\alpha})=f$.
We call α a cartesian morphism if, for any $G \in \mathrm{Ob} \mathscr{F}_{X}$, the map $\mathscr{F}_{X}(\boldsymbol{G}, \boldsymbol{E}) \rightarrow \mathscr{F}_{f}(\boldsymbol{G}, \boldsymbol{F})$ defined by $\boldsymbol{\varphi} \mapsto \boldsymbol{\alpha} \boldsymbol{\varphi}$ is bijective.

Definition 1.2 ([1])

A functor $\wp: \mathscr{F} \rightarrow \mathscr{C}$ is called a fibered category if \wp satisfies the following conditions.
(i) For any morphism $f: X \rightarrow Y$ in \mathscr{C} and any object F of $\mathscr{F}_{Y \text {, }}$ there exist an object \boldsymbol{E} of \mathscr{F}_{X} and a cartesian morphism $\alpha: E \rightarrow F$ which maps to $f: X \rightarrow Y$ by \wp.
(ii) The composition of cartesian morphisms is cartesian.

Proposition 1.3 ([1])

Let $f: X \rightarrow Y$ be a morphism in \mathscr{C} and $\boldsymbol{\alpha}_{i}: \boldsymbol{E}_{i} \rightarrow \boldsymbol{F}_{i}(i=1,2)$ morphisms in \mathscr{F} such that $\wp \circ\left(\boldsymbol{\alpha}_{1}\right)=8 \circ\left(\boldsymbol{\alpha}_{2}\right)=f$, hence $\wp \circ\left(\boldsymbol{E}_{1}\right)=8 \circ\left(\boldsymbol{E}_{2}\right)=X$ and $\wp\left(\boldsymbol{F}_{1}\right)=8 \circ\left(\boldsymbol{F}_{2}\right)=Y$.
Assume that α_{2} is a cartesian morphism.
For a morphism $\boldsymbol{\varphi}: \boldsymbol{F}_{1} \rightarrow \boldsymbol{F}_{2}$ in $\mathscr{F}_{Y^{\prime}}$ there exists unique morphism $\boldsymbol{\psi}: E_{1} \rightarrow E_{2}$ in \mathscr{F}_{X} that makes the following diagram commute.

Corollary 1.4 ([1])
If $\boldsymbol{\alpha}_{i}: \boldsymbol{E}_{i} \rightarrow \boldsymbol{F}_{i}(i=1,2)$ are cartesian morphisms in \mathscr{F} such that $\wp\left(\boldsymbol{E}_{1}\right)=8 \rho\left(\boldsymbol{E}_{2}\right)=X$ and $\wp\left(\boldsymbol{\alpha}_{1}\right)=\wp \rho\left(\boldsymbol{\alpha}_{2}\right)$, there exists unique morphism $\psi: \boldsymbol{E}_{1} \rightarrow \boldsymbol{E}_{2}$ in \mathscr{F}_{X} that makes the following diagram commute. Moreover, Ψ is an isomorphism.

Let $\wp: \mathscr{F} \rightarrow \mathscr{C}$ be a fibered category and $f: X \rightarrow Y$ a morphism in \mathscr{C}. For an object \boldsymbol{F} of $\mathscr{F}_{Y \text {, }}$ there exist an object \boldsymbol{E} of \mathscr{F}_{X} and a cartesian morphism $\boldsymbol{\alpha}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ which maps to $f: X \rightarrow Y$ by \wp.
It follows from (1.4) that \boldsymbol{E} is unique up to isomorphism.
We choose such \boldsymbol{E} and $\boldsymbol{\alpha}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ for each object \boldsymbol{F} of \mathscr{F}_{Y} and denote \boldsymbol{E} by $f^{*}(\boldsymbol{F})$ and $\boldsymbol{\alpha}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ by $\boldsymbol{\alpha}_{f}(\boldsymbol{F}): f^{*}(\boldsymbol{F}) \rightarrow \boldsymbol{F}$. For a morphism $\boldsymbol{\varphi}: \boldsymbol{F} \rightarrow \boldsymbol{G}$ in \mathscr{F}_{Y}, there exist unique morphism $\boldsymbol{\varphi}_{f}: f^{*}(\boldsymbol{F}) \rightarrow f^{*}(\boldsymbol{G})$ in \mathscr{F}_{X} that makes the right diagram commute by (1.3).
We denote $\boldsymbol{\varphi}_{f}: f^{*}(\boldsymbol{F}) \rightarrow f^{*}(\boldsymbol{G})$ by
$f^{*}(\boldsymbol{\varphi}): f^{*}(\boldsymbol{F}) \rightarrow f^{*}(\boldsymbol{G})$ below.

$$
\begin{gathered}
f_{(}^{*}(\boldsymbol{F}) \xrightarrow{\boldsymbol{\alpha}_{f}(\boldsymbol{F})} \boldsymbol{F} \\
\vdots \\
\boldsymbol{\varphi}_{f} \\
f^{*}(\boldsymbol{G}) \xrightarrow{\boldsymbol{\alpha}_{f}(\boldsymbol{G})} \\
\end{gathered}
$$

For a morphism $\psi: \boldsymbol{G} \rightarrow \boldsymbol{H}$ in \mathscr{F}_{Y}, we have the following diagram. It follows from (1.3) that $f^{*}(\boldsymbol{\varphi} \varphi)=f^{*}(\boldsymbol{\psi}) f^{*}(\boldsymbol{\varphi})$ holds.

It also follows from (1.3) that $f^{*}\left(i d_{\boldsymbol{F}}\right): f^{*}(\boldsymbol{F}) \rightarrow f^{*}(\boldsymbol{F})$ is the identity morphism of $f^{*}(\boldsymbol{F})$.
Thus we have a functor $f^{*}: \mathscr{F}_{Y} \rightarrow \mathscr{F}_{X}$ which is called the inverse image functor associated with $f: X \rightarrow Y$.

Remark 1.5

For an object X of \mathscr{C} and an object E of \mathscr{F}_{X}, since the identity morphism $i d_{\boldsymbol{E}}: \boldsymbol{E} \rightarrow \boldsymbol{E}$ of \boldsymbol{E} is a cartesian morphism which is mapped to the identity morphism $i d_{X}: X \rightarrow X$ of X by $\wp: \mathscr{F} \rightarrow \mathscr{C}$, it follows from (1.4) that $\boldsymbol{\alpha}_{i d_{X}}(\boldsymbol{E}): i d_{X}^{*}(\boldsymbol{E}) \rightarrow \boldsymbol{E}$ is an isomorphism in \mathscr{F}_{X}.

We usually choose E as an inverse image $i d_{X}^{*}(\boldsymbol{E})$ of \boldsymbol{E} by $i d_{X}: X \rightarrow X$ unless otherwise stated.
In this case, $\alpha_{i d_{X}}(\boldsymbol{E}): i d_{X}^{*}(\boldsymbol{E}) \rightarrow \boldsymbol{E}$ is the identity morphism of \boldsymbol{E}.

For morphisms $f: X \rightarrow Y, g: Z \rightarrow X$ in \mathscr{C} and \boldsymbol{F} an object of $\mathscr{F}_{Y \text {, }}$ there exists unique morphism $\boldsymbol{c}_{f, g}(\boldsymbol{F}): g^{*} f^{*}(\boldsymbol{F}) \rightarrow(f g) *(\boldsymbol{F})$ in \mathscr{F}_{Z} that makes the following diagram commute by (1.3).

$$
\begin{array}{cc}
g^{*} f^{*}(\boldsymbol{F}) \xrightarrow{\boldsymbol{\alpha}_{g}\left(f^{*}(\boldsymbol{F})\right)} & f^{*}(\boldsymbol{F}) \\
\downarrow_{\downarrow, g}(\boldsymbol{F}) & \boldsymbol{c}_{f g}(\boldsymbol{F}) \\
(f g)^{*}(\boldsymbol{F}) \xrightarrow{\boldsymbol{\alpha}_{f g}(\boldsymbol{F})}
\end{array}
$$

We remark that, since composition $g^{*} f^{*}(\boldsymbol{F}) \xrightarrow{\boldsymbol{\alpha}_{g}\left(f^{*}(\boldsymbol{F})\right)} f^{*}(\boldsymbol{F}) \xrightarrow{\boldsymbol{\alpha}_{f}(\boldsymbol{F})} \boldsymbol{F}$ is cartesian, it follows from (1.4) that $\boldsymbol{c}_{f, g}(\boldsymbol{F}): g^{*} f^{*}(\boldsymbol{F}) \rightarrow(f g)^{*}(\boldsymbol{F})$ is an isomorphism.

Proposition 1.6 ([1])

For a morphism $\boldsymbol{\varphi}: \boldsymbol{F} \rightarrow \boldsymbol{G}$ in $\mathscr{F}_{Y^{\prime}}$ the following diagram commutes.

$$
\begin{aligned}
& g^{*} f^{*}(\boldsymbol{F}) \xrightarrow{\boldsymbol{c}_{f, g}(\boldsymbol{F})}(f g)^{*}(\boldsymbol{F}) \\
& \downarrow g^{*} f^{*}(\boldsymbol{\varphi}) \\
& g^{*} f^{*}(\boldsymbol{G}) \xrightarrow{\boldsymbol{c}_{f, g}(\boldsymbol{G})}(f g)^{*}(\boldsymbol{G})
\end{aligned}
$$

Thus we have $c_{f, g}$ a natural equivalence $c_{f, g}: g^{*} f^{*} \rightarrow(f g)^{*}$.

For morphisms $f: X \rightarrow Y, g: X \rightarrow Z$ in \mathscr{C}, we define a functor $F_{f, g}: \mathscr{F}_{Y}^{o p} \times \mathscr{F}_{Z} \rightarrow \operatorname{Set}$ as follows.
Put $F_{f, g}(\boldsymbol{E}, \boldsymbol{F})=\mathscr{F}_{X}\left(f^{*}(\boldsymbol{E}), g^{*}(\boldsymbol{F})\right)$ for $\boldsymbol{E} \in \mathrm{Ob}_{Y}$ and $\boldsymbol{F} \in \mathrm{Ob} \mathscr{F}_{Z}$.
For morphisms $\boldsymbol{\varphi}: \boldsymbol{E} \rightarrow \boldsymbol{G}, \boldsymbol{\psi}: \boldsymbol{H} \rightarrow \boldsymbol{F}$ in $\mathscr{F}_{Y}, \mathscr{F}_{Z}$, respectively, $F_{f, g}(\boldsymbol{\varphi}, \boldsymbol{\Psi}): \mathscr{F}_{X}\left(f^{*}(\boldsymbol{G}), g^{*}(\boldsymbol{H})\right) \rightarrow \mathscr{F}_{X}\left(f^{*}(\boldsymbol{E}), g^{*}(\boldsymbol{F})\right)$ maps $\zeta: f^{*}(\boldsymbol{G}) \rightarrow g^{*}(\boldsymbol{H})$ to $g^{*}(\boldsymbol{\psi}) \zeta f^{*}(\boldsymbol{\varphi}): f^{*}(\boldsymbol{E}) \rightarrow g^{*}(\boldsymbol{F})$.

Let $f: X \rightarrow Y, g: X \rightarrow Z, k: V \rightarrow X$ be morphisms in \mathscr{C} and $\boldsymbol{E}, \boldsymbol{F}$ objects of $\mathscr{F}_{Y}, \mathscr{F}_{Z}$, respectively.
For a morphism $\boldsymbol{\xi}: f^{*}(\boldsymbol{E}) \rightarrow g^{*}(\boldsymbol{F})$ in \mathscr{F}_{X}, we define a morphism $\xi_{k}:(f k) *(\boldsymbol{E}) \rightarrow(g k) *(\boldsymbol{F})$ in \mathscr{F}_{V} to be the following composition.

$$
(f k) *(\boldsymbol{E}) \xrightarrow{\boldsymbol{c}_{f, k}(\boldsymbol{E})^{-1}} k^{*} f^{*}(\boldsymbol{E}) \xrightarrow{k^{*}(\boldsymbol{\xi})} k^{*} g^{*}(\boldsymbol{F}) \xrightarrow{\boldsymbol{c}_{, k, \boldsymbol{F}}(\boldsymbol{F})}(g k) *(\boldsymbol{F})
$$

Hence a correspondence $\boldsymbol{\xi} \mapsto \boldsymbol{\xi}_{k}$ defines a map

$$
k_{E, F}^{\sharp}: F_{f, g}(E, F) \rightarrow F_{f k, g k}(E, F) .
$$

It follows from (1.6) that the above map is natural in \boldsymbol{E} and \boldsymbol{F}. Thus we have a natural transformation $k^{\sharp}: F_{f, g} \rightarrow F_{f k, g k}$.

Proposition 1.7 ([10] Proposition 1.1.15)

Let $f: X \rightarrow Y, g: X \rightarrow Z, h: X \rightarrow W, k: V \rightarrow X$ be morphisms in \mathscr{C}.
For objects E, F, G of $\mathscr{F}_{Y}, \mathscr{F}_{Z}, \mathscr{F}_{W}$, respectively and morphisms $\xi: f^{*}(\boldsymbol{E}) \rightarrow g^{*}\left(\boldsymbol{F}^{\prime}\right), \zeta^{*}: g^{*}\left(\boldsymbol{F}^{\prime}\right) \rightarrow h^{*}(\boldsymbol{G})$ in $\mathscr{F}_{X^{\prime}}$

$$
k_{E, G}^{\sharp}(\zeta \xi)=(\zeta \xi)_{k}:(f k)^{*}(\boldsymbol{E}) \rightarrow(h k)^{*}(\boldsymbol{F})
$$

coincides with a composition

$$
(f k) *(\boldsymbol{E}) \xrightarrow{k_{E, F}^{\sharp}(\xi)}(g k) *(\boldsymbol{F}) \xrightarrow{k_{F, \boldsymbol{G}}^{\sharp}(\zeta)}(h k) *(\boldsymbol{G}) .
$$

Proposition 1.8 ([10] Proposition 1.1.16)

Let $f: X \rightarrow Y, g: X \rightarrow Z, k: V \rightarrow X, j: U \rightarrow V$ be morphisms in \mathscr{C}.
For objects $\boldsymbol{E}, \boldsymbol{F}$ of $\mathscr{F}_{Y}, \mathscr{F}_{Z}$, respectively, the following diagram is commutative. Hence $(k j)^{\sharp}=j^{\sharp} k^{\sharp}$ holds.

$$
\begin{aligned}
& \mathscr{F}_{X}\left(f^{*}(\boldsymbol{E}), g^{*}(\boldsymbol{F})\right) \xrightarrow{(k j)_{E, F}^{*}} \mathscr{F}_{U}\left((f k j)^{*}(\boldsymbol{E}),(g k j)^{*}(\boldsymbol{F})\right) \\
& \mathscr{F}_{V}((f k) *(\boldsymbol{E}),(g k) *(\boldsymbol{F}))
\end{aligned}
$$

A functor $\wp: \mathscr{F} \rightarrow \mathscr{C}$ is called a cofibered category if the functor $\wp^{o p}: \mathscr{F}^{o p} \rightarrow \mathscr{C}^{o p}$ defined from $\wp: \mathscr{F} \rightarrow \mathscr{C}$ is a fibered category. If $\wp: \mathscr{F} \rightarrow \mathscr{C}$ is a fibered category and a cofibered category, $\mathscr{\wp}: \mathscr{F} \rightarrow \mathscr{C}$ is called a bifibered category.

Proposition 1.10 ([1])
A fibered category $\wp: \mathscr{F} \rightarrow \mathscr{C}$ is a bifibered category if and only if the inverse image functor $f^{*}: \mathscr{F}_{Y} \rightarrow \mathscr{F}_{X}$ has a left adjoint for any morphism $f: X \rightarrow Y$ in \mathscr{C}.

For a category \mathscr{C}, let $\mathscr{C}^{(2)}$ be the category of morphisms in \mathscr{C} defined as follows.
Put $\mathrm{Ob} \mathscr{C}^{(2)}=$ Mor \mathscr{C} and a morphism from $\boldsymbol{E}=(E \xrightarrow{\pi} X)$ to $\boldsymbol{F}=(F \xrightarrow{\rho} Y)$ is a pair $\langle\xi: E \rightarrow F, f: X \rightarrow Y\rangle$ of morphisms in \mathscr{C} which satisfies $\rho \xi=f \pi$.
The composition of morphisms $\langle\xi, f\rangle: \boldsymbol{E} \rightarrow \boldsymbol{F}$ and $\langle\zeta, g\rangle: \boldsymbol{F} \rightarrow \boldsymbol{G}$ is defined to be $\langle\zeta \xi, g f\rangle: \boldsymbol{E} \rightarrow \boldsymbol{G}$.

$E \xrightarrow{\xi} F \xrightarrow{\zeta} G$

Define a functor $\wp: \mathscr{C}^{(2)} \rightarrow \mathscr{C}$ by $\wp(E \xrightarrow{\pi} X)=X$ and $\wp((\langle\xi, f\rangle)=f$.

If \mathscr{C} has finite limits, $\mathscr{\wp}: \mathscr{C}^{(2)} \rightarrow \mathscr{C}$ is a fibered category as we explain below.
For a morphism $f: X \rightarrow Y$ in \mathscr{C} and an object $F=(F \xrightarrow{\rho} Y)$ of $\mathscr{C}_{Y}^{(2)}$, consider the following cartesian square in \mathscr{C}.

We put $f^{*}(\boldsymbol{F})=\left(F \times_{Y} X \xrightarrow{\rho_{f}} X\right)$ and $\boldsymbol{\alpha}_{f}(\boldsymbol{F})=\left\langle f_{p}, f\right\rangle: f^{*}(\boldsymbol{F}) \rightarrow \boldsymbol{F}$.

Proposition 1.11

$\boldsymbol{\alpha}_{f}(\boldsymbol{F})$ is a cartesian morphism, that is, for any object \boldsymbol{E} of $\mathscr{C}_{X}^{(2)}$ the map $\boldsymbol{\alpha}_{f}(\boldsymbol{F})_{*}: \mathscr{C}_{X}^{(2)}\left(\boldsymbol{E}, f^{*}(\boldsymbol{F})\right) \rightarrow \mathscr{C}_{f}^{(2)}(\boldsymbol{E}, \boldsymbol{F})$ defined by
$\alpha_{f}(F) *(\xi)=\alpha_{f}(F) \xi$ is bijective.

For morphisms $f: X \rightarrow Y, g: Z \rightarrow X$ in \mathscr{C} and an object $\boldsymbol{F}=(F \xrightarrow{\rho} Y)$ of $\mathscr{C}_{Y}^{(2)}$, suppose that the left and right rectangles of the following diagram are cartesian. Equivalently, $\left\langle f_{\rho}, f\right\rangle: f^{*}(\boldsymbol{F}) \rightarrow \boldsymbol{F}$ and $\left\langle g_{\rho_{f}} g\right\rangle: g^{*} f^{*}(\boldsymbol{F}) \rightarrow f^{*}(\boldsymbol{F})$ are cartesian morphisms in $\mathscr{C}^{(2)}$.

$$
\begin{aligned}
& \left(F \times_{Y} X\right) \times_{X} Z \xrightarrow{g_{\rho_{j}}} F \times_{Y} X \xrightarrow{f_{\rho}} F \\
& \stackrel{\downarrow}{\mathrm{Z}} \stackrel{\left(\rho_{f}\right)_{g}}{\mathrm{~g}} \stackrel{\downarrow \rho_{f}}{\underset{X}{\perp}} \xrightarrow{\downarrow} \stackrel{\rho}{Y}
\end{aligned}
$$

Then, the outer rectangle of the above diagram is also cartesian. This shows that the composition $g^{*} f^{*}(\boldsymbol{F}) \xrightarrow{\left\langle g_{p f}, g\right\rangle} f^{*}(\boldsymbol{F}) \xrightarrow{\left\langle f_{p}, f\right\rangle} \boldsymbol{F}$ is cartesian. Thus we have the following result.

Proposition 1.12 ([1])

$\wp: \mathscr{C}^{(2)} \rightarrow \mathscr{C}$ is a fibered category.

For a morphism $f: X \rightarrow Y$ in \mathscr{E}, define a functor $f_{*}: \mathscr{C}_{X}^{(2)} \rightarrow \mathscr{C}_{Y}^{(2)}$ by $f_{*}(\boldsymbol{E})=\left(E \xrightarrow{f_{p}} Y\right)$ and $f_{*}\left(\left\langle\xi, i d_{X}\right\rangle\right)=\left\langle\xi, i d_{Y}\right\rangle: f_{*}(\boldsymbol{E}) \rightarrow f_{*}(\boldsymbol{F})$ for an object $\boldsymbol{E}=(\boldsymbol{E} \xrightarrow{\rho} X)$ of $\mathscr{C}_{X}^{(2)}$ and a morphism $\left\langle\xi, i d_{X}\right\rangle: \boldsymbol{E} \rightarrow \boldsymbol{F}$ in $\mathscr{C}_{X}^{(2)}$.

Proposition 1.13 ([1])

$f_{z}: \mathscr{C}_{X}^{(2)} \rightarrow \mathscr{C}_{Y}^{(2)}$ is a left adjoint of $f^{*}: \mathscr{C}_{Y}^{(2)} \rightarrow \mathscr{C}_{X}^{(2)}$.
Hence $\mathbb{8}: \mathscr{C}^{(2)} \rightarrow \mathscr{C}$ is a bifibered category.
For an object \boldsymbol{E} of $\mathscr{C}_{X}^{(2)}$ and an object \boldsymbol{F} of $\mathscr{C}_{Y}^{(2)}$, we define a map $\Phi_{E, F}: \mathscr{C}_{f}^{(2)}(\boldsymbol{E}, \boldsymbol{F}) \rightarrow \mathscr{C}_{Y}^{(2)}\left(f_{*}(\boldsymbol{E}), \boldsymbol{F}\right)$ by $\Phi_{E, F}(\langle\xi, f\rangle)=\left\langle\xi, i d_{Y}\right\rangle$, which is a natural bijection. It follows from (1.11) that we have a natural bijection $\Phi_{E, F} \boldsymbol{\alpha}_{f}(\boldsymbol{F})_{*}: \mathscr{C}_{X}^{(2)}\left(\boldsymbol{E}, f^{*}(\boldsymbol{F})\right) \rightarrow \mathscr{C}_{Y}^{(2)}\left(f_{*}(\boldsymbol{E}), \boldsymbol{F}\right)$.
§2. Representations of groupoids Let \mathscr{C} be a category with finite limits. Consider the right cartesian square in \mathscr{C}. If morphisms $h: V \rightarrow X$ and $i: V \rightarrow Y$ in \mathscr{C}

satisfy $f h=g i$, we denote by $(h, i): V \rightarrow X \times_{Z} Y$ unique morphism that make the following diagram commute.

Suppose that the following diagrams are cartesian.

If morphisms $j: U \rightarrow X, k: V \rightarrow Y$ and $l: W \rightarrow Z$ in \mathscr{C} satisfies $f j=l h$ and $g k=l i$, we denote $\left(j i_{h}, k h_{i}\right)$ by $j \times_{l} k: U \times_{W} V \rightarrow X \times_{Z} Y$.

If $W=Z$ and $l=i d_{Z}$, we denote $j \times_{i d_{Z}} k$ by $j \times_{Z} k$.

Suppose that a pair $\left(G_{0}, G_{1}\right)$ of objects of \mathscr{C} and four morphisms $\sigma, \tau: G_{1} \rightarrow G_{0}, \varepsilon: G_{0} \rightarrow G_{1}$ and $\mu: G_{1} \times_{G_{0}} G_{1} \rightarrow G_{1}$ in \mathscr{C} are given. Here the following diagram is cartesian.

Definition 2.1

We say that $\left(G_{0}, G_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ is an internal category in \mathscr{C} if the following diagrams are commutative.

Here $G_{1} \times{ }_{G_{0}} G_{1} \times{ }_{G_{0}} G_{1}$ is a limit of the following diagram.

$$
G_{1} \xrightarrow{\tau} G_{0} \stackrel{\sigma}{\leftarrow} G_{1} \xrightarrow{\tau} G_{0} \stackrel{\sigma}{\leftarrow} G_{1}
$$

Definition 2.2

Let $\left(G_{0}, G_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ be an internal category in \mathscr{C}.
If a morphism $t: G_{1} \rightarrow G_{1}$ in \mathscr{C} makes the following diagrams commute, we call ($\left.G_{0}, G_{1} ; \sigma, \tau, \varepsilon, \mu, l\right)$ an internal groupoid in \mathscr{C} or a groupoid in \mathscr{C} for short.

We also have a notion of internal functors between internal categories.

Definition 2.3
Let $\boldsymbol{G}=\left(G_{0}, G_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ and $\boldsymbol{H}=\left(H_{0}, H_{1} ; \sigma^{\prime}, \tau^{\prime}, \varepsilon^{\prime}, \mu^{\prime}\right)$ be internal categories in \mathscr{C}. An internal functor from \boldsymbol{G} to \boldsymbol{H} is a pair $\left(f_{0}, f_{1}\right)$ of morphisms $f_{0}: G_{0} \rightarrow G_{0}$ and $f_{1}: G_{1} \rightarrow G_{1}$ in \mathscr{C} which make the following diagrams commute.

Definition 2.4
Let $\boldsymbol{f}=\left(f_{0}, f_{1}\right), \boldsymbol{g}=\left(g_{0}, g_{1}\right): \boldsymbol{G} \rightarrow \boldsymbol{H}$ be internal functors.
An internal natural transformation $\chi: \boldsymbol{f} \rightarrow \boldsymbol{g}$ from \boldsymbol{f} to \boldsymbol{g} is a morphism $\chi: G_{0} \rightarrow H_{1}$ in \mathscr{C} which makes the following diagrams commute.

Let $\wp: \mathscr{F} \rightarrow \mathscr{C}$ be a fibered category and assume that \mathscr{C} is a category with finite limits below.

Definition 2.5 ([9], [10] Definition 3.1.2)
Let $\boldsymbol{G}=\left(G_{0}, G_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ be an internal category in \mathscr{E}.
A pair $(\boldsymbol{E}, \boldsymbol{\xi})$ of an object \boldsymbol{E} of $\mathscr{F}_{G_{0}}$ and a morphism

$$
\xi: \sigma^{*}(\boldsymbol{E}) \rightarrow \tau^{*}(\boldsymbol{E})
$$

in $\mathscr{F}_{G_{1}}$ is called a representation of \boldsymbol{G} on \boldsymbol{E} if the following diagrams are commutative.

$$
\begin{gathered}
\left(\sigma \mathrm{pr}_{1}\right) *(\boldsymbol{E})=(\sigma \mu) *(\boldsymbol{E}) \xrightarrow{\xi_{\mu}}(\tau \mu) *(\boldsymbol{E})=\left(\tau \mathrm{pr}_{2}\right) *(\boldsymbol{E}) \\
\underset{\mathrm{ppr}_{1}}{\xi_{1}}=\left(\tau \mathrm{pr}_{1}\right) *(\boldsymbol{E})=\left(\sigma \mathrm{pr}_{2}\right) *(\boldsymbol{E}) \\
\boldsymbol{\xi}_{\mathrm{pr}_{2}}
\end{gathered}
$$

Definition 2.6 ([9], [10] Definition 3.1.2)
Let $(\boldsymbol{E}, \boldsymbol{\xi})$ and $(\boldsymbol{F}, \boldsymbol{\zeta})$ be representations of \boldsymbol{G} on \boldsymbol{E} and \boldsymbol{F}.
A morphism $\boldsymbol{\varphi}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ in $\mathscr{F}_{G_{0}}$ is called a morphism of
representations of \boldsymbol{G} if $\boldsymbol{\varphi}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ makes the following diagram commute.

$$
\begin{gathered}
\sigma^{*}(\boldsymbol{E}) \xrightarrow{\boldsymbol{\xi}} \tau^{\mid \sigma^{*}(\boldsymbol{\varphi})} \underset{ }{*}(\boldsymbol{E}) \\
\sigma^{*}(\boldsymbol{F}) \xrightarrow{*}(\boldsymbol{\varphi}) \\
\tau^{*}(\boldsymbol{\varphi})
\end{gathered}
$$

Thus we have the category of representations of \boldsymbol{G}, which we denote by $\operatorname{Rep}(\boldsymbol{G})$.

Let $\boldsymbol{G}=\left(G_{0}, G_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ and $\boldsymbol{H}=\left(H_{0}, H_{1} ; \sigma^{\prime}, \tau^{\prime}, \varepsilon^{\prime}, \mu^{\prime}\right)$ be internal categories in \mathscr{C} and $\boldsymbol{f}=\left(f_{0}, f_{1}\right): \boldsymbol{H} \rightarrow \boldsymbol{G}$ be an internal functor. For a representation $(\boldsymbol{E}, \boldsymbol{\xi})$ of \boldsymbol{G} on \boldsymbol{E}, we define

$$
\xi_{f}: \sigma^{* *} f_{0}^{*}(\boldsymbol{E}) \rightarrow \tau^{* *} f_{0}^{*}(\boldsymbol{E})
$$

to be the following composition.

$$
\begin{aligned}
\sigma^{\prime *} f_{0}^{*}(\boldsymbol{E}) \xrightarrow{c_{f_{0}}(\boldsymbol{E})} & \left(f_{0} \sigma\right)^{*}(\boldsymbol{E})=\left(\sigma f_{1}\right)^{*}(\boldsymbol{E}) \xrightarrow{\xi_{h}}\left(\tau f_{1}\right) *(\boldsymbol{E})=\left(f_{0} \tau\right)^{*}(\boldsymbol{E}) \\
& \xrightarrow{c_{h_{r}+\boldsymbol{t}}(\boldsymbol{E})^{-1}}\left(f_{0} \tau\right) *(\boldsymbol{E})=\tau^{\prime *} f_{0}^{* *}(\boldsymbol{E})
\end{aligned}
$$

Proposition 2.7 ([9], [10] Proposition 3.2.1)
$\left(f_{0}^{*}(\boldsymbol{E}), \xi_{f}\right)$ is a representation of \boldsymbol{H} on $f_{0}^{*}(\boldsymbol{E})$.
If $\boldsymbol{\varphi}:(\boldsymbol{E}, \boldsymbol{\xi}) \rightarrow(\boldsymbol{F}, \boldsymbol{\zeta})$ is a morphism of representations of \boldsymbol{G}, then
$f_{0}^{*}(\boldsymbol{\varphi}): f_{0}^{*}(\boldsymbol{E}) \rightarrow f_{0}^{*}(\boldsymbol{F})$ gives a morphism

$$
f_{0}^{*}(\boldsymbol{\varphi}):\left(f_{0}^{*}(\boldsymbol{E}), \xi_{f}\right) \rightarrow\left(f_{0}^{*}(\boldsymbol{F}), \zeta_{f}\right)
$$

of representations of \boldsymbol{H}.
Definition 2.8 ([9], [10] Definition 3.2.3)
Define a functor $\boldsymbol{f}^{\circ}: \operatorname{Rep}(\boldsymbol{G}) \rightarrow \operatorname{Rep}(\boldsymbol{H})$ by $\boldsymbol{f}^{\circ}(\boldsymbol{E}, \boldsymbol{\xi})=\left(f_{0}^{*}(\boldsymbol{E}), \boldsymbol{\xi}_{f}\right)$ for an object $(\boldsymbol{E}, \boldsymbol{\xi})$ of $\operatorname{Rep}(\boldsymbol{\xi})$ and $\boldsymbol{f}^{\circ}(\boldsymbol{\varphi})=f_{0}^{*}(\boldsymbol{\varphi})$ for a morphism $\boldsymbol{\varphi}:(\boldsymbol{E}, \boldsymbol{\xi}) \rightarrow(\boldsymbol{F}, \boldsymbol{\zeta})$ in $\operatorname{Rep}(\boldsymbol{G})$.
We call this functor the restriction functor along $f: \boldsymbol{H} \rightarrow \boldsymbol{G}$.

Let $\boldsymbol{G}=\left(G_{0}, G_{1} ; \sigma, \tau, \varepsilon, \mu\right)$ and $\boldsymbol{H}=\left(H_{0}, H_{1} ; \sigma^{\prime}, \tau^{\prime}, \varepsilon^{\prime}, \mu^{\prime}\right)$ be internal categories in $\mathscr{C}, \boldsymbol{f}=\left(f_{0}, f_{1}\right), \boldsymbol{g}=\left(g_{0}, g_{1}\right): \boldsymbol{H} \rightarrow \boldsymbol{G}$ be internal functors and $\chi: f \rightarrow \boldsymbol{g}$ an internal natural transformation.
For a representation $(\boldsymbol{E}, \boldsymbol{\xi})$ of \boldsymbol{G} on \boldsymbol{E}, we define a morphism $\chi_{(\boldsymbol{E}, \xi, 5}^{*}: f_{0}^{*}(\boldsymbol{E}) \rightarrow g_{0}^{*}(\boldsymbol{E})$ in $\mathscr{F}_{H_{0}}$ to be

$$
\chi_{\boldsymbol{E}, \boldsymbol{E}}^{\#}(\boldsymbol{E})=\xi_{\chi}: f_{0}^{*}(\boldsymbol{E})=(\sigma \chi)^{*}(\boldsymbol{E}) \rightarrow(\tau \chi)^{*}(\boldsymbol{E})=g_{0}^{*}(\boldsymbol{E}) .
$$

Proposition 2.9 ([10] Proposition 3.2.5)

$\chi_{(\boldsymbol{E}, \xi)}^{\bullet}$ is a morphism of representations from $\boldsymbol{f}^{\circ}(\boldsymbol{E}, \boldsymbol{\xi})=\left(f_{0}^{*}(\boldsymbol{E}), \xi_{f}\right)$ to $\boldsymbol{g}^{\circ}(\boldsymbol{E}, \boldsymbol{\xi})=\left(g_{0}^{*}(\boldsymbol{E}), \boldsymbol{\xi}_{\boldsymbol{g}}\right)$ and the following diagram in $\operatorname{Rep}(\boldsymbol{H})$ is commutative for a morphism $\boldsymbol{\varphi}:(\boldsymbol{E}, \boldsymbol{\xi}) \rightarrow(\boldsymbol{F}, \boldsymbol{\zeta})$ of representations of \boldsymbol{G}.

$$
\begin{aligned}
& \left(f_{0}^{*}\left(\boldsymbol{E}^{\prime}\right), \xi_{f}\right) \xrightarrow{f^{\circ}(\boldsymbol{\varphi})}\left(f_{0}^{*}(\boldsymbol{F}), \zeta_{f}\right)
\end{aligned}
$$

Thus we have a natural transformation $\chi^{\bullet}: \boldsymbol{f}^{\bullet} \rightarrow \boldsymbol{g}^{\bullet}$.
§3. Recollections on Grothendieck site
We denote by Set the category of sets and maps.
For a category \mathscr{C}, we call a functor $\mathscr{C}^{o p} \rightarrow$ Set presheaf on \mathscr{C}.
For an object X of \mathscr{C}, let $h_{X}: \mathscr{C}^{o p} \rightarrow$ Set be a functor defined by $h_{X}(U)=\mathscr{C}(U, X)$ for an object U of \mathscr{C} and

$$
h_{X}(f: U \rightarrow V)=\left(f^{*}: \mathscr{C}(V, X) \rightarrow \mathscr{C}(U, X)\right)
$$

for a morphism $f: U \rightarrow V$ in \mathscr{C}.
Here, $\mathscr{C}(U, X)$ denotes the set of morphisms in \mathscr{C} from U to X.
We call $h_{X}: \mathscr{C}^{o p} \rightarrow$ Set the presheaf on \mathscr{C} represented by X.
For a morphism $\varphi: X \rightarrow Y$ in \mathscr{C}, let $h_{\varphi}: h_{X} \rightarrow h_{Y}$ be a natural transformation defined by $\left(h_{\varphi}\right)_{U}=\varphi_{*}: \mathscr{C}(U, X) \rightarrow \mathscr{C}(U, Y)$.

For a morphism f in a category \mathscr{C}, let us denote by $\operatorname{dom}(f)$ the source of f and $\operatorname{codom}(f)$ the target of f.

For set valued functors $F, G: \mathscr{C} \rightarrow \operatorname{Set}$, if $F(U)$ is a subset of $G(U)$ for any object U of \mathscr{C} and the inclusion map $i_{U}: F(U) \rightarrow G(U)$ defines a natural transformation $i: F \rightarrow G$, we call F a subfunctor of G. If F is a subfunctor of G, we denote this by $F \subset G$.

For an object X of a category \mathscr{C}, we call a subfunctor of h_{X} a sieve on X.

Definition 3.1

Let \mathscr{C} be a category. For each $X \in \mathrm{Ob} \mathscr{\mathscr { C }}$, a set $J(X)$ of sieves on X is given. If the following conditions are satisfied, a correspondence $J: X \mapsto J(X)$ is called a (Grothendieck) topology on \mathscr{C}. A category \mathscr{C} with a topology J is called a site which we denote by (\mathscr{C}, J).
(T1) For any $X \in \mathrm{Ob} \mathscr{C}, h_{X} \in J(X)$.
(T2) For any $X \in \mathrm{Ob} \mathscr{C}, R \in J(X)$ and morphism $f: Y \rightarrow X$ of \mathscr{C}, a subfunctor $h_{f}^{-1}(R)$ of h_{Y} defined below belongs to $J(Y)$.

$$
h_{f}^{-1}(R)(Z)=\{g: Z \rightarrow Y \mid f g \in R(Z)\}
$$

(T3) A sieve S on X belongs to $J(X)$, if there exists $R \in J(X)$ such that $h_{f}^{-1}(S) \in J(\operatorname{dom}(f))$ for any $f \in \mathrm{Ob} R$.

Proposition 3.2

Consider the following conditions on J.
(T3') A sieve S on X belongs to $J(X)$, if there exists $R \in J(X)$ such that S is a subfunctor of R and $h_{f}^{-1}(S) \in J(\operatorname{dom}(f))$ for $f \in \mathrm{Ob} R$.
(T4) A sieve S on X belongs to $J(X)$ if it has a subfunctor which belongs to $J(X)$.
(T5) Suppose that $R \in J(X)$ and that $R_{f} \in J(\operatorname{dom}(f))$ is given for each $f \in \mathrm{Ob} R$. Then, $\left\{f g \mid f \in \mathrm{Ob} R, g \in \mathrm{Ob} R_{f}\right\} \in J(X)$.
(1) (T2) and (T3) imply (T4). (T1) and (T3) imply (T5).
(2) (T4) and (T5) imply (T3). (T3') and (T4) imply (T3).

Proposition 3.3

For a set R of morphisms in \mathscr{C} with target X, we put

$$
\bar{R}=\bigcup_{f \in R} \operatorname{Im}\left(h_{f}: h_{\mathrm{dom}(f)} \rightarrow h_{X}\right) .
$$

In other words, \bar{R} is the set of all morphisms of the form $f g$ such that $f \in R, g \in \operatorname{Mor} \mathscr{C}$ and $\operatorname{codom}(g)=\operatorname{dom}(f)$.
Then, \bar{R} is the smallest sieve containing R.
Definition 3.4
Let (\mathscr{C}, J) be a site.
(1) For a set R of morphisms in \mathscr{C} with target X, we call \bar{R} the sieve generated by R.
(2) A family of morphisms $\left(f_{i}: X_{i} \rightarrow X\right)_{i \in I}$ is called a covering of X if the sieve generated by f_{i}^{\prime} s belongs to $J(X)$.
§4. Plots on a set
Definition 4.1 ([11] Definition 1.1)
Let \mathscr{C} be a category and $F: \mathscr{C} \rightarrow$ Set a functor.
For a set X, we define a presheaf F_{X} on \mathscr{C} to be a composition

$$
\mathscr{C} o p \xrightarrow{F^{o p}} \operatorname{Set}^{o p} \xrightarrow{h_{X}} \operatorname{Set} .
$$

Here we denote by $F^{o p}: \mathscr{C}^{o p} \rightarrow$ Set $^{o p}$ a functor defined by $F^{O p}(U)=F(U)$ for $U \in \operatorname{Ob\mathscr {C}}$ and $F^{O P}(f)=F(f)$ for $f \in \operatorname{Mor} \mathscr{C}$.
An element of $\coprod_{U \in \mathrm{Ob} \mathscr{\mathscr { C }}} F_{X}(U)$ is called an F-parametrization of X.
We note that F_{X} is given by $F_{X}(U)=\operatorname{Set}(F(U), X)$ for $U \in \operatorname{Ob} \mathscr{C}$ and $F_{X}(f)(\alpha)=\alpha F(f)$ for $(f: U \rightarrow V) \in \operatorname{Mor} \mathscr{C}$ and $\alpha \in F_{X}(V)$.

Definition 4.2 ([11] Definition 1.2)

Let (\mathscr{C}, J) be a site, X a set and $F: \mathscr{C} \rightarrow$ Set a functor.
Assume that \mathscr{C} has a terminal object $1_{\mathscr{C}}$ and that $F\left(1_{\mathscr{C}}\right)$ consists of a single element. If a subset \mathscr{D} of $\underset{U \in 00 \mathbb{E}_{8}}{\amalg} F_{X}(U)$ satisfies the following conditions, we call \mathscr{D} a the-ology on X.
(i) $\mathscr{D} \supset F_{X}\left(1_{\mathscr{C}}\right)$
(ii) For a morphism $f: U \rightarrow V$ in \mathscr{C}, the map $F_{X}(f): F_{X}(V) \rightarrow F_{X}(U)$ induced by f maps $\mathscr{D} \cap F_{X}(V)$ into $\mathscr{D} \cap F_{X}(U)$.
(iii) For an object U of \mathscr{C}, an element x of $F_{X}(U)$ belongs to $\mathscr{D} \cap F_{X}(U)$ if there exists a covering $\left(f_{i}: U_{i} \rightarrow U\right)_{i \in I}$ such that $F_{X}\left(f_{i}\right): F_{X}(U) \rightarrow F_{X}\left(U_{i}\right)$ maps x into $\mathscr{D} \cap F_{X}\left(U_{i}\right)$ for any $i \in I$.

We call a pair (X, \mathscr{D}) a the-ological object and call an element of \mathscr{D} an F-plot of (X, \mathscr{D}).

Proposition 4.3 ([11] Proposition 1.4)

Condition (iii) is of (4.2) is equivalent to the following condition if we assume condition (ii).
(iii') For an object U of \mathscr{C}, an element x of $F_{X}(U)$ belongs to
$\mathscr{D} \cap F_{X}(U)$ if there exists $R \in J(U)$ such that
$F_{X}(f): F_{X}(U) \rightarrow F_{X}(\operatorname{dom}(f))$ maps x into $\mathscr{D} \cap F_{X}(\operatorname{dom}(f))$ for any $f \in R$.

For a map $\varphi: X \rightarrow Y$ and a functor $F: \mathscr{C} \rightarrow$ Set, we define a morphism $F_{\varphi}: F_{X} \rightarrow F_{Y}$ of presheaves by

$$
\left(F_{\varphi}\right)_{U}=\varphi_{*}: F_{X}(U)=\operatorname{Set}(F(U), X) \rightarrow \operatorname{Set}(F(U), Y)=F_{Y}(U) .
$$

Definition 4.4 ([11] Definition 1.7)
Let (\mathscr{C}, J) be a site, X a set and $F: \mathscr{C} \rightarrow$ Set a functor.
(1) Let (X, \mathscr{D}) and (Y, \mathscr{E}) be the-ological objects.

If the map $\left(F_{\varphi}\right)_{U}: F_{X}(U) \rightarrow F_{Y}(U)$ induced by a map $\varphi: X \rightarrow Y$ maps $\mathscr{D} \cap F_{X}(U)$ into $\mathscr{E} \cap F_{Y}(U)$ for each $U \in \mathrm{Ob} \mathscr{C}$,
we call φ a morphism of the-ological objects.
We denote this by $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$.
(2) We define a category $\mathscr{P}_{F}(\mathscr{C}, J)$ of the-ological objects as follows. Objects of $\mathscr{P}_{F}(\mathscr{C}, J)$ are the-ological objects and morphisms of $\mathscr{P}_{F}(\mathscr{C}, J)$ are morphism of the-ological objects.

For a the-ological object (X, \mathscr{D}) and $U \in \mathrm{Ob} \mathscr{\mathscr { C }}$, we put $F_{\mathscr{D}}(U)=\mathscr{D} \cap F_{X}(U)$. Then $U \mapsto F_{\mathscr{D}}(U)$ defines a presheaf $F_{\mathscr{D}}$ on \mathscr{E}.
Remark 4.5 ([11] Remark 1.8)
Let $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$ be a morphism of the-ological objects.
It follows from the definition of a morphism of the-ological objects that $\left(F_{\varphi}\right)_{U}: F_{X}(U) \rightarrow F_{Y}(U)$ defines a map
$\left(F_{\varphi}\right)_{U}: F_{\mathscr{D}}(U) \rightarrow F_{\mathscr{O}}(U)$ which is natural in $U \in \mathrm{Ob} \mathscr{C}$. Thus we have a morphism $F_{\varphi}: F_{\mathscr{D}} \rightarrow F_{\mathscr{E}}$ of presheaves.

Definition 4.6 ([11] Definition 1.9)
For the-ologies \mathscr{D} and \mathscr{E} on X, we say that \mathscr{D} is finer than \mathscr{E} and that \mathscr{E} is coarser than \mathscr{D} if $\mathscr{D} \subset \mathscr{E}$.

Remark 4.7 ([11] Remark 1.10)
We put $\mathscr{D}_{\text {coarse, } X}=\coprod_{U \in \mathrm{Ob} \mathscr{C}} F_{X}(U)$. It is clear that $\mathscr{D}_{\text {coarse, } X}$ is the coarsest the-ology on X. For a map $f: Y \rightarrow X$ and a the-ology \mathscr{E} on $Y, f:(Y, \mathscr{E}) \rightarrow\left(X, \mathscr{D}_{\text {coarse }, X}\right)$ is a morphism of the-ologies.

Proposition 4.8 ([11] Proposition 1.11)

Let $\left(\mathscr{D}_{i}\right)_{i \in I}$ be a family of the-ologies on a set X. Then, $\bigcap_{i \in I} \mathscr{D}_{i}$ is a the-ology on X that is the finest the-ology among the-ologies on X which are coarser than \mathscr{D}_{i} for any $i \in I$.

For a set X, we denote by $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ a subcategory of $\mathscr{P}_{F}(\mathscr{C}, J)$ consisting of objects of the form (X, \mathscr{D}) and morphisms of the form $\operatorname{id}_{X}:(X, \mathscr{D}) \rightarrow(X, \mathscr{E})$. Then, $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ is regarded as an ordered set of the-ologies on X.
We often denote by \mathscr{D} an object (X, \mathscr{D}) of $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ for short. It follows from (4.7) that ($X, \mathscr{D}_{\text {coarse, } X}$) is the maximum (terminal) object of $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$.

Corollary 4.9 ([11] Corollary 1.12)
$\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ is complete as an ordered set.

Proposition 4.10 ([11] Proposition 1.13)

Let \mathcal{S} be a subset of $\underset{U \in \mathrm{Ob} \mathscr{E}}{\amalg} F_{X}(U)$ which contains $F_{X}\left(1_{\mathscr{C}}\right)$.
For $f \in \operatorname{Mor} \mathscr{b}$, define a subset \mathcal{S}_{f} of $F_{X}(\operatorname{dom}(f))$ by

$$
\mathcal{S}_{f}=F_{X}(f)\left(\mathcal{S} \cap F_{X}(\operatorname{codom}(f))\right) .
$$

For $U \in \mathrm{Ob} \mathscr{C}$, we define a subset $\mathcal{S}(U)$ of $F_{X}(U)$ by

$$
\mathcal{S}(U)=\left\{x \in F_{X}(U) \mid \text { There exists } R \in J(U) \text { such that } \begin{array}{l}
\left.\mathrm{F}_{X}(g)(x) \in \bigcup_{f \in \mathrm{Mor} \mathscr{B}} \mathcal{S}_{f} \text { for all } g \in R .\right\} .
\end{array}\right.
$$

If we put $\mathscr{G}(\mathcal{S})={\underset{U \in O b}{ } \mathscr{C}^{2}} \mathcal{S}(U)$ and $\Sigma=\left\{\mathscr{D} \in \mathscr{P}_{F}(\mathscr{C}, J)_{X} \mid \mathscr{D} \supset \mathcal{S}\right\}$, then we have $\mathscr{G}(\mathcal{S})=\inf \Sigma \in \mathscr{P}_{F}(\mathscr{C}, J)_{X}$.

Remark 4.11 ([11] Remark 1.14)

(1) For $U \in \mathrm{Ob} \mathscr{C}$, the subset $\mathcal{S}(U)$ of $F_{X}(U)$ defined in (4.10) coincides with the following set.
$\left\{x \in F_{X}(U) \mid\right.$ There exists a covering $\left(U_{i} \xrightarrow{g_{i}} U\right)_{i \in I}$ such that $F_{X}\left(g_{i}\right)(x) \in \bigcup_{f \in \mathrm{Mor} \mathscr{\mathscr { C }}} \mathcal{S}_{f}$ for all $\left.i \in I.\right\}$
(2) Let Σ be a non-empty subset of $\mathscr{P}_{F}(\mathscr{C}, J)_{X}$ and put $S(\Sigma)=\bigcup_{\mathscr{D} \in \Sigma} \mathscr{D}$. Then $\mathcal{S}(\Sigma)(U)$ coincides with the following set.
$\left\{x \in F_{X}(U) \mid\right.$ There exists a covering $\left(U_{i} \xrightarrow{g_{i}} U\right)_{i \in I}$ such that $F_{X}\left(g_{i}\right)(x) \in \bigcup_{\mathscr{D} \in \Sigma} \mathscr{D}$ for all $i \in I$. $\}$
Hence $\sup \Sigma=\mathscr{G}(\mathcal{S}(\Sigma))=\bigcup_{U \in \mathscr{C}} \mathcal{S}(\Sigma)(U)$ holds.

Definition 4.12 ([11] Definition 1.15)
For a subset \mathcal{S} of $\coprod_{U \in \mathrm{Ob} \mathscr{C}} F_{X}(U)$ containing $F_{X}\left(1_{\mathscr{C}}\right)$, we call $\mathscr{G}(\mathcal{S})$
defined in (4.10) the the-ology generated by \mathcal{S}.
Definition 4.13 ([11] Definition 1.16)
Let (\mathscr{C}, J) be a site and X a set. We put $\mathscr{D}_{\text {disc, } X}=\bigcap_{\mathscr{D} \in \mathrm{Ob} \mathscr{P}_{F}\left(\mathscr{C}, J_{X}\right.} \mathscr{D}$
and call this the discrete the-ology on $X . \mathscr{D}_{\text {disc, } X}$ is the finest the-ology on X.

Remark 4.14 ([11] Remark 1.17)
For any map $f: X \rightarrow Y$ and a the-ology \mathscr{E} on Y,
$f:\left(X, \mathscr{D}_{\text {disc }, X}\right) \rightarrow(Y, \mathscr{E})$ is a morphism of the-ologies.

Remark 4.15 ([11] Remark 1.17)

(1) Since $\mathscr{D}_{\text {disc, } X} \supset F_{X}\left(1_{\mathscr{C}}\right), \mathscr{D}_{\text {disc, } X}$ contains the image of the map
$F_{X}\left(o_{U}\right): F_{X}\left(1_{\mathscr{C}}\right) \rightarrow F_{X}(U)$ induced by the unique map $o_{U}: U \rightarrow 1_{\mathscr{C}}$ for any $U \in \mathrm{Ob} \mathscr{C}$. Hence every constant map in $F_{X}(U)$ belongs to $\mathscr{D}_{\text {disc, } X}$.
(2) Let $\mathcal{S}_{\text {const }}$ be the set of all constant maps in $\coprod_{U \in \mathrm{Ob} \mathscr{C}} F_{X}(U)$. Then $\mathcal{S}_{\text {const }}=\bigcup_{f \in \mathrm{Mor} \mathscr{C}}\left(\mathcal{S}_{\text {const }}\right)_{f}$. Thus $\mathscr{D}_{\text {disc }, X} \cap F_{X}(U)=\mathscr{D}\left(\mathcal{S}_{\text {const }}\right) \cap F_{X}(U)$ coincides with the following set.
$\left\{x \in F_{X}(U) \mid\right.$ There exists a covering $\left(U_{i} \xrightarrow{g_{i}} U\right)_{i \in I}$ such that

$$
\left.F_{X}\left(g_{i}\right)(x) \text { is a contant map for all } i \in I .\right\}
$$

§5. Category of F-plots
For a map $f: X \rightarrow Y$ and $(Y, \mathscr{E}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)$, we define a the-ology $\mathscr{E} f$ on X to be the coarsest the-ology such that $f:(X, \mathscr{E} f) \rightarrow(Y, \mathscr{E})$ is a morphism of the-ologies.

Proposition 5.1 ([11] Proposition 2.1)
For a map $f: X \rightarrow Y$ and $(Y, \mathscr{E}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)$, $\mathscr{E} f$ is as follows.
$\mathscr{E} f=\underset{U \in \mathrm{Ob} \mathscr{E}}{\amalg}\left(F_{f}\right)^{-1}\left(\mathscr{E} \cap F_{Y}(U)\right)=\underset{U \in \mathrm{Ob} \mathscr{E}}{\amalg}\left\{\varphi \in F_{X}(U) \mid f \varphi \in \mathscr{E} \cap F_{Y}(U)\right\}$
Proposition 5.2 ([11] Proposition 2.2)
Let $\left(\mathscr{E}_{i}\right)_{i \in I}$ a family of the-ologies on a set Y. For a map $f: X \rightarrow Y$, $\left(\bigcap_{i \in I} \mathscr{E}_{i}\right)^{f}=\bigcap_{i \in I} \mathscr{E}_{i}$ holds.

We define a forgetful functor $\Gamma: \mathscr{P}_{F}(\mathscr{C}, J) \rightarrow \operatorname{Set}$ by $\Gamma(X, \mathscr{D})=X$ for $(X, \mathscr{D}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)$ and $\Gamma(\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E}))=(\varphi: X \rightarrow Y)$ for a morphism $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$ in $\mathscr{P}_{F}(\mathscr{C}, J)$.

It is clear that Γ is faithful. In other words, if we put

$$
\mathscr{P}_{F}(\mathscr{C}, J)_{f}((X, \mathscr{D}),(Y, \mathscr{E}))=\Gamma^{-1}(f) \cap \mathscr{P}_{F}(\mathscr{C}, J)((X, \mathscr{D}),(Y, \mathscr{E}))
$$

for a map $f: X \rightarrow Y$ and $(X, \mathscr{D}),(Y, \mathscr{E}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)$, $\mathscr{P}_{F}(\mathscr{C}, J)_{f}((X, \mathscr{D}),(Y, \mathscr{E}))$ has at most one element.
$\mathscr{P}_{F}(\mathscr{C}, J)_{f}((X, \mathscr{D}),(Y, \mathscr{E}))$ is not empty if and only if $\mathscr{D} \subset \mathscr{E}^{f}$ which is equivalent that $\mathscr{\mathscr { P }}_{F}(\mathscr{C}, J)_{X}((X, \mathscr{D}),(X, \mathscr{E} f))$ is not empty.

Proposition 5.3 ([11] Proposition 2.3)
For maps $f: X \rightarrow Y, g: W \rightarrow X$ and an object (Y, \mathscr{E}) of $\mathscr{P}_{F}(\mathscr{C}, J)_{Y}$ $\mathscr{E}^{\mathscr{E} f g}=\left(\mathscr{E}^{\mathscr{E}}\right)^{g}$ holds and $\Gamma: \mathscr{P}_{F}(\mathscr{C}, J) \rightarrow \operatorname{Set}$ is a fibered category.

In fact, $f:(X, \mathscr{E} f) \rightarrow(Y, \mathscr{E})$ is unique cartesian morphism over a map $f: X \rightarrow Y$ whose target is (Y, \mathscr{E}). Hence the inverse image functor

$$
f^{*}: \mathscr{P}_{F}(\mathscr{C}, J)_{Y} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{X}
$$

associated with f is given by $f^{*}(Y, \mathscr{E})=\left(X, \mathscr{E}^{f}\right)$ and

$$
f^{*}\left(i d_{Y}:(Y, \mathscr{E}) \rightarrow(Y, \mathscr{G})\right)=\left(i d_{X}:(X, \mathscr{E} f) \rightarrow(X, \mathscr{\mathscr { f }})\right) .
$$

It is clear that $\mathscr{E}^{f} f_{g}=(\mathscr{E} f)^{g}$ holds, which implies $(f g)^{*}=g^{*} f^{*}$.

For a map $f: X \rightarrow Y$ and $(X, \mathscr{D}) \in \operatorname{Ob} \mathscr{\mathscr { P }}_{F}(\mathscr{C}, J)$, we define a the-ology \mathscr{D}_{f} on Y to be the finest the-ology such that $f:(X, \mathscr{D}) \rightarrow\left(Y, \mathscr{D}_{f}\right)$ is a morphism of the-ologies, that is, $\mathscr{D}_{f}=\bigcap_{\mathscr{E} \in \Sigma} \mathscr{E}$, where

$$
\Sigma=\left\{\mathscr{E} \in \mathrm{Ob} \mathscr{P}_{F}(\mathscr{C}, J)_{Y} \mid \mathscr{E} \supset \underset{U \in \mathrm{Ob} \mathscr{E}}{\mathrm{U}}\left(F_{f}\right)_{U}\left(\mathscr{D} \cap F_{X}(U)\right)\right\} .
$$

Remark 5.4 ([11] Remark 2.4)

For $U \in \mathrm{Ob} \mathscr{C}$, the subset $\mathcal{S}(U)$ of $F_{X}(U)$ defined in (4.9) is the set of elements x of $F_{X}(U)$ which satisfy the following condition $(*)$ if $f: X \rightarrow Y$ is surjective.
(*) There exists $R \in J(U)$ such that, for each $h \in R$, there exists $y \in \mathscr{D} \cap F_{X}(\operatorname{dom}(h))$ which satisfies $F_{Y}(h)(x)=\left(F_{f}\right)_{\operatorname{dom}(h)}(y)$.

If we put $\mathscr{G}(\mathcal{S})=\coprod_{U \in \mathrm{Ob} \mathscr{C}} \mathcal{S}(U)$, we have $\mathscr{D}_{f}=\mathscr{G}(\mathcal{S})$.

Proposition 5.5 ([11] Proposition 2.5)

$\Gamma: \mathscr{P}_{F}(\mathscr{C}, J) \rightarrow$ Set is a bifibered category.
For a map $f: X \rightarrow Y$, define a functor $f_{*}: \mathscr{P}_{F}(\mathscr{C}, J)_{X} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{Y}$ as follows. For $(X, \mathscr{D}) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)_{X}$, we put $f_{*}(X, \mathscr{D})=\left(Y, \mathscr{D}_{f}\right)$. If $(X, \mathscr{D}),\left(X, \mathscr{D}^{\prime}\right) \in \operatorname{Ob} \mathscr{P}_{F}(\mathscr{C}, J)_{X}$ satisfies $\mathscr{D} \subset \mathscr{D}^{\prime}$, then $\mathscr{D}_{f} \subset \mathscr{D}_{f}^{\prime}$ holds. Hence, for a morphism ${i d_{X}}:(X, \mathscr{D}) \rightarrow\left(X, \mathscr{D}^{\prime}\right)$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{X^{\prime}}$ we put $f_{*}\left(i d_{X}:(X, \mathscr{D}) \rightarrow\left(X, \mathscr{D}^{\prime}\right)\right)=\left(i d_{Y}:\left(Y, \mathscr{D}_{f}\right) \rightarrow\left(Y, \mathscr{D}_{f}^{\prime}\right)\right)$.
It can be verified that $\mathscr{P}_{F}(\mathscr{C}, J)_{Y}\left(f_{*}(X, \mathscr{D}),(Y, \mathscr{E})\right)$ is not empty if and only if $\mathscr{P}_{F}(\mathscr{C}, J)_{Y}\left((X, \mathscr{D}), f^{*}(Y, \mathscr{E})\right)$ is not empty.
This shows that f_{*} is a left adjoint of f^{*}.

Proposition 5.6 ([11] Proposition 2.6)

Let $p: \mathscr{F} \rightarrow \mathscr{C}$ be a prefibered category. If \mathscr{F}_{X} has an initial object for any object X of \mathscr{C}, then p has a left adjoint.

Corollary 5.7 ([11] Corollary 2.7)

Let $p: \mathscr{F} \rightarrow \mathscr{C}$ be a bifibered category. If \mathscr{F}_{X} has a terminal object for any object X of \mathscr{C}, then p has a right adjoint.

Corollary 5.8 ([11] Corollary 2.9)
$\Gamma: \mathscr{P}_{F}(\mathscr{E}, J) \rightarrow$ Set has left and right adjoints.

Let $\left\{\left(X_{i}, \mathscr{D}_{i}\right)\right\}_{i \in I}$ be a family of objects of $\mathscr{D}_{F}(\mathscr{C}, J)$.
We denote by $\mathrm{pr}_{i}: \prod_{j \in I} X_{j} \rightarrow X_{i}$ the projection to the i-th component and $l_{i}: X_{i} \rightarrow \coprod_{j \in I} X_{j}$ the inclusion to the i-th summand.
Put $\mathscr{D}^{I}=\bigcap_{j \in I} \mathscr{D}_{i}^{\mathrm{pr}_{i}}$. Then, \mathscr{D}^{I} is the finest the-ology such that $\operatorname{pr}_{i}:\left(\prod_{j \in I} X_{j}, \mathscr{D}^{I}\right) \rightarrow\left(X_{i}, \mathscr{D}_{i}\right)$ is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ for any $i \in I$.
Let \mathscr{D}_{I} be the coarsest the-ology on $\coprod_{j \in I} X_{j}$ such that $l_{i}:\left(X_{i}, \mathscr{D}_{i}\right) \rightarrow\left(\coprod_{j \in I} X_{j}, \mathscr{D}_{I}\right)$ is a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$ for any $i \in I$. If we put $\mathcal{S}_{I}=\left\{\mathscr{E} \in \mathrm{Ob} \mathscr{P}_{F}(\mathscr{C}, J) \bigcup_{j \in I} X_{j} \mid \mathscr{E} \supset \bigcup_{j \in I}\left(\mathscr{D}_{j}\right)_{l_{j}}\right\}$, then $\mathscr{D}_{I}=\bigcap_{\mathscr{E} \in \mathcal{S}_{I}} \mathscr{E}$.

Proposition 5.9 ([11] Proposition 2.11)

(1) $\left(\left(\prod_{j \in I} X_{j}, \mathscr{D}^{I}\right) \xrightarrow{\mathrm{pr}_{i}}\left(X_{i}, \mathscr{D}_{i}\right)\right)_{i \in I}$ is a product of $\left\{\left(X_{i}, \mathscr{D}_{i}\right)\right\}_{i \in I}$.
(2) $\left(\left(X_{i}, \mathscr{D}_{i}\right) \xrightarrow{l_{i}}\left(\coprod_{j \in I} X_{j}, \mathscr{D}_{I}\right)\right)_{i \in I}$ is a coproduct of $\left\{\left(X_{i}, \mathscr{D}_{i}\right)\right\}_{i \in I}$.

Proposition 5.10 ([11] Proposition 2.14)
Let $f, g:(X, \mathscr{D}) \rightarrow(Y, \mathscr{E})$ be morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$. Then, equalizers and coequalizers of f and g exist.
In fact, if $Z \xrightarrow{i} X$ is an equalizer of f and g in the category of sets, then $\left(Z, \mathscr{D}^{i}\right) \xrightarrow{i}(X, \mathscr{D})$ is an equalizer of f and g in $\mathscr{P}_{F}(\mathscr{C}, J)$. If $Y \xrightarrow{q} W$ is a coequalizer of f and g in the category of sets, then $(Y, \mathscr{E}) \xrightarrow{q}\left(W, \mathscr{E}_{q}\right)$ is a coequalizer of f and g in $\mathscr{P}_{F}(\mathscr{C}, J)$.

Since $\mathscr{P}_{F}(\mathscr{C}, J)$ has finite limits by (5.9) and (5.10), we can consider the fibered category $\wp: \mathscr{P}_{F}(\mathscr{C}, J)^{(2)} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)$ of morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$ by (1.12).
It follows from (1.13) that the inverse image functors of this fibered category have left adjoints.
The inverse image functors also have right adjoints, namely we can show the following fact.
Proposition 5.11 ([11] Proposition 3.18)
For a morphism $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{F})$ in $\mathscr{P}_{F}(\mathscr{C}, J)$, the inverse functor $\varphi^{*}: \mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{D})}^{(2)} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{C})}^{(2)}$ has a right adjoint $\varphi_{!}: \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{O})}^{(2)} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{C})}^{(2)}$.

In fact, $\varphi_{!}: \mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)} \rightarrow \mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{C})}^{(2)}$ is constructed as follows. For $y \in Y$, we denote by $l_{y}: \varphi^{-1}(y) \rightarrow X$ the inclusion map and consider a the-ology $\mathscr{D}^{l_{y}}$ on $\varphi^{-1}(y)$.

For an object $\boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(X, \mathscr{D}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)^{(2)}$, we define a subset $E(\varphi ; y)$ of $\mathscr{\mathscr { P }}_{F}(\mathscr{C}, J)\left(\left(\varphi^{-1}(y), \mathscr{D}^{l} y\right),(E, \mathscr{E})\right)$ by

$$
E(\varphi ; y)=\left\{\alpha \in \mathscr{P}_{F}(\mathscr{C}, J)\left(\left(\varphi^{-1}(y), \mathscr{D}^{l}\right),(E, \mathscr{E})\right) \mid \pi \alpha=l_{y}\right\}
$$

if $\varphi^{-1}(y) \neq \varnothing$ and $E(\varphi ; y)=\varnothing$ if $\varphi^{-1}(y)=\varnothing$.
 if $\alpha \in E(\varphi ; y)$.

We consider the following cartesian square (*) in Set.

$$
E(\varphi) \times_{Y} X \xrightarrow{\tilde{\varphi}_{E}} E(\varphi)
$$

(*)

Define a $\operatorname{map} \varepsilon_{E}^{\varphi}: E(\varphi) \times_{Y} X \rightarrow E$ by $\varepsilon_{E}^{\varphi}(\alpha, x)=\alpha(x)$ if $\alpha \in E(\varphi ; y)$ and $x \in \varphi^{-1}(y)$ for $y \in Y$.

Let $\Sigma_{E, \varphi}$ the set of all the-ologies \mathscr{L} on $E(\varphi)$ such that $\mathscr{L} \subset \mathscr{F} \varphi_{I E}$ and $\mathscr{D}^{\widetilde{\varphi_{I E}}} \cap \mathscr{L}^{\tilde{\varphi}_{E}} \subset \mathscr{E}^{\varepsilon_{E}^{\varphi}}$ hold.
Note that $\mathscr{L} \in \Sigma_{E, \varphi}$ if and only if $\varphi_{!E}:(E(\varphi), \mathscr{L}) \rightarrow(Y, \mathscr{F})$ and $\varepsilon_{E}^{\varphi}:\left(E(\varphi) \times_{Y} X, \mathscr{D}^{\Phi_{I E}} \cap \mathscr{L}^{\tilde{\varphi}_{E}}\right) \rightarrow(E, \mathscr{E})$ are morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$.

For $U \in \mathrm{Ob} \mathscr{C}$, we consider the following condition (LE) on an element γ of $F_{E(\varphi)}(U)$.
(LE) If $V, W \in \mathrm{Ob} \mathscr{C}, f \in \mathscr{C}(W, U), g \in \mathscr{C}(W, V)$ and $\psi \in \mathscr{D} \cap F_{X}(V)$ satisfy $\varphi \psi F(g)=\varphi_{\mid E} \gamma F(f)$, a composition

$$
F(W) \xrightarrow{(\gamma F(f), \psi F(g))} E(\varphi) \times_{Y} X \xrightarrow{\varepsilon_{T}^{\varphi}} E
$$

belongs to $\mathscr{E} \cap F_{E}(W)$ and a composition $F(U) \xrightarrow{\gamma} E(\varphi) \xrightarrow{\varphi_{F E}} Y$ belongs to $\mathscr{F} \cap F_{Y}(U)$.

Define a set $\mathscr{D}_{E, \varphi}$ of F-parametrizations of a set $E(\varphi)$ so that $\mathscr{D}_{E, \varphi} \cap F_{E(\varphi)}(U)$ is a subset of $F_{E(\varphi)}(U)$ consisting of elements which satisfy the above condition (LE) for any $U \in \mathrm{Ob} \mathscr{C}$.

Proposition 5.12 ([11] Proposition 3.11)

$\mathscr{D}_{E, \varphi}$ is maximum element of $\Sigma_{E, \varphi}$.
Let $\boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(X, \mathscr{D})), \boldsymbol{G}=((G, \mathscr{G}) \xrightarrow{\rho}(X, \mathscr{D}))$ be objects of $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$ and $\varphi:(X, \mathscr{D}) \rightarrow(Y, \mathscr{F})$ a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.
Let $\xi=\left\langle\xi, i d_{X}\right\rangle: E \rightarrow G$ be a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)_{(X, \mathscr{D})}^{(2)}$.
If $\alpha \in E(\varphi ; y)$ for $y \in Y$, we have $\rho \xi \alpha=\pi \alpha=l_{y}$, hence $\xi \alpha \in G(\varphi ; y)$.
Thus we can define a map $\xi_{\varphi}: E(\varphi) \rightarrow G(\varphi)$ by $\varphi(\xi)(\alpha)=\xi \alpha$.
We define by $\varphi_{!}(E)=\left(\left(E(\varphi), \mathscr{D}_{E, \varphi}\right) \xrightarrow{\varphi_{I E}}(Y, \mathscr{F})\right)$ and
$\varphi_{!}(\xi)=\left\langle\xi_{\varphi}, i d_{Y}\right\rangle: \varphi(\boldsymbol{E}) \rightarrow \varphi(\boldsymbol{G})$.
§6. Representations of groupoids in the category of plots Let $f:(X, \mathscr{X}) \rightarrow(Y, \mathscr{Y}), g:(X, \mathscr{X}) \rightarrow(Z, \mathscr{E})$ and $k:(V, \mathscr{V}) \rightarrow(X, \mathscr{X})$ be morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$ and $E=((E, \mathscr{E}) \xrightarrow{\pi}(Y, \mathscr{Y}))$ an object of $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{Y})}^{(2)}$. We consider the following commutative diagram in $\mathscr{P}_{F}(\mathscr{C}, J)$ whose outer trapezoid and lower rectangle are cartesian.

There exists unique morphism

$$
i d_{E} \times_{Y} k:\left(E \times_{Y} V, \mathscr{E}^{\left.(f k)_{\pi} \cap \mathscr{V}^{\pi_{f k}}\right) \rightarrow\left(E \times_{Y} X, \mathscr{E}^{f_{\pi}} \cap \mathscr{X}^{\pi_{f}}\right), ~}\right.
$$

that makes the above diagram commute. Since objects $(g k)_{*}(f k)^{*}(\boldsymbol{E})$ and $g_{*} f^{*}(\boldsymbol{E})$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{(Z, \mathscr{E})}^{(2)}$ are given by

$$
\begin{aligned}
(g k)_{*}(f k)^{*}(\boldsymbol{E}) & =\left(\left(E \times_{Y} V, \mathscr{E}(f k)_{\pi} \cap \mathscr{V}^{\pi_{f k}}\right) \xrightarrow{g k \pi_{f k}}(Z, \mathscr{Z})\right) \\
g_{*} f^{*}(\boldsymbol{E}) & =\left(\left(E \times_{Y} X, \mathscr{E} f_{\pi} \cap \mathscr{X}^{\pi_{f}}\right) \xrightarrow{g \pi_{f}}(Z, \mathscr{E})\right),
\end{aligned}
$$

we define a morphism $\boldsymbol{E}_{k}:(g k)_{*}(f k)^{*}(\boldsymbol{E}) \rightarrow g_{*} f^{*}(\boldsymbol{E})$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{(Z, \mathscr{E})}^{(2)}$ by $E_{k}=\left\langle i d_{E} \times_{Y} k, i d_{Z}\right\rangle$.

Let $f:(X, \mathscr{X}) \rightarrow(Y, \mathscr{Y})$ be a morphism in $\mathscr{P}_{F}(\mathscr{C}, J)$.
We denote by $\eta^{f}: i d_{\mathscr{P}_{R}(\mathscr{C}, J)_{(X, X)}^{(2)}} \rightarrow f^{*} f_{!}$and $\varepsilon^{f}: f_{!} f^{*} \rightarrow i d_{\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, y)}^{(2)}}$ the unit and the counit of the adjunction $f^{*} \dashv f_{1}$, respectively.
Let $f:(X, \mathscr{X}) \rightarrow(Y, \mathscr{Y}), g:(X, \mathscr{X}) \rightarrow(Z, \mathscr{Z})$ and $k:(V, \mathscr{V}) \rightarrow(X, \mathscr{X})$ be morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$ and \boldsymbol{E} an object of $\mathscr{P}_{F}(\mathscr{C}, J)_{(Z, \mathscr{E})}^{(2)}$. Define a morphism $\boldsymbol{E}^{k}: f_{!} g^{*}(\boldsymbol{E}) \rightarrow(f k)_{!}(g k)^{*}(\boldsymbol{E})^{*}$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{y})}^{(2)}$ to be the following composition.

$$
\begin{aligned}
& f!g^{*}(\boldsymbol{E}) \xrightarrow{\eta_{f g^{*}(\boldsymbol{E})}^{f k}}(f k)!(f k)^{*}\left(f_{!} g^{*}(\boldsymbol{E})\right) \xrightarrow{(f k)!\left(c_{f: k}\left(f!g^{*}(\boldsymbol{E})\right)\right)^{-1}}(f k)!k^{*} f^{*} f_{!} g^{*}(\boldsymbol{E}) \\
& \xrightarrow{(f k)!k^{*}\left(\varepsilon_{g^{*}(\boldsymbol{E})}^{f}\right)}(f k)!k^{*} g^{*}(\boldsymbol{E}) \xrightarrow{(f k)!\left(\boldsymbol{c}_{g_{2}, k}(\boldsymbol{E})\right)}(f k)_{!}(g k) *(\boldsymbol{E})
\end{aligned}
$$

Let $f:(X, \mathscr{X}) \rightarrow(Y, \mathscr{Y}), g:(X, \mathscr{X}) \rightarrow(Z, \mathscr{X}), h:(V, \mathscr{V}) \rightarrow(Z, \mathscr{X})$ and $i:(V, \mathscr{V}) \rightarrow(W, \mathscr{W})$ be morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$.
We consider the following cartesian square in $\mathscr{P}_{F}(\mathscr{C}, J)$.

$$
\begin{aligned}
& \left(X \times{ }_{Z} V, \mathscr{X}^{h_{s}} \cap \mathscr{V}^{g_{h}}\right) \xrightarrow{g_{h}}(V, \mathscr{V}) \\
& (X, \mathscr{X}) \xrightarrow{\downarrow h_{g}} \xrightarrow{\downarrow h}(Z, \mathscr{X})
\end{aligned}
$$

For an object $\boldsymbol{E}=((E, \mathscr{E}) \xrightarrow{\pi}(Y, \mathscr{Y}))$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{(Y, \mathscr{Y})}^{(2)}$, we consider the following commutative diagrams in $\mathscr{P}_{F}(\mathscr{C}, J)$ whose rectangles are all cartesian.

$$
\begin{aligned}
& \left(E \times_{Y}\left(X \times_{Z} V\right), \mathscr{E}\left(f h_{g}\right)_{\pi} \cap\left(X^{h_{g}} \cap \mathscr{V}^{g} g_{h}\right)^{\pi_{f_{k}}}\right) \xrightarrow{\left(f h_{g}\right)_{\pi}}(E, \mathscr{E})
\end{aligned}
$$

Thus we have the following equalities.
$\left(i g_{h}\right) *\left(f h_{g}\right)^{*}(\boldsymbol{E})=\left(\left(E \times_{Y}\left(X \times_{Z} V\right), \mathscr{E}^{\left(f h_{g}\right.}\right)_{\pi} \cap\left(X^{h_{g}} \cap \mathscr{V}^{g} g_{h} \pi_{f_{h_{g}}}\right) \xrightarrow{i g_{h} \tau_{f_{g}}}(W, \mathscr{W})\right)$

$$
i_{*} h^{*} g_{*} f^{*}(\boldsymbol{E})=\left(\left(\left(E \times_{Y} X\right) \times_{Z} V,\left(\mathscr{C}_{\pi_{\pi}} \cap X^{\pi_{f}}\right)^{h_{g \pi_{f}}} \cap \mathscr{V}^{\left(g \pi_{f}\right)_{h}}\right) \xrightarrow{i\left(g \pi_{f}\right)_{h}}\left(W, \mathscr{W}^{\prime}\right)\right)
$$

We define a morphism $\theta_{f, g, h, i}(\boldsymbol{E}):\left(i g_{h}\right)_{*}\left(f h_{g}\right)^{*}(\boldsymbol{E}) \rightarrow i_{*} h^{*} g_{*} f^{*}\left(\boldsymbol{E}^{\prime}\right)$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{(W, \mathscr{W})}^{(2)}$ by $\theta_{f, g, h, i}(E)=\left\langle\left(i d_{E} \times_{Y} h_{g}, g_{h} \pi_{f h_{g}}\right), i d_{W}\right\rangle$.
Proposition 6.1
$\theta_{f, g, h, i}(\boldsymbol{E}):\left(i g_{h}\right)_{*}\left(f h_{g}\right)^{*}(\boldsymbol{E}) \rightarrow i_{*} h^{*} g_{*} f^{*}(\boldsymbol{E})$ is an isomorphism which is natural in \boldsymbol{E}.

In fact, $\left(i d_{E} \times_{Y} h_{g}, g_{h} \pi_{f h_{g}}\right): E \times_{Y}\left(X \times_{Z} V\right) \rightarrow\left(E \times_{Y} X\right) \times_{Z} V$ maps $(u,(x, v)) \in E \times_{Y}\left(X \times_{Z} V\right)$ to $((u, x), v) \in\left(E \times_{Y} X\right) \times_{Z} V$.

Let $f:(X, \mathscr{X}) \rightarrow(Y, \mathscr{Y}), g:(X, \mathscr{X}) \rightarrow(Z, \mathscr{X}), h:(V, \mathscr{V}) \rightarrow(Z, \mathscr{X})$ and $i:(V, \mathscr{V}) \rightarrow(W, \mathscr{W})$ be morphisms in $\mathscr{P}_{F}(\mathscr{C}, J)$.
We consider the following cartesian square in $\mathscr{P}_{F}(\mathscr{C}, J)$.

$$
\begin{aligned}
& \left(X \times{ }_{Z} V, \mathscr{X}^{h_{s}} \cap \mathscr{V}^{g_{h}}\right) \xrightarrow{g_{h}}(V, \mathscr{V}) \\
& (X, \mathscr{X}) \xrightarrow{\downarrow h_{g}} \xrightarrow{\downarrow h}(Z, \mathscr{X})
\end{aligned}
$$

For an object E of $\mathscr{P}_{F}(\mathscr{C}, J)_{(W, \mathscr{W})}^{(2)}$, we define a morphism

$$
\theta^{f, g, h, i}(\boldsymbol{E}): f_{!} g^{*} h_{1} i^{*}(\boldsymbol{E}) \rightarrow\left(f h_{g}\right)_{!}\left(i g_{h}\right)^{*}(\boldsymbol{E})
$$

in $\mathscr{P}_{F}(\mathscr{C}, J)(Y, \mathscr{Y})$ to be the adjoint of the following composition with respect to the adjunction $\left(f h_{g}\right)^{*}-\left(\left(f h_{g}\right)_{!}\right.$.

$$
\begin{aligned}
& \left(f h_{g}\right)^{*}\left(f_{!} g^{*} h_{!} i^{*}(\boldsymbol{E})\right) \xrightarrow{\boldsymbol{c}_{f, h_{s}}\left(f_{!} g^{*} h_{!} i^{*}(\boldsymbol{E})\right)^{-1}} h_{g}^{*} f^{*} f_{!} g^{*} h_{!} i^{*}(\boldsymbol{E}) \\
& \xrightarrow{h_{g}^{*}\left(\varepsilon_{g^{*} h_{l} i^{*}(\mathbb{E})}^{f}\right)} h_{g}^{*} g^{*} h_{!} i^{*}(\boldsymbol{E}) \xrightarrow{\boldsymbol{c}_{g, h_{s}}\left(h_{1} i^{*}(\boldsymbol{E})\right)}\left(g h_{g}\right) * h_{!} i^{*}(\boldsymbol{E})=\left(h g_{h}\right) * h_{!} i^{*}(\boldsymbol{E}) \\
& \xrightarrow{\boldsymbol{c}_{h, g_{h}}\left(h_{!} i^{*}(\boldsymbol{E})\right)^{-1}} g_{h}^{*} h^{*} h_{!} i^{*}(\boldsymbol{E}) \xrightarrow{g_{h}^{*}\left(\varepsilon_{i^{*}(\boldsymbol{E})}^{h}\right)} g_{h}^{*} i^{*}(\boldsymbol{E}) \xrightarrow{\boldsymbol{c}_{i, g_{h}}(\boldsymbol{E})}\left(i g_{h}\right) *(\boldsymbol{E})
\end{aligned}
$$

Proposition 6.2 ([10] Remark 1.5.5)
$\theta^{f, g, h, i}(\boldsymbol{E}): f_{!} g^{*} h_{!} i^{*}(\boldsymbol{E}) \rightarrow\left(f h_{g}\right)_{!}\left(i g_{h}\right)^{*}(\boldsymbol{E})$ is an isomorphism which is natural in E.

Let $\boldsymbol{G}=\left(\left(G_{0}, \mathscr{F}_{0}\right),\left(G_{1}, \mathscr{G}_{1}\right) ; \sigma, \tau, \varepsilon, \mu, \imath\right)$ be a groupoid in $\mathscr{P}_{F}(\mathscr{C}, J)$, $\boldsymbol{E}=\left((E, \mathscr{E}) \xrightarrow{\pi}\left(G_{0}, \mathscr{G}_{0}\right)\right)$ an object of $\mathscr{P}_{F}(\mathscr{C}, J)_{\left(G_{0}, \mathscr{E}_{0}\right)}^{(2)}$ and $\xi: \sigma^{*}(\boldsymbol{E}) \rightarrow \tau^{*}(\boldsymbol{E})$ a morphism in $\mathscr{P}_{F}(\mathscr{E}, J)_{\left(G_{1}, \mathscr{E}_{1}\right)}^{(2)}$.
We denote by $\hat{\xi}: \tau_{*} \sigma^{*}(\boldsymbol{E}) \rightarrow \boldsymbol{E}$ and $\check{\xi}: \boldsymbol{E} \rightarrow \sigma_{1} \tau^{*}(\boldsymbol{E})$ the adjoint of $\boldsymbol{\xi}$ with respect to the adjunctions $\tau_{*} \dashv \tau^{*}$ and $\sigma^{*} \dashv \sigma_{!}$, respectively.

Proposition 6.3 ([10] Proposition 3.3.2)

ξ makes the upper diagram of (2.5) commute if and only if $\hat{\xi}$ makes the following diagram commute.

$$
\begin{gathered}
\left(\tau \mathrm{pr}_{2}\right) *\left(\sigma \mathrm{pr}_{1}\right) *(\boldsymbol{E}) \xrightarrow{\theta_{\sigma, \tau, \sigma}(\boldsymbol{E})} \tau_{*} \sigma_{*}^{*} \tau_{*} \sigma^{*}(\boldsymbol{E}) \xrightarrow{\tau_{*} \sigma^{*}(\hat{\boldsymbol{\xi}})} \tau_{*} \sigma^{*}(\boldsymbol{E}) \\
(\tau \mu)_{*}(\sigma \mu)^{*}(\boldsymbol{E}) \xrightarrow{\boldsymbol{E}_{\mu}} \tau_{*} \sigma^{*}(\boldsymbol{E}) \xrightarrow{\hat{\boldsymbol{\xi}}} \boldsymbol{E}
\end{gathered}
$$

ξ makes the lower diagram of (2.5) commute if and only if a composition $\boldsymbol{E}=(\tau \varepsilon) *(\sigma \varepsilon) *(\boldsymbol{E}) \xrightarrow{\boldsymbol{E}_{\epsilon}} \tau_{*} \sigma^{*}(\boldsymbol{E}) \xrightarrow{\hat{\boldsymbol{\xi}}} \boldsymbol{E}$ coincides with the identity morphism of \boldsymbol{E}.

Proposition 6.4 ([10] Proposition 3.4.2)
ξ makes the upper diagram of (2.5) commute if and only if $\check{\xi}$ makes the following diagram commute.

ξ makes the lower diagram of (2.5) commute if and only if a composition $\boldsymbol{E} \xrightarrow{\check{\xi}} \sigma!\tau^{*}(\boldsymbol{E}) \xrightarrow{\boldsymbol{E}^{\varepsilon}}(\sigma \varepsilon)_{!}(\tau \varepsilon)^{*}(\boldsymbol{E})=\boldsymbol{E}$ coincides with the identity morphism of E.

The next result follows from the naturality of the adjointness.

Proposition 6.5

Let $(\boldsymbol{E}, \boldsymbol{\xi})$ and $(\boldsymbol{F}, \boldsymbol{\xi})$ be representations of \boldsymbol{G}.
If a morphism $\boldsymbol{\varphi}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{\left(\boldsymbol{G}_{0}, \mathscr{E}_{0}\right)}^{(2)}$ makes one of the following diagrams commute, the other two diagrams also commute.

$$
\begin{aligned}
& \sigma^{*}(\boldsymbol{E}) \xrightarrow{\boldsymbol{\xi}} \tau^{*}(\boldsymbol{E}) \\
& \underset{\sigma^{*}(\boldsymbol{F}) \xrightarrow{\sigma^{*}(\boldsymbol{\varphi})} \underset{ }{\zeta} \tau^{*} \underset{\sim}{*}(\boldsymbol{F})}{\tau^{*}(\boldsymbol{T})} \\
& \tau_{*} \sigma^{*}(\boldsymbol{E}) \xrightarrow{\hat{\boldsymbol{\xi}}} \boldsymbol{E} \\
& \boldsymbol{E} \xrightarrow{\check{\boldsymbol{\xi}}} \sigma_{i} \tau^{*}(\boldsymbol{E}) \\
& \sigma^{*}(\boldsymbol{F}) \longrightarrow \tau^{*}(\boldsymbol{F})
\end{aligned}
$$

Consider the following diagrams whose rectangles are all cartesian.

$$
E \times \underset{\substack{G_{0} \\ \mid \pi_{\tau}}}{G_{1}} \xrightarrow{\tau_{\pi}} \underset{\downarrow}{ } \quad E
$$

$$
G_{1} \longrightarrow \quad \tau \quad G_{0}
$$

Then, we have the following equalities.

$$
\begin{aligned}
& \tau_{*} \sigma^{*}(\boldsymbol{E})=\left(\left(E \times_{G_{0}}^{\sigma} G_{1}, \mathscr{C}^{\left.\sigma_{\pi} \cap \mathscr{G}_{1}^{\pi_{\sigma}}\right)} \xrightarrow{\tau \pi_{\sigma}}\left(G_{0}, \mathscr{G}_{0}\right)\right)\right. \\
& (\tau \mu)_{*}(\sigma \mu) *(\boldsymbol{E})=\left(\left(\tau \mathrm{pr}_{2}\right) *\left(\sigma \mathrm{pr}_{1}\right) *(\boldsymbol{E})\right. \\
& =\left(\left(E \times_{G_{0}}^{\sigma \mu}\left(G_{1} \times_{G_{0}} G_{1}\right), \mathscr{E}(\sigma \mu)_{\pi} \cap\left(\mathscr{G}_{1}^{\mathrm{pr}_{1}} \cap \mathscr{G}_{1}^{\mathrm{pr}_{2}}\right)^{\pi_{\sigma \mu}}\right) \xrightarrow{\tau \mu \pi_{o \mu}}\left(G_{0}, \mathscr{G}_{0}\right)\right)
\end{aligned}
$$

If we put $\xi=\left\langle\xi, i d_{G_{1}}\right\rangle$ and $\hat{\xi}=\left\langle\hat{\xi}, i d_{G_{0}}\right\rangle$ for morphisms

composition $E \times_{G_{0}}^{\sigma} G_{1} \xrightarrow{\xi} E \times_{G_{0}}^{\tau} G_{1} \xrightarrow{\tau_{\pi}} E$.

Remark 6.6 ([11] Remark 8.14)

The diagram of (6.3) is commutative if and only if the following diagram is commutative.

A composition $\boldsymbol{E}=(\tau \varepsilon)_{*}(\sigma \varepsilon)^{*}(\boldsymbol{E}) \xrightarrow{\boldsymbol{E}_{\varepsilon}} \tau_{*} \sigma^{*}(\boldsymbol{E}) \xrightarrow{\hat{\boldsymbol{\xi}}} \boldsymbol{E}$ coincides with the identity morphism of \boldsymbol{E} if and only if a composition

$$
E \xrightarrow{\left(i d_{d_{E}}, \varepsilon \pi\right)} E \times \times_{G_{0}}^{\sigma} G_{1} \xrightarrow{\hat{\xi}} E
$$

coincides with the identity morphism of E.

Hence if a morphism $\hat{\xi}: \tau_{*} \sigma^{*}(\boldsymbol{E}) \rightarrow \boldsymbol{E}$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{\left(G_{0}, \mathscr{Y}_{0}\right)}^{(2)}$ satisfies both conditions of (6.3), we may call a pair $\left(\boldsymbol{E}, \hat{\boldsymbol{\xi}}: \tau_{*} \sigma^{*}(\boldsymbol{E}) \rightarrow \boldsymbol{E}\right)$ a representation of \boldsymbol{G} on \boldsymbol{E}.
Example 6.7 ([11] Example 8.16)
For an epimorphism $E=\left((E, \mathscr{E}) \xrightarrow{\pi}\left(G_{0}, \mathscr{G}_{0}\right)\right)$ in $\mathscr{P}_{F}(\mathscr{C}, J)^{(2)}$, consider the groupoid $\boldsymbol{G}(\boldsymbol{E})=\left(\left(G_{0}, \mathscr{G}_{0}\right),\left(G_{1}(\boldsymbol{E}), \mathscr{G}_{E}\right) ; \sigma_{E}, \tau_{E}, \varepsilon_{E}, \mu_{E}, \boldsymbol{l}_{\boldsymbol{E}}\right)$
associated with E. Let $\hat{\xi}_{E}: E \times{ }_{G_{0}} G_{1}(E) \rightarrow E$ be the map defined by $\hat{\xi}_{E}(e, g)=g(e)$ and define a morphism $\hat{\boldsymbol{\xi}}_{\boldsymbol{E}}: \tau_{\boldsymbol{E}^{*}} \sigma_{\boldsymbol{E}}^{*}(\boldsymbol{E}) \rightarrow \boldsymbol{E}$ in $\mathscr{P}_{F}(\mathscr{C}, J)_{\left(G_{0}, \mathscr{G}_{0}\right)}^{(2)}$ by $\hat{\xi}_{E}=\left\langle\hat{\xi}_{E}, i d_{G_{0}}\right\rangle$.
It can be verified that $\left(\boldsymbol{E}, \hat{\boldsymbol{\xi}}_{\boldsymbol{E}}\right)$ is a representation of $\boldsymbol{G}(\boldsymbol{E})$ on \boldsymbol{E}.
We call $\left(\boldsymbol{E}, \hat{\xi}_{E}\right)$ the canonical representation on \boldsymbol{E}.

Proposition 6.8 ([11] Proposition 8.17)
Let $E=\left((E, \mathscr{E}) \xrightarrow{\pi}\left(G_{0}, \mathscr{G}_{0}\right)\right)$ be an object of $\mathscr{P}_{F}(\mathscr{C}, J)_{\left(G_{0}, \mathscr{G}_{0}\right)}^{(2)}$ such that π is surjective and $\left(\boldsymbol{E}, \hat{\boldsymbol{\xi}}: \tau_{*} \sigma^{*}(\boldsymbol{E}) \rightarrow \boldsymbol{E}\right)$ a representation of $\boldsymbol{G}=\left(\left(G_{0}, \mathscr{G}_{0}\right),\left(G_{1}, \mathscr{G}_{1}\right) ; \sigma, \tau, \varepsilon, \mu, \imath\right)$ on \boldsymbol{E}.
There exists a morphism $\boldsymbol{f}=\left(f_{0}, f_{1}\right): \boldsymbol{G} \rightarrow \boldsymbol{G}(\boldsymbol{E})$ of groupoids in $\mathscr{P}_{F}(\mathscr{C}, J)$ such that $f_{0}=i d_{G_{0}}$ and that $(\boldsymbol{E}, \hat{\boldsymbol{\xi}})$ coincides with the restriction of the canonical representation $\left(\boldsymbol{E}, \hat{\boldsymbol{\xi}}_{E}\right)$ along \boldsymbol{f}. Moreover, if $\boldsymbol{g}=\left(i d_{G_{0}}, g_{1}\right): \boldsymbol{G} \rightarrow \boldsymbol{G}(\boldsymbol{E})$ is a morphism of groupoids in $\mathscr{P}_{F}(\mathscr{C}, J)$ such that $(\boldsymbol{E}, \hat{\boldsymbol{\xi}})$ coincides with the restriction of the canonical representation $\left(\boldsymbol{E}, \hat{\boldsymbol{\xi}}_{\boldsymbol{E}}\right)$ along \boldsymbol{g}, then $\boldsymbol{g}=\boldsymbol{f}$ holds.

Theorem 6.9 ([10] Proposition 3.5.16, Proposition 3.6.15)
Let $f: \boldsymbol{H} \rightarrow \boldsymbol{G}$ be a morphism of groupoids in $\mathscr{P}_{F}(\mathscr{C}, J)$.
The restriction functor $\boldsymbol{f}^{\circ}: \operatorname{Rep}(\boldsymbol{G}) \rightarrow \operatorname{Rep}(\boldsymbol{H})$ along \boldsymbol{f} has a left adjoint and a right adjoint.

Let $\boldsymbol{G}=\left(G_{0}, G_{1} ; \sigma, \tau, \varepsilon, \mu\right), \boldsymbol{H}=\left(H_{0}, H_{1} ; \sigma^{\prime}, \tau^{\prime}, \varepsilon^{\prime}, \mu^{\prime}\right)$ be groupiods in $\mathscr{P}_{F}(\mathscr{C}, J)$ and $\boldsymbol{f}: \boldsymbol{H} \rightarrow \boldsymbol{G}$ a homomorphism of groupoids.
A left adjoint $f_{0}: \operatorname{Rep}(\boldsymbol{H}) \rightarrow \operatorname{Rep}(\boldsymbol{G})$ of the restiction functor $\boldsymbol{f}^{\bullet}: \operatorname{Rep}(\boldsymbol{H}) \rightarrow \operatorname{Rep}(\boldsymbol{G})$ along \boldsymbol{f} is consrtructed as follows. For an object $E=\left((E, \mathscr{E}) \xrightarrow{\pi}\left(H_{0}, \mathscr{H}_{0}\right)\right)$ of $\mathscr{P}_{F}(\mathscr{C}, J)_{\left(H_{0}, \mathscr{H}_{0}\right)^{\prime}}^{(2)}$ we consider the following diagrams whose rectangles are cartesian.

$$
\begin{aligned}
& E \times_{H_{0}}\left(H_{1} \times_{G_{0}} G_{1}\right) \xrightarrow{i d_{E} \times_{H_{0}} \tilde{\mathrm{p}}_{1}} E \times_{G_{0}}^{\sigma^{\prime}} H_{1} \xrightarrow{\sigma_{\pi}^{\prime}} E \quad E \times_{G_{0}}^{\sigma} G_{1} \xrightarrow{\sigma_{f_{0} \tau}} E \\
& H_{1} \times{ }_{G_{0}} G_{1} \xrightarrow{\pi_{\sigma^{\prime} \tilde{r}_{1}}} \xrightarrow{\tilde{\mathrm{p}}_{1}}{\stackrel{\tau}{\sigma^{\prime}}}_{H_{1}} \xrightarrow{\sigma^{\prime}} \stackrel{\downarrow}{H_{0}} H_{0} \\
& {\underset{G}{1}}^{\downarrow \tilde{p}_{2}} \quad \sigma \quad{ }_{G}{ }_{0} \tau_{0} \tau^{\prime}
\end{aligned}
$$

$\left(E \times_{H_{0}}^{\sigma^{\prime}} H_{1}\right) \times_{H_{0}}\left(H_{0} \times_{G_{0}} G_{1}\right) \xrightarrow{\left(\sigma_{f_{0}}\right)_{\tau^{\prime} \pi_{\sigma}}} E \times_{G_{0}}^{\sigma^{\prime}} H_{1}$

Thus $\left(\tau\left(f_{0}\right)_{\sigma}\left(\tau^{\prime} \times_{G_{0}} i d_{G_{1}}\right)\right)_{*}\left(\sigma^{\prime} \tilde{\mathrm{p}}_{1}\right) *(\boldsymbol{E})$ is the following morphism

$$
\left(E \times_{G_{0}}\left(H_{1} \times_{G_{0}} G_{1}\right), \mathscr{E}^{\sigma_{n}^{\prime}\left(i d_{E} \times_{D_{0}} \tilde{\mathrm{p}}_{1}\right)} \cap\left(\mathscr{H}_{1}^{\tilde{p}_{1}} \cap \mathscr{G}_{1}^{\tilde{\mathrm{p}}_{2}}\right)^{\pi_{\sigma \cdot \tilde{\mathrm{r}} 1}}\right)
$$

$$
\xrightarrow{\tau\left(f_{0}\right)_{o}\left(\tau^{\prime} X_{G_{0}} i d_{G_{1}}\right) \pi_{\sigma \cdot \hat{\tilde{r}_{1}}}}\left(G_{0}, \mathscr{G}_{0}\right)
$$

in $\mathscr{P}_{F}(\mathscr{C}, J)$. We also have

Suppose that $\left(\boldsymbol{E}, \hat{\boldsymbol{\xi}}: \tau_{*}^{\prime} \sigma^{\prime *}(\boldsymbol{E}) \rightarrow \boldsymbol{E}\right)$ is a representation of \boldsymbol{H}. We put $\hat{\xi}=\left\langle\hat{\xi}, i d_{H_{0}}\right\rangle$ and define morphisms

$$
\boldsymbol{\alpha}, \boldsymbol{\beta}:\left(\tau\left(f_{0}\right)_{\sigma}\left(\tau^{\prime} \times_{G_{0}} i d_{G_{1}}\right)\right)_{*}\left(\sigma^{\prime} \tilde{\mathrm{pr}}_{1}\right) *(\boldsymbol{E}) \rightarrow \tau_{*} \sigma^{*}\left(f_{0}\right)_{*}(\boldsymbol{E})
$$

by $\boldsymbol{\alpha}=\left\langle\left(\hat{\xi}\left(i d_{E} \times_{H_{0}} \tilde{\mathrm{p}}_{1}\right), \tilde{\mathrm{pr}}_{2} \pi_{\sigma^{\prime} \tilde{\mathrm{p}}_{1}}\right): E \times_{G_{0}}\left(H_{1} \times_{G_{0}} G_{1}\right) \rightarrow E \times_{G_{0}} G_{1}, i d_{G_{0}}\right\rangle$
$\boldsymbol{\beta}=\left\langle i d_{E} \times_{H_{0}} \mu\left(f_{1} \times_{G_{0}} i d_{G_{1}}\right): E \times_{G_{0}}\left(H_{1} \times_{G_{0}} G_{1}\right) \rightarrow E \times_{G_{0}} G_{1}, i d_{G_{0}}\right\rangle$,
respectively.
Let $P_{(\boldsymbol{E}, \boldsymbol{\xi})}^{f}: \tau_{\%} \sigma^{*}\left(f_{0}\right) *(\boldsymbol{E}) \rightarrow(\boldsymbol{E}, \boldsymbol{\xi})_{f}$ be a coequalizer of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$.
We can give a structure $\hat{\xi}_{f}: \tau_{*} \sigma^{*}\left((\boldsymbol{E}, \xi)_{f}\right) \rightarrow(\boldsymbol{E}, \xi)_{f}$ of a
representation of \boldsymbol{G} on $(\boldsymbol{E}, \boldsymbol{\xi})_{f}$ and $\boldsymbol{f}_{(}(\boldsymbol{E}, \hat{\boldsymbol{\xi}})$ is defined to be $(\boldsymbol{E}, \boldsymbol{\xi})_{f}$.

On the other hand, a right adjoint $f_{!}: \operatorname{Rep}(\boldsymbol{H}) \rightarrow \operatorname{Rep}(\boldsymbol{G})$ of the restriction functor is constructed as follows.
Consider the following diagrams whose rectangles are cartesian.

For a representation $\left(\boldsymbol{E}, \boldsymbol{\xi}: \sigma^{* *}(\boldsymbol{E}) \rightarrow \tau^{* *}(\boldsymbol{E})\right)$ of \boldsymbol{H}, we denote by $\check{\xi}: \boldsymbol{E} \rightarrow \sigma_{i}^{\prime} \tau^{\prime \%}(\boldsymbol{E})$ the adjoint of $\boldsymbol{\xi}$ with respect to the adjunction $\sigma^{\prime *}-\dashv \sigma_{1}^{\prime}$, and by γ the following composition.

Let $E_{(\boldsymbol{E}, \xi}^{f}:(\boldsymbol{E}, \boldsymbol{\xi})^{f} \rightarrow\left(\sigma\left(f_{0}\right)_{\tau}\right)!_{f_{0}}^{*}(\boldsymbol{E})$ be an equalizer of γ and $\boldsymbol{E}^{\left(\mu\left(i d d_{C_{1}} \times{ }_{C_{0}} f_{1}, \tau^{\prime} \tau^{\prime} \tilde{\mathrm{p}}_{2}\right)\right.}:\left(\sigma\left(f_{0}\right)_{\tau}\right)!\tau_{f_{0}}^{*}(\boldsymbol{E}) \rightarrow\left(\sigma\left(f_{0}\right)_{\tau}\left(i d_{C_{1}} \times{ }_{C_{0}} \sigma^{\prime}\right)\right)_{!}\left(\tau^{\prime} \tilde{\mathrm{p}}_{2}\right)^{*}(\boldsymbol{E})$.
We can give a structure $\check{\xi}_{f}:(\boldsymbol{E}, \boldsymbol{\xi})^{f} \rightarrow \sigma_{i} \tau^{*}\left((\boldsymbol{E}, \boldsymbol{\xi})^{f}\right)$ of a representation of \boldsymbol{G} on $(\boldsymbol{E}, \boldsymbol{\xi})^{f}$ and $\boldsymbol{f}_{!}(\boldsymbol{E}, \boldsymbol{\xi})$ is defined to be $(\boldsymbol{E}, \boldsymbol{\xi})^{f}$.

References

[1] A. Grothendieck, Catégorie fibrées et Descente, Lecture Notes in Math., vol.224, Springer-Verlag, 1971, 145-194.
[2] A. Grothendieck, J. L. Verdier, Condition de finitude. Topos et Sites fibres. Applications aux questions de passage a la limite, Lecture Notes in Math., vol.270, Springer-Verlag, 1972, 163-340.
[3] P. T. Johnstone, Topos Theory, Academic Press, 1977.
[4] P. Iglesias-Zemmour, Diffeology, Mathematical Surveys and Monographs Vol. 185, American Mathematical Society, 2013.
[5] S. MacLane, Categories for the Working Mathematician Second Edition, Graduate Texts in Math., 5, Springer, 1997.
[6] J. L. Verdier, Topologies et Faisceaux, Lecture Notes in Math., vol.269, Springer-Verlag, 1972, 219-263.
[7] J. L. Verdier, Topologies et Faisceaux, Lecture Notes in Math., vol.269, Springer-Verlag, Berlin-Heidelberg-New York, 1972, 219-263.
[8] J. L. Verdier, Fonctoialite des Categories de Faisceaux, Lecture Notes in Math., vol.269, Springer-Verlag, Berlin-HeidelbergNew York, 1972, 265-297.
[9] A. Yamaguchi, Representations of internal categories, Kyushu Journal of Mathematics Vol.62, No.1, (2008) 139-169.
[10] A. Yamaguchi, Notes on representation theory of internal categories, preprint, http://www.las.osakafu-u.ac.jp/~yamaguti/archives/ric_note.pdf
[11] A. Yamaguchi, A theory of plots, preprint, https://sites.google.com/view/kansai-algebraic-topology-semi/

Thank you for listening

Thank you for listening

 and your patience.