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Introduction

The ring of cohomology operations on the mod p ordinary cohomology
theory is called the Steenrod algebra. J. Lannes developed an elegant
theory of unstable modules over the Steenrod algebra which has an
application to Sullivan’s conjecture. Since the Steenrod algebra is not
commutative, it is difficult to apply knowledge of commutative algebras.

Under certain finiteness conditions, a left module over the Steenrod
algebra has a structure of a right comodule over the dual Steenrod
algebra. Hence, roughly speaking, the category of left module over the
Steenrod algebra is equivalent to the category of representations of an
affine group scheme represented by the dual Steenrod algebra. The aim of
this talk is a trial of reconstruction of Lanne’s theory from the viewpoint of
representation theory.



A very brief review on fibered category

Let p : F → C be a functor. For an object X of C, we denote by FX the
subcategory of F consiting of objects M of F satisfying p(M) = X and
morphisms φ satisfying p(φ) = idX .
For a morphism f : X → Y in C and M ∈ ObFX , N ∈ ObFY , we put
Ff (M,N) = {φ ∈ F(M,N)| p(φ) = f }.

Definition (Cartesian morphism)

Let α : M → N be a morphism in F and set X = p(M), Y = p(N),
f = p(α). We call α a cartesian morphism if, for any M ′ ∈ ObFX , the
map FX (M

′,M)→ Ff (M
′,N) defined by φ 7→ αφ is bijective.

Definition (Inverse image)

Let f : X → Y be a morphism in C and N ∈ ObFY . If there exists a
cartesian morphism α : M → N such that p(α) = f , M is called an inverse
image of N by f . We denote M by f ∗(N) and α by αf (N) : f ∗(N)→ N.
f ∗(N) is unique up to isomorphism.



Proposition

Let f : X → Y be a morphism in C. If, for any N ∈ ObFY , there exists a
cartesian morphism αf (N) : f ∗(N)→ N, N 7→ f ∗(N) defines a functor
f ∗ : FY → FX such that, for any morphism φ : N → N ′ in FY , the
following square commutes.

f ∗(N) N

f ∗(N ′) N ′

αf (N)

f ∗(φ) φ

αf (N
′)

Definition (Inverse image functor)

For a morphism f : X → Y in C, if there exists a cartesian morphism
αf (N) : f ∗(N)→ N for any object N of FY , we say that the functor of
the inverse image by f exists.



Definition (Fibered category)

If a functor p : F → C satisfies the following condition (i), p is called a
prefibered category and if p satisfies both (i) and (ii), p is called a fibered
category or p is fibrant.

(i) For any morphism f in C, the functor of the inverse image by f exists.
(ii) The composition of cartesian morphisms is cartesian.

Definition (Cleavage)

Let p : F → C be a functor. The following map κ is called a cleavage if
κ(f ) is an inverse image functor f ∗ : FY → FX for (f : X → Y ) ∈ Mor C.

κ : Mor C →
∐

X ,Y∈Ob C
Funct(FY ,FX )

A cleavage κ is said to be normalized if κ(idX ) = idFX
for any X ∈ Ob C.

A functor p : F → C is called a cloven prefibered category (resp.
normalized cloven prefibered category) if a cleavage (resp. normalized
cleavage) is given.



Let f : X → Y , g : Z → X be morphisms in C and N an object of FY .
If p : F → C is a prefibered category, there is a unique morphism
cf ,g (N) : g∗f ∗(N)→ (fg)∗(N) such that the following square commutes
and p(cf ,g (N)) = idZ .

g∗f ∗(N) f ∗(N)

(fg)∗(N) N

αg (f ∗(N))

cf ,g (N) αf (N)

αfg (N)

We note that cf ,g (N) is an isomorphism if and only if p : F → C is a
fibered category.

Proposition

For a morphism φ : M → N in FY , the following square commutes.

g∗f ∗(M) (fg)∗(M)

g∗f ∗(N) (fg)∗(N)

cf ,g (M)

g∗f ∗(φ) (fg)∗(φ)

cf ,g (N)



If C is a category with a terminal object 1 we denote by oX : X → 1 the
unique morphism for an object X of C.

For a morphism f : X → Y in C and objects M, N of F1, we define a map

f ♯M,N : FY (o
∗
Y (M), o∗Y (N))→ FX (o

∗
X (M), o∗X (N))

to be the following composition. We note that f ♯M,N is natural in M and N.

FY (o
∗
Y (M), o∗Y (N))

f ∗−→ FX (f
∗(o∗Y (M)), f ∗(o∗Y (N)))

coY ,f (M)∗−1

−−−−−−−→∼=

FX ((oY f )
∗(M)), f ∗(o∗Y (N)))

coY ,f (N)∗
−−−−−−→∼=

FX ((oY f )
∗(M)), (oY f )

∗(N)))

= FX (o
∗
X (M), o∗X (N))

Proposition

Let f : Y → X, g : Z → Y be morphisms of C and L, M, N objects of F1.

(1) For ζ ∈ FX (o
∗
X (L), o

∗
X (M)) and ξ ∈ FX (o

∗
X (M), o∗X (N)), we have

f ♯L,N(ξζ) = f ♯M,N(ξ)f
♯
L,M(ζ).

(2) g ♯
M,N f

♯
M,N = (fg)♯M,N holds.



Fibered category with products
Let C be a category with a terminal object 1 and p : F → C a cloven
fibered category.

For X ∈Ob C and M∈ObF1, define a presheaf FX ,M :F1→Set on Fop
1 by

FX ,M(N) = FX (o
∗
X (M), o∗X (N))

FX ,M(φ : N → N ′) = (o∗X (φ)∗ : FX ,M(N)→ FX ,M(N ′))

for N∈ObF1 and φ ∈ F1(N,N
′).

Suppose that FX ,M is representable for X ∈ Ob C and M ∈ ObF1. We
choose an object X ×M of F1 such that there exists a bijection

PX (M)N : FX (o
∗
X (M), o∗X (N))→ F1(X ×M,N)

which is natural in N.

Definition (Fibered category with products)

Let p : F → C be a normalized cloven fibered category. We say that
p : F → C is a fibered category with products if the presheaf FX ,M on Fop

1

is representable for any X ∈ Ob C and M ∈ ObF1.



We assume p : F → C is a fibered category with products in this section.
We have a functor C × F1 → F1 which assigns (X ,M) ∈ Ob (C × F1) to
X ×M. For a morphism f : X → Y in C, f × idM : X ×M → Y × N is a
morphism in F1 such that the following diagram is commutative for any
object N of F1.

FX (o
∗
Y (M), o∗Y (N)) F1(Y ×M,N)

FY (o
∗
X (M), o∗X (N)) F1(X ×M,N)

PY (M)N

f ♯M,N
(f×idM)∗

PX (M)N

For a morphism φ : M → L in F1, idX × φ : X ×M → X × L is a
morphisms in F1 such that the following diagram is commutative for any
object N of F1.

FX (o
∗
X (L), o

∗
X (N)) F1(X × L,N)

FY (o
∗
X (M), o∗X (N)) F1(X ×M,N)

PX (L)N

o∗
X (φ)

∗ (idX×φ)∗

PX (M)N



We denote by ιX (M) : o∗X (M)→ o∗X (X ×M) the morphism in FX which
is mapped to the identity morphism of X ×M by

PX (M)X×M : FX (o
∗
X (M), o∗X (X ×M))→ F1(X ×M,X ×M).

Define a “diagonal morphism” δX ,M : X ×M → X × (X ×M) to be the
image of ιX (X ×M)ιX (M) ∈ FX (o

∗
X (M), o∗X (X × (X ×M))) by

PX (M)X×(X×M) :FX (o
∗
X (M), o∗X (X×(X×M)))→F1(X×M,X×(X×M)).

It can be verified that δX ,M is natural in X and M.

Assume that C has a finite products. For objects X and Y of C, let
prX : X × Y → X and prY : X × Y → Y be projections. For an object M
of F1, we define a morphism θX ,Y (M) : (X × Y )×M → X × (Y ×M) of
F1 to be the following composition.

(X×Y )×M
δX×Y ,M−−−−−→ (X×Y )×((X×Y )×M)

prX×(prY×idM)−−−−−−−−−−→ X×(Y ×M)



Definition (Associative fibered category with products)

If θX ,Y (M) : (X × Y )×M → X × (Y ×M) is an isomorphism for any
X ,Y ∈ Ob C and M ∈ ObF1, we say that p : F → C is an associative
fibered category with products.

We say that a graded topological vector space M∗ is “profinite” if M∗ is
complete Hausdorff and M∗/N∗ is finite dimensional for every open graded
subspace N∗ of M∗.

Let K ∗ be a linearly topologized graded commutative algebra.

We denote by TopAlgK∗ a category whose objects are linearly topologized
profinite graded commutative K ∗-algebras and whose morphisms are
continuous K ∗-algebra homomorphisms which preserve degrees.
Note that K ∗ is a terminal object of TopAlgop

K∗ .

We also denote byMK∗ a category whose objects are linearly topologized
profinite graded K ∗-modules whose morphisms are continuous K ∗-module
homomorphisms which preserve degrees.



Definition (Fibered category of topological modules)

We define a categoryMODK∗ as follows.

Objects : (R∗,M∗, α) where R∗ ∈ Ob TopAlgK∗ , M∗ ∈ ObMK∗ and
α : M∗ ⊗K R∗ → M∗ is a right R∗-module structure on M∗.

Morphisms : (f , φ) : (R∗,M∗, α)→ (S∗,N∗, β) where
(f : R∗ → S∗) ∈ Mor TopAlgK∗ , (φ : M∗ → N∗) ∈ MorMK∗

such that the following diagram is commutative.

M∗ ⊗K∗ R∗ M∗

N∗ ⊗K∗ S∗ N∗

α

φ⊗K∗ f φ

β

Composition of (f , φ) : (R∗,M∗, α)→ (S∗,N∗, β) and
(g , ψ) : (S∗,N∗, β)→ (T ∗, L∗, γ) is defined to be (gf , ψφ). We define a
functor p :MODK∗ → TopAlgK∗ by p(R∗,M∗, α) = R∗ and p(f , φ) = f .



Proposition

pop :MODop
K∗ → TopAlgop

K∗ is an associative fibered category with
products.

Inverse image funtor :

For a morphism f : S∗ → R∗ in TopAlgK∗ and an object N = (S∗,N∗, β)
of (MODK∗)S∗ , we have f ∗(N) = (R∗,N∗ ⊗̂S∗ R∗, βf ) where βf is the
following composition.

(N∗ ⊗̂S∗ R∗)⊗K∗ R∗ completion−−−−−−→ (N∗ ⊗̂S∗ R∗) ⊗̂K∗ R∗ ∼=−→

N∗ ⊗̂S∗(R∗ ⊗̂K∗ R∗)
idN∗ ⊗̂S∗ µ̂−−−−−−→ N∗ ⊗̂S∗ R̂∗ ∼=−→ N∗ ⊗̂S∗ R∗

Here µ̂ : R∗ ⊗̂K∗ R∗ → R̂∗ is the map induced by the multiplication of R∗.

Product :

For an object R∗ of TopAlgK∗ and an object M = (K ∗,M∗, α) of
(MODK∗)K∗ , we have R∗ ×M = (K ∗,M∗ ⊗̂K∗ R∗, αR∗), where αR∗ is
the right K ∗-module structure of M∗ ⊗̂K∗ R∗ obtained from the right
K ∗-module structure of R∗.



Fibered category with exponents
Let C be a category with a terminal object 1 and p : F → C a cloven
fibered category.

For X ∈Ob C and M∈ObF1, define a presheaf FX
N :Fop

1 →Set on F1 by

FX
N (M) = FX (o

∗
X (M), o∗X (N))

FX
N (φ : M → M ′) = (o∗X (φ)

∗ : FX
N (M ′)→ FX

N (M))

for M∈ObF1 and φ ∈ F1(M,M ′).

Suppose that FX
N is representable for X ∈ Ob C and N ∈ ObF1. We

choose an object NX of F1 such that there exists a bijection

EX (N)M : FX (o
∗
X (M), o∗X (N))→ F1(M,NX )

which is natural in M.

Definition (Fibered category with exponents)

Let p : F → C be a normalized cloven fibered category. We say that
p : F → C is a fibered category with exponents if the presheaf FX

N on F1

is representable for any X ∈ Ob C and N ∈ ObF1.



We assume p : F → C is a fibered category with exponents in this section.
We have a functor C × F1 → F1 which assigns (X ,N) ∈ Ob (C × F1) to
NX . For a morphism f : X → Y in C, N f : NY → NX is a morphism in F1

such that the following diagram is commutative for any object M of F1.

FX (o
∗
Y (M), o∗Y (N)) F1(M,NY )

FY (o
∗
X (M), o∗X (N)) F1(M,NX )

EY (N)M

f ♯M,N
N f
∗

EX (N)M

For a morphism φ : N → L in F1, φ
X : NX → LX is a morphisms in F1

such that the following diagram is commutative for any object N of F1.

FX (o
∗
X (M), o∗X (N)) F1(M,NX )

FY (o
∗
X (M), o∗X (L)) F1(M, LX )

EX (N)M

o∗
X (φ)∗ φX

∗

EX (L)M



We denote by πX (N) : o∗X (N
X )→ o∗X (N) the morphism in FX which is

mapped to the identity morphism of NX by

EX (N)NX : FX (o
∗
X (N

X ), o∗X (N))→ F1(N
X ,NX ).

Define a “codiagonal morphism” ϵXN : (NX )X → NX to be the image of
πX (N)πX (N

X ) ∈ FX (o
∗
X ((N

X )X ), o∗X (N)) by

EX (N)(NX )X :FX (o
∗
X ((N

X )X ), o∗X (N))→F1((N
X )X ,NX ).

It can be verified that ϵXN is natural in X and N.
Assume that C has a finite products. For objects X and Y of C, let
prX : X × Y → X and prY : X × Y → Y be projections. For an object N
of F1, we define a morphism θX ,Y (N) : (NX )Y → NX×Y of F1 to be a

composition (NX )Y
(NprX )prY−−−−−−→ (NX×Y )X×Y

ϵX×Y
N−−−→ NX×Y .

Remark

Let p : F → C be a fibered category and X ∈ Ob C. If, for M,N ∈ ObF1,
both X ×M and NX exist, then there are the following bijections.

F1(X ×M,N)
PX (M)−1

N−−−−−−→∼=
FX (o

∗
X (M), o∗X (N))

EX (N)M−−−−−→∼=
F1(M,NX )



Definition (Associative fibered category with exponents)

If θX ,Y (N) : (NX )Y → NX×Y is an isomorphism for any X ,Y ∈ Ob C and
N ∈ ObF1, we say that p : F → C is an associative fibered category with
exponents.

Definition (Skeletal topology)

For a graded vector space M∗ over a field K and a non-negative integer n,
we put M∗[n] =

∑
|i |≥n

M i . A topology on M∗ is called a “skeletal topology”

if {M∗[n] | n = 0, 1, 2, . . . } is a fundamental system of the neighborhood of
0 of its topology.

Definition (Connectiveness and coconnectiveness)

Let M∗ be a graded vector space over a field K . If there exists an integer l
such that M i = {0} if i < l (resp.i > l), we say that M∗ is connective
(resp. coconnective).



Let K ∗ be a field such that K i = {0} for i 6= 0. For a graded K ∗-module
M∗ with skeletal topology, the dual Hom∗(M∗,K ∗) of M∗ is a graded
K ∗-module such that Homn(M∗,K ∗) is the set of all linear maps
M−n → K 0. We denote Hom∗(M∗,K ∗) by M∗∗ for short and give M∗∗

the skeletal topology.

Proposition

Let K ∗ be a field such that K i = {0} for i 6= 0. Assume that an object R∗

of TopAlgK∗ and an object N = (K ∗,N∗, β) ofMODK∗ satisfies the
following conditions.

(i) R∗ is finite type, connective and has skeletal topology.
(ii) N∗ is finite type, coconnective and has skeletal topology.

Then, the presheaf FR∗
N onMODop

K∗ is representable and NR∗
is given by

(K ∗,R∗∗ ⊗K∗ N∗, β′) where β′ is the K ∗-module structure obtained from
the K ∗-module structure β of N∗.



Representation of group objects

Definition (Group object in a category)

A group object in a category C with finite products is an object G of C
with morphisms µ : G × G → G (product), ε : 1→ G (unit) and
ι : G → G (inverse) which make the following diagrams commute.

G × G × G G × G

G × G G

µ×idG

idG×µ µ

µ

1× G G

G × G G

G × 1 G

ε×idG

(oG ,idG )

idG

µ

idG×ε

(idG ,oG )

idG

G 1

G × G G

G 1

(ι,idG )

oG

ε

µ

(idG ,ι)

oG

ε

We denote the above group object by (G , µ, ε, ι).



Definition (Homomorphism between group objects)

Let (H, µ′, ε′, ι′) be a group object in C. If a morphism f : G → H makes
the following diagram commute, we call f a morphism of group objects
and denote this by f : (G , µ, ε, ι)→ (H, µ′, ε′, ι′).

G × G H × H

G H

f×f

µ µ′

f

Let p : F → C be a cloven fibered category and f : Y → X a morphism in
C. For objects M and N of F1 and a morphism ξ : o∗X (M)→ o∗X (N) of

FX , we denote f ♯M,N(ξ) : o
∗
Y (M)→ o∗Y (N) by ξf for short. That is, ξf is

the following composition.

o∗Y (M) = (oX f )
∗(M)

coX ,f (M)−1

−−−−−−−→ f ∗o∗X (M)
f ∗(ξ)−−−→ f ∗o∗X (N)

coX ,f (N)
−−−−−−−→ (oX f )

∗(N) = o∗Y (N)

We denote by pr1, pr2 : G × G → G the projections below.



Definition (Representation of group object)

Let (G , µ, ε, ι) be a group object in C.
A pair (M, ξ) of an object M of F1 and a morphism ξ : o∗G (M)→ o∗G (M)
in FG is called a left (resp. right) representation of G on M if the
following conditions (i) (resp. (i ′)) and (ii) are satisfied.

(i) ξµ = ξpr1ξpr2 (i ′) ξµ = ξpr2ξpr1 (ii) ξε = idM

If we say simply “a representation”, this means a left representation.
Let ξ : o∗G (M)→ o∗G (M) and ζ : o∗G (N)→ o∗G (N) be representations of G
on M and N, respectively. A morphism φ : M → N of F1 is a called a
morphism of representations of G from (M, ξ) to (N, ζ) if the following
diagram commutes.

o∗G (M) o∗G (M)

o∗G (N) o∗G (N)

ξ

o∗
G (φ) o∗

G (φ)

ζ

We denote by Rep(G ;F) the category of representations of G and
morphisms between them.



Proposition

Let f : (G , µ, ε, ι)→ (H, µ′, ε′, ι′) be a morphism of group objects in C.
(1) If (M, ξ) is a representation of H on M, (M, ξf ) is a representation of

G on M.
(2) If φ : (M, ξ)→ (N, ζ) is a morphism of representations of H,

φ : (M, ξf )→ (N, ζf ) is a morphism of representations of G.

Thus we have a functor f ∗ : Rep(H;F)→ Rep(G ;F) given by
f ∗(M, ξ) = (M, ξf ) and f ∗(φ : (M, ξ)→(N, ζ)) = (φ : (M, ξf )→(N, ζf )).



Proposition

For M ∈ ObF1 and ξ ∈ FG (o
∗
G (M), o∗G (M)), we put

ξ̂ = PG (M)M(ξ) : G ×M → M. Then, (M, ξ) is a representation of G on
M if and only if the following diagrams commute.

(G × G )×M G ×M M

G × (G ×M) G ×M

µ×M

θG ,G (M)

ξ̂

G×ξ̂
ξ̂

1×M

G ×M M

idM
ε×M

ξ̂

Proposition

For M ∈ ObF1 and ξ ∈ FG (o
∗
G (M), o∗G (M)), we put

ξ̌ = EG (M)M(ξ) : M → MG . Then, (M, ξ) is a representation of G on M
if and only if the following diagrams commute.

M MG (MG )G

MG MG×G

ξ̌

ξ̌

(ξ̌)G

θG ,G (M)

Mµ

M MG

M1

ξ̌

idM
Mε



Let A∗ be a graded commutative Hopf algebra over a field K ∗ which
satisfies K i = {0} if i 6= 0. We assume that A∗ is finite type, connective
and has skeletal topology. We denote coproduct, counit and conjugation
of A∗ by µ : A∗ → A∗ ⊗K∗ A∗, ε : A∗ → K ∗ and ι : A∗ → A∗, respectively.
Then, (A∗, µ, ε, ι) is a group object in TopAlgop

K∗ .

Let M∗ be a K ∗-module with skeletal topology. We assume that M∗ is
finite type and coconnective. We denote by α the K ∗-module structure of
M∗ and consider an object M = (K ∗,M∗, α) ofMODK∗ .

Since A∗ and M∗ are profinite, both A∗ ×M and MA∗
exist. There are

the following bijections.

PA∗(M)M : (MODop
K∗)A∗(o∗A∗(M), o∗A∗(M))→(MODop

K∗)K∗(A∗×M ,M)

EA∗(M)M : (MODop
K∗)A∗(o∗A∗(M), o∗A∗(M))→ (MODop

K∗)K∗(M ,MA∗
)

Since we have (MODop
K∗)K∗(M ,MA∗

) = HomK∗(A∗∗ ⊗K∗ M∗,M∗) and
(MODop

K∗)K∗(A∗×M ,M)=HomK∗(M∗,M∗ ⊗̂K∗ A∗), there is a bijection

HomK∗(A∗∗ ⊗K∗ M∗,M∗)→ HomK∗(M∗,M∗ ⊗̂K∗ A∗)

which maps the set of all left A∗∗-module structures on M∗ onto the set of
all right A∗-comodule structures on M∗.



Filtered algebras and unstable modules
We denote by A∗

p the Steenrod algebra over a prime field F p.

Let Seq be the set of all infinite sequences (i1, i2, . . . , in, . . . ) of
non-negative integers such that in = 0 for all but finite number of n’s.

Let Seqo be a subset of Seq consisting of sequences (i1, i2, . . . , in, . . . )
such that ik = 0, 1 if k is odd.

If is = 0 for s > n, we denote (i1, i2, . . . , is , . . . ) ∈ Seq by (i1, i2, . . . , in).

For an odd prime p and I = (ε0, i1, ε1, . . . , in, εn) ∈ Seqo , we put

dp(I ) = −2(p − 1)
n∑

s=1
is −

n∑
s=0

εs , ep(I ) = −
n∑

s=0
εs − 2

n∑
s=1

(is − pis+1 − εs).

Then, we have ℘I = βε0℘i1βε1℘i2βε2 · · ·℘inβεn ∈ Adp(I )
p .

For I = (i1, i2, . . . , in) ∈ Seq, we put

d2(I ) = −
n∑

s=1
is , e2(I ) = −

n∑
s=1

(is − 2is+1).

Then, we have SqI = Sqi1Sqi2 · · · Sqin ∈ Ad2(I )
2 .

We call dp(I ) the degree of I and ep(I ) the excess of I .



For an odd prime p, we say that I = (ε0, i1, ε1, . . . , in, εn) ∈ Seqo is
p-admissible if p is and is ≥ pis+1 + εs for s = 1, 2, . . . , n.
We say that I = (i1, i2, . . . , in) ∈ Seq is 2-admissible if is ≥ 2is+1 for
s = 1, 2, . . . , n.
We denote by Seqp the subset of Seq consisting of p-admissible sequences.

Definition (Excess filtration on the Steenrod algebra)

Let FiA∗
p be a subspace of A∗

p spanned by the following set of monomials.{
℘I

∣∣ I ∈ Seqp, ep(I ) ≤ i
}
if p 6= 2,

{
SqI

∣∣ I ∈ Seq2, e2(I ) ≤ i
}
if p = 2

Thus we have an increasing filtration Fp = (FiA∗
p)i∈Z which is called the

excess filtration on A∗
p.

Proposition

Let X be a topological space and H∗(X ) the mod p ordinary cohomology
group of X . If θ ∈ Fn−1A∗

p and x ∈ Hn(X ), then θx = 0 holds.



We assume that K ∗ is a field such that K i = {0} if i 6= 0 in this section.
Let A∗ be a graded K ∗-algebra with an increasing filtration (FiA

∗)i∈Z . We
denote byMod(A∗) the category of left A∗-modules and homomorphisms.

Definition (Unstable modules)

Let M∗ be a left A∗-module with a multiplication α : A∗ ⊗K∗ M∗ → M∗.
M∗ is called an unstable A∗-module if α(Fn−1A

∗ ⊗K∗ Mn) = {0} for
n ∈ Z . We denote by UMod(A∗) the full subcategory ofMod(A∗).

Remark

If (FiA
∗)i∈Z satisfies F0A

∗ = A∗, an unstable A∗-module M∗ satisfies
Mn = {0} for n ≥ 0. In fact, if n ≥ 1, then A∗ = Fn−1A

∗, hence
Mn ⊂ α(A∗ ⊗K∗ Mn) = α(Fn−1A

∗ ⊗K∗ Mn) = {0}.

It is clear that submodules and quotient modules of an unstable module are
also unstable and that the sum and the product of unstable modules are
unstable. Hence UMod(A∗) is complete and cocomplete and the inclusion
functor IA∗ : UMod(A∗)→Mod(A∗) preserves limits and colimits.



Proposition

The inclusion functor IA∗ : UMod(A∗)→Mod(A∗) has a right adjoint.

Proof : For an object M∗ ofMod(A∗), since sums of unstable submodules
of M∗ are also unstable submodules, there exists the largest unstable
submodule M∗

u of M∗. For a morphism f : M∗ → N∗ ofMod(A∗), since
f (M∗

u) is an unstable submodule of N∗, f (M∗
u) ⊂ N∗

u holds and f induces
fu : M∗

u → N∗
u . Thus we have a functor RA∗ :Mod(A∗)→Mod(A∗) given

by RA∗(M∗) = M∗
u and RA∗(f ) = fu. It can be verified that RA∗ is a right

adjoint of IA∗ .

Notations

Let M∗ be a non-trivial graded K ∗-module.
For an increasing filtration F = (FiM

∗)i∈Z of M∗, we define E ∗
i M

∗, E j
i M

∗,
a subset S(F) of Z and a map cF : S(F)→ Z as follows.

E ∗
i M

∗ = FiM
∗/Fi−1M

∗ and E j
i M

∗ = (FiM
∗/Fi−1M

∗)j .

S(F) = {i ∈ Z |E ∗
i M

∗ 6= {0}}.

If M∗ is coconnective, put cF(i) = max{j ∈ Z |E j
i M

∗ 6= {0}} for i ∈ S(F).



Let A∗ be a graded K ∗-algebra with product µ : A∗ ⊗K∗ A∗ → A∗.
For an increasing filtration F = (FiA

∗)i∈Z of A∗, we give the following list
of conditions on F.

Conditions

(f 1)
⋂
i∈Z

FiA
∗ = {0}

(f 2) F0A
∗ = A∗

(f 3) E j
i A

∗ = {0} if i + j 6= k + cF(k) for any k ∈ S(F).

(f 4) A map S(F)→ Z which assigns i ∈ S(F) to i + cF(i) is injective.

(f 5) µ(A∗ ⊗K∗ FiA
∗) ⊂ FiA

∗ for i ∈ Z .

(f 6) µ(FiA
∗ ⊗K∗ A j) ⊂ Fi−jA

∗ for i , j ∈ Z .

(f 7) µ((FiA
∗)cF(i) ⊗K∗ A j) + (Fi−j−1A

∗) j+cF(i) = (Fi−jA
∗) j+cF(i)

for i ∈ S(F), j ∈ Z .

(f 8) Under (f 6), µ defines µk, ji : (FiA
∗)k ⊗K∗ A j → (Fi−jA

∗) j+k .

For i ∈ S(F) and j ∈ Z , (µ
cF(i), j
i )−1((Fi−j−1A

∗) j+cF(i))
= (Fi−1A

∗)cF(i) ⊗K∗ A j + (FiA
∗)cF(i) ⊗K∗ (Fi−j−1A

∗) j



Theorem (The case of the Steenrod algebra)

The excess filtration Fp = (FiA∗
p)i∈Z on A∗

p satisfies all of the conditions
(f 1) ∼ (f 8) above. Here S(Fp) is the set of all non-positive integers and
cFp : S(Fp)→ Z is given by cFp(2i − ε) = 2i(p − 1)− ε (ε = 0, 1).

Definition (Suspension)

Let M∗ be a graded K ∗-module. For an integer n, we define a graded
K ∗-module ΣnM∗ by (ΣnM∗)i = {[n]} ×M i−n such that the projection
{[n]} ×M i−n → M i−n is an isomorphism of K ∗-modules.
If f : M∗ → N∗ is a homomorphism of graded K ∗-module, we define
Σnf : ΣnM∗ → ΣnN∗ by Σnf ([n], x) = ([n], f (x)).

Remark

Suppose that F = (FiA
∗)i∈Z satisfies (f 5) above. Then F satisfies (f 6) if

and only if Σn(A∗/Fn−1A
∗) is an unstable A∗-module for any n ∈ Z .



Proposition

For a left A∗-module M∗ with structure map α : A∗ ⊗K∗ M∗ → M∗, define
a subspace M̄n of Mn by

M̄n = {x ∈ Mn|α(a⊗ x) = 0 for any a ∈ Fn−1M
∗}

and put M̄∗ =
∑
n∈Z

M̄n. If (FiA
∗)i∈Z satisfies (f 6), M̄∗ is the largest

unstable submodule of M∗. Hence we have RA∗(M∗) = M̄∗.

Proof : For x ∈ M̄n, b ∈ Am and a ∈ Fm+n−1A
∗, since µ(a⊗ b) ∈ Fn−1A

∗

holds by (f 6), we have an equality α(a⊗α(b⊗ x)) = α(µ(a⊗ b)⊗ x) = 0
which shows α(b ⊗ x) ∈ M̄m+n. Hence M̄∗ is an unstable submodule of
M∗. It is clear that M̄∗ is the largest submodule among unstable
submodules of M∗.



Let M∗ be a left A∗-module with structure map α : A∗ ⊗K∗ M∗ → M∗ and
put N (M∗) =

∑
n∈Z

α(Fn−1A
∗ ⊗K∗ Mn). Then, M∗ is an unstable if and

only if N (M∗) = {0}. Assume that F satisfies (f 5).
Put LA∗(M∗) = M∗/N (M∗), then LA∗(M∗) is an unstable A∗-module.
For a morphism f : M∗ → N∗ inMod(A∗), since f (N (M∗)) ⊂ N (N∗)
holds, f induces a morphism LA∗(f ) : LA∗(M∗)→ LA∗(N∗) in UMod(A∗).
Thus we have a functor LA∗ :Mod(A∗)→ UMod(A∗).

Proposition

If F satisfies (f 5), IA∗ : UMod(A∗)→Mod(A∗) has a left adjoint LA∗ .

Proof : Since LA∗ IA∗ is the identity functor of UMod(A∗), let
ε : LA∗ IA∗ → idUMod(A∗) be the identity natural transformation.
For M∗ ∈ ObMod(A∗), let ηM∗ : M∗ → IA∗LA∗(M∗) be the quotient map
M∗ → M∗/N (M∗). Then ηM∗ is natural in M∗ and that compositions

LA∗(M∗)
LA∗ (ηM∗ )−−−−−−→ LA∗ IA∗LA∗(M∗)

εLA∗ (M∗)
−−−−−→ LA∗(M∗),

IA∗(M∗)
ηIA∗ (M∗)
−−−−−→ IA∗LA∗ IA∗(M∗)

IA∗ (εM∗ )−−−−−→ IA∗(M∗)

are identity morphisms of LA∗(M∗) and IA∗(M∗), respectively.



We denote byModK∗ the category of graded K ∗-modules and degree
preserving homomorphisms.
The forgetful functor O :Mod(A∗)→ModK∗ has a left adjoint
F :ModK∗→Mod(A∗) given by F (M∗) = A∗⊗K∗M∗, F (f ) = idA∗⊗K∗ f .
Let us denote by F :ModK∗ → UMod(A∗) the composition of F and
LA∗ , by O : UMod(A∗)→ModK∗ the composition of IA∗ and O.

Proposition

If F satisfies (f 5), F is a left adjoint of O.

Remark

If F satisfies (f 5) and (f 6), N (F (M∗))=
∑
n∈Z

Fn−1A
∗⊗K∗Mn holds for

M∗∈ObModK∗ . Hence F(M∗) is isomorphic to
∑
n∈Z

A∗/Fn−1A
∗⊗K∗Mn

as a left A∗-module.



Let f : A∗ → B∗ be a homomorphism of graded K ∗-algebras.

For a left B∗-module N∗ with structure map β : B∗ ⊗K∗ N∗ → N∗, we
denote by f∗(N

∗) a left A∗-module N∗ with a structure map
β(f ⊗K∗ idN∗) : A∗ ⊗K∗ N∗ → N∗.
Define a functor f∗ :Mod(B∗)→Mod(A∗) by N∗ 7→ f∗(N

∗) for
N∗ ∈ ObMod(B∗) and f∗(φ) = φ for a morphism φ ofMod(B∗).

f∗ :Mod(B∗)→Mod(A∗) has a left adjoint f ∗ :Mod(A∗)→Mod(B∗)
defined as follows. Put f ∗(M∗) = B∗ ⊗A∗ M∗ for M∗ ∈ ObMod(A∗) and
the left B∗-module structure of f ∗(M∗) is defined from the product of B∗.
For a homomorphism φ : M∗ → L∗, put f ∗(φ) = idB∗ ⊗A∗ φ. Then, f ∗ is
a left adjoint of f∗.

Proposition

Let FA∗ = (FiA
∗)i∈Z and FB∗ = (FiB

∗)i∈Z be increasing filtrations of A∗

and B∗, respectively. If f : A∗ → B∗ satisfies f (FiA
∗) ⊂ FiB

∗ for i ∈ Z ,
f∗ :Mod(B∗)→Mod(A∗) maps each object of UMod(B∗) to that of
UMod(A∗). Hence f∗ :Mod(B∗)→Mod(A∗) restricts to a functor
fu∗ : UMod(B∗)→ UMod(A∗).



Proposition

If FB∗ satisfies (f 5), fu∗ : UMod(B∗)→ UMod(A∗) has a left adjoint.

Proof :
Define f ∗u : UMod(A∗)→ UMod(B∗) to be the following composition.

UMod(A∗)
IA∗−−→Mod(A∗)

f ∗−→Mod(B∗)
LB∗−−→ UMod(B∗)

Since IB∗ : UMod(B∗)→Mod(B∗) has a left adjoint
LB∗ :Mod(B∗)→ UMod(B∗) and f ∗ :Mod(A∗)→Mod(B∗) has a right
adjoint f∗ :Mod(B∗)→Mod(A∗), we have the following chain of natural
bijections for M∗ ∈ ObUMod(A∗) and N∗ ∈ ObUMod(B∗).

UMod(B∗)(f ∗u (M
∗),N∗) = UMod(B∗)(LB∗ f ∗IA∗(M∗),N∗)

∼= Mod(B∗)(f ∗IA∗(M∗), IB∗(N∗))
∼= Mod(A∗)(IA∗(M∗), f∗IB∗(N∗))

= Mod(A∗)(IA∗(M∗), IA∗ fu∗(N
∗))

∼= UMod(A∗)(M∗, fu∗(N
∗))

Hence f ∗u : UMod(A∗)→ UMod(B∗) is a left adjoint of
fu∗ : UMod(B∗)→ UMod(A∗).



Loop functor

Proposition

Assume A∗ is coconnective and finite type and that F = (FiA
∗)i∈Z

satisfies (f 1), (f 3) and (f 7).
A left A∗-module M∗ with structure map α :A∗ ⊗K∗ M∗→M∗ is unstable
if and only if α((FiA

∗)cF(i)⊗K∗Mk)={0} for any i ∈ S(F), k > i .

Assume that F satisfies (f 6). Since the horizontal rows of the following

diagram are exact, there exists unique map µ̄k, ji :E k
i A

∗ ⊗K∗ A j → E k
i−jA

∗

that make the following diagram commute.

0→(Fi−1A
∗)k⊗A j (FiA

∗)k⊗A j E k
i A

∗⊗A j→0

0→(Fi−j−1A
∗)j+k (Fi−jA

∗)j+k E j+k
i−j A

∗→0

ιA∗,i⊗id
A j

µk,j
i−1

ρA∗,i⊗id
A j

µk,j
i

µ̄k,j
i

ιA∗, i−j ρA∗, i−j



If moreover F satisfies (f 5), since µ maps A∗ ⊗K∗ Fi−j−1A
∗ into Fi−j−1A

∗,

µ̄k,ji maps E k
i A

∗ ⊗K∗ (Fi−j−1A
∗) j to zero. Hence the exists unique map

µ̃k,ji : E k
i A

∗ ⊗K∗ (A∗/Fi−j−1A
∗) j → E j+k

i−j A
∗ that make the following

diagram commute.

E k
i A

∗ ⊗K∗ A j E k
i A

∗ ⊗K∗ (A∗/Fi−j−1A
∗) j

E j+k
i−j A

∗

id
Ek
i
A∗⊗K∗πA∗, i−j

µ̄k, j
i µ̃k, j

i

Remark

Assume that F satisfies (f 5) and (f 6). F satisfies (f 7) if and only if

µ̃
cF(i), j
i : E

cF(i)
i A∗ ⊗K∗ (A∗/Fi−j−1A

∗) j → E
j+cF(i)
i−j A∗ · · · (∗)

is surjective for i ∈ S(F), j ∈ Z . F satisfies (f 8) if and only if (∗) is
injective for i ∈ S(F), j ∈ Z . Thus F satisfies (f 7) and (f 8) if and only if
(∗) is an isomorphism for i ∈ S(F), j ∈ Z .



Let A∗ be a K ∗-algebra with an increasing filtration F = (FiA
∗)i∈Z .

Suppose that F satisfies (f 3), (f 4), (f 5), (f 6), (f 7) and (f 8). For an
unstable A∗-module M∗, define a left A∗-module ΦM∗ as follows. Put

ΦM∗ =
∑

i∈S(F)
E
cF(i)
i A∗ ⊗K∗ M i .

In other words, (ΦM∗)k = {0} if k 6= i + cF(i) for any i ∈ S(F) and

(ΦM∗)k = E
cF(i)
i A∗ ⊗K∗ M i if k = i + cF(i) for i ∈ S(F) which is uniquely

determined by (f 4).

Since FiA
∗ is a left ideal of A∗ by (f 5), E ∗

i A
∗ is a left A∗-module and we

denote by µi : A
∗ ⊗K∗ E ∗

i A
∗ → E ∗

i A
∗ the left A∗-module structure.

Let α : A∗ ⊗K∗ M∗ → M∗ be the A∗-module structure map of M∗.
Since M∗ is unstable, α induces αi : A

∗/Fi−1A
∗ ⊗K∗ M i → M∗.

We define maps αj ,k : Aj ⊗K∗ (ΦM∗)k → (ΦM∗)j+k for j , k ∈ Z below.

Since (ΦM∗)k = {0} if k 6= i + cF(i) for any i ∈ S(F), αj ,k should be
trivial k 6= i + cF(i) for any i ∈ S(F) or j + k 6= s + cF(s) for any s ∈ S(F).



If there exist i , s ∈ S(F) which satisfy k = i + cF(i) and j + k = s + cF(s),
then such i and s are unique by (f 4). In this case, define αj ,k to be the
following composition.

A j⊗K∗ (ΦM∗)i+cF(i) = A j⊗K∗E
cF(i)
i A∗⊗K∗M i

µi⊗K∗ id
Mi−−−−−−→

E
j+cF(i)
i A∗⊗K∗M i = E

s−i+cF(s)
i A∗⊗K∗M i

(µ̃
cF(s),s−i
s )−1⊗K∗ id

Mi−−−−−−−−−−−−−→

E
cF(s)
s A∗⊗K∗(A∗/Fi−1A

∗)s−i⊗K∗M i
id

E
cF(s)
s A∗

⊗K∗αi

−−−−−−−−−→

E
cF(s)
s A∗⊗K∗Ms = (ΦM∗)s+cF(s)

Let us denote by αΦ : A∗ ⊗K∗ ΦM∗ → ΦM∗ the map induced by αj ,k ’s
which gives a left A∗-module strucutre of M∗. Since µi maps

Fi+cF(i)−1A
∗ ⊗K∗ E

cF(i)
i A∗ into {0} by (f 6), ΦM∗ is an unstable

A∗-module.

For a homomorphism φ : M∗ → N∗ between unstable A∗-modules, let
Φφ : ΦM∗ → ΦN∗ be the map induced by id

E
cF(i)

i A∗ ⊗K∗ φ. Then, Φφ is a

homomorphism of left A∗-modules and Φ is an endofunctor of UMod(A∗).



For an unstable A∗-module M∗ with structure map α :A∗⊗K∗M∗→M∗, let
ᾱj
i :E

j
i A

∗⊗K∗M i→M i+j be a restriction of αi :A
∗/Fi−1A

∗⊗K∗M i→M∗.
We define a map λM∗ : ΦM∗ → M∗ as follows.

If k = i + cF(i) for i ∈ S(F), we put

λkM∗ = ᾱ
cF(i)
i : (ΦM∗)k = E

cF(i)
i A∗ ⊗K∗ M i → M i+cF(i) = Mk .

If k 6= i + cF(i) for any i ∈ S(F), λkM∗ : (ΦM∗)k → Mk is the trivial map.
Let λM∗ be the map induced by λkM∗ ’s.

Proposition

λM∗ is a homomorphism of left A∗-modules and natural in M∗.

Let us denote by ι̃A∗, n : A∗/Fn−1A
∗ → A∗/FnA

∗ the quotient map.
For a K ∗-module M∗, we define a map σM∗ : F(M∗)→ Σ−1F(ΣM∗) by
σM∗(x ⊗ y) = ([−1], ι̃A∗, n(x)⊗ ([1], y)) for x ∈ A∗/Fn−1A

∗ and y ∈ M∗.



Proposition

Let M∗ be a graded K ∗-module. If F satisfies (f 3) and (f 5) ∼ (f 8), the
following is a short exact sequence.

0→ ΦF(M∗)
λF(M∗)−−−−→ F(M∗)

σM∗−−→ Σ−1F(ΣM∗)→ 0

Proof : Recall that F(M∗) =
∑
n∈Z

A∗/Fn−1A
∗ ⊗K∗ Mn. Hence we have

ΦF(M∗) =
∑

i∈S(F)
E
cF(i)
i A∗ ⊗K∗ F(M∗)i

=
∑

i∈S(F)

∑
n∈Z

E
cF(i)
i A∗ ⊗K∗ (A∗/Fn−1A

∗)i−n ⊗K∗ Mn.

By (f 3), (f 7) and (f 8), λF(M∗) is an injection onto
∑
n∈Z

E ∗
nA

∗ ⊗K∗ Mn,

which is the kernel of σM∗ .



Proposition

Let M∗ be an unstable A∗-module. If F satisfies (f 1) ∼ (f 8), then
ΣCokerλM∗ is an unstable A∗-module.

Proof :
Let α : A∗ ⊗K∗ M∗ → M∗ the structure map of M∗. Since

Imλ
i+cF(i)
M∗ = α((FiA

∗)cF(i) ⊗K∗ M i ),

we have (FiA
∗)cF(i)(CokerλM∗)i = {0} for i ∈ S(F).

If i ∈ S(F) and k > i , the instability of M∗ and the first proposition in this
section imply (FiA

∗)cF(i)(CokerλM∗)k = {0}.



Suppose that F satisfies (f 1) ∼ (f 8) for the rest of this section unless
otherwise stated.
Define a functor Ω : UMod(A∗)→ UMod(A∗) as follows.

For an objevt M∗ of UMod(A∗), we put ΩM∗ = ΣCokerλM∗ and denote
by η̃M∗ : M∗ → CokerλM∗ = Σ−1ΩM∗ the quotient map.
It follows from the above proposition that ΩM∗ is an object of UMod(A∗).

For a morphism φ : M∗ → N∗ of UMod(A∗), there exists unique map
φ̄ : CokerλM∗ → CokerλN∗ that makes the following diagram commute.
We put Ωφ = Σφ̄ : ΩM∗ → ΩN∗.

ΦM∗ M∗ CokerλM∗ = Σ−1ΩM∗ 0

ΦN∗ N∗ CokerλN∗ = Σ−1ΩN∗ 0

λM∗

Φφ

η̃M∗

φ φ̄

λN∗ η̃N∗

Proposition

Ω is a left adjoint of the desuspension functor Σ−1.



Remark

Since σM∗ : F(M∗)→ Σ−1F(ΣM∗) is a cokernel of λF(M∗) for a graded
K ∗-module M∗, ΩF(M∗) is identified with F(ΣM∗).

Lemma

Assume that a filtration F = (FiA
∗)i∈Z satisfies (f 5), (f 6), (f 7) and (f 8).

If i , i + cF(i) ∈ S(F), the following composition maps

(Fi+cF(i)A
∗)cF(i+cF(i)) ⊗K∗ E

cF(i)
i A∗ onto E

cF(i+cF(i))
i+cF(i)

A∗ ⊗K∗ E
cF(i)
i A∗.

AcF(i+cF(i)) ⊗K∗ E
cF(i)
i A∗ µi−→ E

cF(i)+cF(i+cF(i))
i A∗(

µ̃
cF(i+cF(i)),cF(i)

i+cF(i)

)−1

−−−−−−−−−−−−→ E
cF(i+cF(i))
i+cF(i)

A∗ ⊗K∗ (A∗/Fi−1A
∗)cF(i)

Proposition

Let M∗ be an unstable A∗-module. ΣKerλM∗ is an unstable A∗-module.



Define a functor Ω1 : UMod(A∗)→ UMod(A∗) as follows.

For an object M∗ of UMod(A∗), we put Ω1(M∗) = ΣKerλM∗ and denote
by ιM∗ : KerλM∗ → ΦM∗ the inclusion map.
The above proposition implies that Ω1M∗ is an object of UMod(A∗).

For a morphism φ : M∗ → N∗ of UMod(A∗), there exists unique map
φ̂ : KerλM∗ → KerλN∗ that makes the following diagram commute.
We put Ω1φ = Σφ̂ : Ω1M∗ → Ω1N∗.

0 Σ−1Ω1M∗ = KerλM∗ ΦM∗ M∗

0 Σ−1Ω1N∗ = KerλN∗ ΦN∗ N∗

ιM∗

φ̂

λM∗

Φφ φ

ιN∗ λN∗

Proposition

Ω1 is the first left derived functor of Ω and all the higher derived functors
of Ω are trivial.



Proof :

Let M∗ εM∗←−− B∗
0

∂1←− · · · ∂n−1←−−− B∗
n−1

∂n←− B∗
n

∂n+1←−−− · · · be the bar resolusion
of M∗.
Consider chain complexes B . = (B∗

n , ∂n)n∈Z , ΦB . = (ΦB∗
n ,Φ(∂n))n∈Z and

Σ−1ΩB . = (Σ−1ΩB∗
n ,Σ

−1Ω(∂n))n∈Z . We denote by λ. : ΦB .→ B . and
η̃. : B .→ Σ−1ΩB . the chain maps given by λB∗

n
’s and η̃B∗

n
’s, respectively.

ΦB∗
n

λB∗
n−−→ B∗

n

η̃B∗
n−−→ Σ−1ΩB∗

n → 0 is exact by the definition of ΩB∗
n . Since

B∗
n = F(M∗

n) for some graded K ∗-module, λB∗
n
= λF(M∗

n )
is injective by

the previous proposition. Hence 0→ ΦB∗
n

λB∗
n−−→ B∗

n

η̃B∗
n−−→ Σ−1ΩB∗

n → 0 is
exact. Thus we have a short exact sequence of complexes

0→ ΦB .
λ.−→ B .

η̃.−→ Σ−1ΩB .→ 0.

Consider the long exact sequence associated with this short exact
sequence. Clearly, Φ is an exact functor. We deduce that
Σ−1Hn(ΩB .) = Hn(Σ−1ΩB .) is trivial and that there is an exact sequence

0→ Σ−1H1(ΩB .) = H1(Σ−1ΩB .)→ ΦM∗
λM∗−−→ M∗ η̃M∗−−→ Σ−1ΩM∗ → 0.

Thus ΩnM∗ = Hn(ΩB .) is trivial if n > 1 and Ω1 defined above is the first
left derived functor of Ω.



Thank you for your patience.
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