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Introduction

The ring of cohomology operations on the mod p ordinary cohomology
theory is called the Steenrod algebra. J. Lannes developed an elegant
theory of unstable modules over the Steenrod algebra which has an
application to Sullivan’s conjecture. Since the Steenrod algebra is not
commutative, it is difficult to apply knowledge of commutative algebras.

Under certain finiteness conditions, a left module over the Steenrod
algebra has a structure of a right comodule over the dual Steenrod
algebra. Hence, roughly speaking, the category of left module over the
Steenrod algebra is equivalent to the category of representations of an
affine group scheme represented by the dual Steenrod algebra. The aim of
this talk is a trial of reconstruction of Lanne's theory from the viewpoint of
representation theory.



A very brief review on fibered category

Let p: F — C be a functor. For an object X of C, we denote by Fx the
subcategory of F consiting of objects M of F satisfying p(M) = X and
morphisms ¢ satisfying p(¢) = idx.

For a morphism f : X — Y in C and M € Ob Fx, N € Ob Fy, we put
Fe(M, N) = {p € F(M,N)| p(¢) = f}.

Definition (Cartesian morphism)

Let & : M — N be a morphism in F and set X = p(M), Y = p(N),
f = p(«). We call a a cartesian morphism if, for any M’ € Ob Fx, the
map Fx(M', M) — Fr(M', N) defined by ¢ — ay is bijective.

Definition (Inverse image)

Let f : X — Y be a morphism in C and N € Ob Fy. If there exists a
cartesian morphism o : M — N such that p(a) = f, M is called an inverse
image of N by f. We denote M by f*(N) and « by ar(N) : F*(N) — N.
f*(N) is unique up to isomorphism.




Proposition

Let f: X — Y be a morphism in C. If, for any N € Ob Fy, there exists a
cartesian morphism af(N) : f*(N) — N, N — *(N) defines a functor
f*: Fy — Fx such that, for any morphism o : N — N’ in Fy, the
following square commutes.
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Definition (Inverse image functor)

For a morphism f : X — Y in C, if there exists a cartesian morphism
af(N) : F*(N) — N for any object N of Fy, we say that the functor of
the inverse image by f exists.




Definition (Fibered category)

If a functor p : F — C satisfies the following condition (7), p is called a
prefibered category and if p satisfies both (i) and (ii), p is called a fibered
category or p is fibrant.
(1) For any morphism f in C, the functor of the inverse image by f exists.
(i) The composition of cartesian morphisms is cartesian.

Definition (Cleavage)

Let p: F — C be a functor. The following map « is called a cleavage if
k(f) is an inverse image functor f* : Fy — Fx for (f : X — Y) € MorC.
k:MorC— ][ Funct(Fy, Fx)

X,YEObC
A cleavage k is said to be normalized if x(idx) = idr, for any X € ObC.

A functor p : F — C is called a cloven prefibered category (resp.
normalized cloven prefibered category) if a cleavage (resp. normalized
cleavage) is given.



Let f: X =Y, g:Z — X be morphisms in C and N an object of Fy.
If p: F — C is a prefibered category, there is a unique morphism
crg(N) : g*f*(N) — (fg)*(N) such that the following square commutes
and p(crg(N)) = idz.

g () = ()
le’g(N) laf(N)
()" (N) —*2— N

We note that cf g(N) is an isomorphism if and only if p: F — C is a
fibered category.

Proposition
For a morphism ¢ : M — N in Fy, the following square commutes.

* Lk Cv (M) *
grr (M) —= (fg)*(M)
ig*f*(w) l(fg)*(sa)
* L% C’g(N) *
grFH(N) —5—— (fg)*(N)




If C is a category with a terminal object 1 we denote by ox : X — 1 the
unique morphism for an object X of C.

For a morphism f : X — Y in C and objects M, N of Fi, we define a map
fo = Fr (07 (M), 0y (N)) = Fx(0x(M), o5 (N))

to be the following composition. We note that f,\ﬁﬂ  is natural in M and N.
60y,f(M)*_1
L EE—

o

Fx((ovf)*(M)), (oy )*(N)))
= Fx(0x(M), ox(N))

Fy (05, (M), 03 (N)) = Fx(F*(0y (M), £*(0} (N)))

Fx((ov ) (M), (o (W) =2,

Proposition
Letf:Y — X, g:Z— Y be morphisms of C and L, M, N objects of Fi.
(1) For ¢ € Fx(ox(L),0%x(M)) and & € Fx(ox (M), 0x(N)), we have
fEn(EQ) = iy w(E) L (€):
(2) ghynfin = (1) holds.




Fibered category with products
Let C be a category with a terminal object 1 and p: F — C a cloven
fibered category.
For X€ObC and M€ Ob F, define a presheaf Fx p: F1 — Set on .7:1°p by
Fx,m(N) = Fx(ox(M), ox(N))
Fxm(p: N = N) = (ox(¥)« : Fxm(N) = Fxm(N'))
for Ne Ob F1 and ¢ € Fi(N, N').
Suppose that Fx v is representable for X € ObC and M € Ob F;. We
choose an object X x M of F7 such that there exists a bijection
Px(M)N . ‘/Tx(o;}(/\/l), O;(N)) — fl(X X M, N)
which is natural in N.
Definition (Fibered category with products)

Let p: F — C be a normalized cloven fibered category. We say that
p:F — C is a fibered category with products if the presheaf Fx p on F¥
is representable for any X € ObC and M € Ob F;.




We assume p : F — C is a fibered category with products in this section.
We have a functor C x F; — F1 which assigns (X, M) € Ob (C x Fi) to
X x M. For a morphism f: X = Y inC, f Xxidpyy: X xM—=Y xNisa
morphism in Fj such that the following diagram is commutative for any
object N of Fi.

Fx(0y (M), oy (N)) Fi(Y x M, N)

lfﬁ,’,\, l(fxid,\,,)*

Fy (05 (M), o (V) — 7 (X x M, W)

Py (M)n

For a morphism ¢ : M — Lin F1, idxy x p : X XM —- X x Lisa
morphisms in F7 such that the following diagram is commutative for any
object N of Fi.
Fx(og (L), o (N)) — " Fy(X x L,N)
lo;(eo)* l(idxw)*
Fy(oh(M), ox(N)) —XM 7 (x x M, v)



We denote by tx(M) : ox(M) — ox(X x M) the morphism in Fx which
is mapped to the identity morphism of X x M by

'DX(M)XXM :fx(O}(M),O;(X X M)) — .7:1(X X M,X X M)
Define a "diagonal morphism” dx a1 : X x M — X x (X x M) to be the
image of tx(X x M)ux(M) € Fx(ox(M), 0% (X x (X x M))) by
Px (M) xx(xxm): Fx(0x (M), ox (X x (X x M))) = F1(Xx M, X x (X x M)).

It can be verified that dx a is natural in X and M.

Assume that C has a finite products. For objects X and Y of C, let

pry : X XY — X and pry : X x Y — Y be projections. For an object M
of F1, we define a morphism 0x y(M) : (X x Y) x M = X x (Y x M) of
JF1 to be the following composition.

IxXxy,M

(X X Y) 5 M 20N (30 Y (X x V) x M) 2P e oy s my



Definition (Associative fibered category with products)

If Ox y(M): (X xY)xM—= X x (Y x M) is an isomorphism for any
X,Y € ObC and M € Ob Fj, we say that p: F — C is an associative
fibered category with products.

We say that a graded topological vector space M* is “profinite” if M* is
complete Hausdorff and M*/N* is finite dimensional for every open graded
subspace N* of M*.

Let K* be a linearly topologized graded commutative algebra.

We denote by TopAlg k- a category whose objects are linearly topologized
profinite graded commutative K*-algebras and whose morphisms are
continuous K*-algebra homomorphisms which preserve degrees.

Note that K* is a terminal object of TopAlg}’..

We also denote by M« a category whose objects are linearly topologized
profinite graded K*-modules whose morphisms are continuous K*-module
homomorphisms which preserve degrees.



Definition (Fibered category of topological modules)
We define a category MODg- as follows.
Objects : (R*, M*, ) where R* € Ob TopAlg -, M* € Ob Mk~ and
a: M*®k R* — M* is a right R*-module structure on M*.
Morphisms : (f,¢) : (R*, M*,a) — (5%, N*, 3) where
(f: R* — S§*) € Mor TopAlg =+, (p : M* — N*) € Mor M~
such that the following diagram is commutative.

M* @+ R* —*— M*

N* @pr S* —2—s N*
Composition of (f, ) : (R*, M*,a) — (§*, N*,3) and
(g,¢) : (S, N*,8) — (T*, L*,~) is defined to be (gf, ). We define a
functor p: MODg+ — TopAlg k- by p(R*, M*,a) = R* and p(f,p) = f.




Proposition

p°P : MOD}E. — TopAlg}t. is an associative fibered category with
products.

Inverse image funtor :

For a morphism f : S* — R* in TopAlg k- and an object N = (S5*, N*, 3)
of (MOD-)s-, we have f*(N) = (R*, N* ®s+ R*, B¢) where f3¢ is the

following composition.
(N*Bs- R) @x- R (N* 85+ R*) 8- R* S5
idyx ®gx i

N* @+ (R* @px R*) - Z5 8 N* Qv R* S5 N* Rgv R*

(=23

completion
—_—

Here fi : R* @+ R* — R* is the map induced by the multiplication of R*.

Product :

For an object R* of JopAlg k- and an object M = (K*, M* «a) of
(MODk~) k=, we have R* x M = (K*, M* @x= R*,agr+), where ag- is
the right K*-module structure of M* &k« R* obtained from the right
K*-module structure of R*.




Fibered category with exponents
Let C be a category with a terminal object 1 and p: F — C a cloven
fibered category.
For X€ObC and M€ Ob Fi, define a presheaf F,{,(:}"lop—>5et on Fi by
Fii (M) = Fx(ox(M), ox(N))
Fii(p: M — M) = (k)" : Fii (M) = FR (M)
for MeOb Fy and ¢ € Fi(M,M').
Suppose that F,\),( is representable for X € Ob(C and N € Ob F;. We
choose an object NX of F; such that there exists a bijection
Ex(N)um : Fx(0x(M), 0% (N)) — Fi(M, NX)
which is natural in M.
Definition (Fibered category with exponents)

Let p: F — C be a normalized cloven fibered category. We say that
p: F — C is a fibered category with exponents if the presheaf F,ff on Fi
is representable for any X € ObC and N € Ob F;.




We assume p : F — C is a fibered category with exponents in this section.
We have a functor C x F; — Fi which assigns (X, N) € Ob(C x Fi) to
NX. For a morphism f : X — Y in C, Nf : N¥ — NX is a morphism in F;
such that the following diagram is commutative for any object M of Fj.

Fx (ol (M), 03 (N)) — M 7 (M, NY)

# f
[fin I

Fy (o (M), o5 (N)) —=I s 7 (m, nX)

For a morphism ¢ : N — L in Fy, X : NX — [X is a morphisms in F;
such that the following diagram is commutative for any object N of Fj.

Fx(0(M), 0 (N)) —2M 7 (M, NX)

lo)*((so)* Lof

Fy(ox(M), 04 (L)) —M 7 (M, 1X)



We denote by mx(N) : ok (N*) — o%(N) the morphism in Fx which is
mapped to the identity morphism of NX by
Ex(N)Nx . Fx(o;(NX), O;‘((N)) — fl(NX7 NX).

Define a “codiagonal morphism” €% : (N*)X — NX to be the image of
Tx(N)mx(NX) € Fx(ox ((N*)X), 0k (N)) by

Ex (N)(nxy« : Fx (0% (NX)X), 0x (N)) = F1((N*)X, NX).
It can be verified that ey is natural in X and N.
Assume that C has a finite products. For objects X and Y of C, let

pry : X x Y — X and pry : X X Y = Y be projections. For an object NV
of F1, we define a morphism 6%Y (N) : (NX)Y — NXXY of F; to be a

" Xyy (NPROPEY sy XY N XY
composition (N*)" ———— (N ) — N :

Remark
Let p: F — C be a fibered category and X € Ob(C. If, for M, N € Ob F,
both X x M and NX exist, then there are the following bijections.

Px(M)y*

~

Fi(X x M, N) Fx (05 (M), o5 (N)) 2% 7 (M, NX)




Definition (Associative fibered category with exponents)

If %Y(N) : (NX)Y — NX*Y is an isomorphism for any X, Y € ObC and
N € Ob F1, we say that p : F — C is an associative fibered category with
exponents.

Definition (Skeletal topology)

For a graded vector space M* over a field K and a non-negative integer n,

we put M*[n] = Y. M'. A topology on M* is called a “skeletal topology"
li|>n

if {M*[n]|n=0,1,2,...} is a fundamental system of the neighborhood of

0 of its topology.

Definition (Connectiveness and coconnectiveness)

Let M* be a graded vector space over a field K. If there exists an integer /
such that M' = {0} if i </ (resp.i > /), we say that M* is connective
(resp. coconnective).




Let K* be a field such that K = {0} for i # 0. For a graded K*-module
M* with skeletal topology, the dual Hom*(M*, K*) of M* is a graded
K*-module such that Hom"(M*, K*) is the set of all linear maps

M~" — K°. We denote Hom*(M*, K*) by M** for short and give M**
the skeletal topology.

Proposition |
Let K* be a field such that K' = {0} for i # 0. Assume that an object R*
of TopAlg - and an object N = (K*, N*, 3) of MODg~ satisfies the
following conditions.

(i) R* is finite type, connective and has skeletal topology.

(i) N* is finite type, coconnective and has skeletal topology.
Then, the presheaf Fﬁ* on M(’)Dfé’* is representable and NR" is given by
(K*, R** @K+ N*, ") where 8’ is the K*-module structure obtained from
the K*-module structure 3 of N*.




Representation of group objects

Definition (Group object in a category)

A group object in a category C with finite products is an object G of C
with morphisms i : G x G — G (product), € : 1 — G (unit) and
t: G — G (inverse) which make the following diagrams commute.

1 x G o)

— 1

GxGxG L0 GxG lexid(.; lidc l(L idg) l
|idexn lr 6x6-"56 6x6-"46
GxG6—% G Tid(;xa Tidc T(:dG,L) T
G x1¥ ¢ — % 41

We denote the above group object by (G, i, e, ¢).




Definition (Homomorphism between group objects)

Let (H, ', €’,") be a group object in C. If a morphism f : G — H makes
the following diagram commute, we call f a morphism of group objects
and denote this by £ : (G, pu,e,0) — (H, 1/, €', ).

GxG - HxH

b
G—" s H

Let p: F — C be a cloven fibered category and f : Y — X a morphism in
C. For objects M and N of F; and a morphism & : 0% (M) — ox(N) of
Fx, we denote f,\ﬁ/, n(&) 0oy (M) — oy (N) by & for short. That is, &¢ is
the following com[;osition.

* * Co 5 (M)_l
o} (M) = (oxf)* (M) =~

Fox(M) T Fox(n)

Cox,f(N) X X
(oxf)*(N) = oy (N)

We denote by pry,pry : G X G — G the projections below.



Definition (Representation of group object)

Let (G, i1, &,t) be a group object in C.

A pair (M, £) of an object M of F; and a morphism & : og(M) — o (M)
in Fg is called a left (resp. right) representation of G on M if the
following conditions (i) (resp. (i")) and (if) are satisfied.

(1) &u="E6prépr, () §u="Epr,épr, (i) & = idy
If we say simply “a representation”, this means a left representation.
Let £ : 0f(M) — o (M) and ¢ : o&(N) — of(N) be representations of G
on M and N, respectively. A morphism ¢ : M — N of Fj is a called a
morphism of representations of G from (M, &) to (N, () if the following
diagram commutes.

We denote by Rep(G; F) t
morphisms between them.



Proposition
Let f: (G, p,e,t) = (H, 1/ €",1") be a morphism of group objects in C.
(1) If (M, &) is a representation of H on M, (M, &¢) is a representation of
G on M.
(2) If o : (M, &) — (N,() is a morphism of representations of H,
v :(M,&) — (N, (r) is a morphism of representations of G.

Thus we have a functor f* : Rep(H; F) — Rep(G; F) given by
f*(M,f) = (Mvgf) and f*(SO(M’g)_)(N?g)) = (@(Magf)%(NaCf))




Proposition
For M € Ob Fy and & € Fg(og(M), 05(M)), we put
€= Ps(M)m(€): G x M — M. Then, (M,£) is a representation of G on
M if and only if the following diagrams commute.
xM é

(GxG)xM 2 5 GxM—5M 1x M
l%,c(’\/’) /é' lexM\
Gx(GxM)LGxM GxM—5M

Proposition

For M € Ob Fy and § € Fg(og(M), 05 (M)), we put
€= Ec(M)m(E) : M — MC. Then, (M,€) is a representation of G on M
if and only if the following diagrams commute.

3

£ c ©° G\G G
M M (M) M—=— M

X lgG,G(M) m lME
Ml

o
MG m MGXG




Let A* be a graded commutative Hopf algebra over a field K* which
satisfies K/ = {0} if i # 0. We assume that A* is finite type, connective
and has skeletal topology. We denote coproduct, counit and conjugation
of A* by pu: A" = A" Q= Ax, € : A* — K* and ¢ : A* — A, respectively.
Then, (A*, p1,¢€,1) is a group object in TopAlg}?..

Let M* be a K*-module with skeletal topology. We assume that M* is
finite type and coconnective. We denote by « the K*-module structure of
M* and consider an object M = (K*, M*, ) of MOD-~.

Since A* and M* are profinite, both A* x M and M”" exist. There are
the following bijections.

Pas (M) : (MODE.) o (04 (M), 05 (M)) — (MODE. ) g« (A* x M, M)
Eas(M)p - (MODL.) ax (05 (M), 05 (M)) = (MODEL. ) g« (M, MA)
Since we have (MODL. )k« (M, MA") = Homg~ (A @k~ M*, M*) and
(MODPL. )k (A* x M, M)=Homg-~(M*, M* @y~ A*), there is a bijection
Homy+ (A** @« M*, M*) — Homy-(M*, M* @+ A*)
which maps the set of all left A**-module structures on M* onto the set of
all right A*-comodule structures on M*.



Filtered algebras and unstable modules

We denote by A7 the Steenrod algebra over a prime field F .

Let Seq be the set of all infinite sequences (i1, i2,...,ip,...) of
non-negative integers such that i, = 0 for all but finite number of n's.

Let Seq® be a subset of Seq consisting of sequences (i1, i2,...,in,...)
such that iy, = 0,1 if k is odd.

If is =0 for s > n, we denote (i1, fa,...,0s,...) € Seq by (i1, /2, ..., 10n).

For an odd prime p and | = (g, i1,€1,- .., in,€n) € Seq®, we put
n n n n
dp(l) ==2(p—1) 2 is = >_ &5, p(l) = =3 &5 =23 (is — pist1 — &s).
s=1 s=0 s=0 s=1

Then, we have p! = gl geLpR e ... oinpen ¢ Ag"(l).
For I = (i1, i2,...,in) € Seq, we put

n

(/) = —Sil i (1) = = 3 (s — 2is11).

s=1

Then, we have Sq’ = Sqilsqf2 ... Sqi" c Agz(/).
We call dp(/) the degree of | and e,(/) the excess of /.



For an odd prime p, we say that | = (g9, /1,€1,...,in,€n) € Seq® is
p-admissible if p is and is > pis41 +es fors=1,2, ..., n.

We say that | = (i1, 2, ..., In) € Seq is 2-admissible if js > 2/s41 for
s=1,2,...,n.

We denote by Seq,, the subset of Seq consisting of p-admissible sequences.

Definition (Excess filtration on the Steenrod algebra)

Let Fi. A} be a subspace of Aj spanned by the following set of monomials.

{p’ ‘ I € Seqy, e(/) < i} if p#£2, {Sq' ’ I € Seqy, (1) < i} if p=2

Thus we have an increasing filtration §, = (FiA})icz which is called the
excess filtration on A7,

Proposition

Let X be a topological space and H*(X) the mod p ordinary cohomology
group of X. If 6 € Fp,_1.A; and x € H"(X), then Ox = 0 holds.




We assume that K* is a field such that K’ = {0} if i # 0 in this section.
Let A* be a graded K*-algebra with an increasing filtration (F;A*)jcz. We
denote by Mod(A*) the category of left A*-modules and homomorphisms.

Definition (Unstable modules)

Let M* be a left A*-module with a multiplication « : A* @k~ M* — M*.
M* is called an unstable A*-module if a(F,—1A* @+ M") = {0} for

n € Z. We denote by UUMod(A*) the full subcategory of Mod(A*).

Remark

If (FiA*)icz satisfies FoA* = A*, an unstable A*-module M* satisfies
M" = {0} for n > 0. In fact, if n > 1, then A* = F,_1A*, hence

M" C a(A* @k« M") = a(Fp-1A" @k« M") = {0}.

It is clear that submodules and quotient modules of an unstable module are
also unstable and that the sum and the product of unstable modules are
unstable. Hence UMod(A*) is complete and cocomplete and the inclusion
functor la« : UMod(A*) — Mod(A*) preserves limits and colimits.



Proposition |
The inclusion functor Ia« : UMod(A*) — Mod(A*) has a right adjoint.

Proof: For an object M* of Mod(A*), since sums of unstable submodules
of M* are also unstable submodules, there exists the largest unstable
submodule M} of M*. For a morphism f : M* — N* of Mod(A*), since
f(M;) is an unstable submodule of N*, f(M;) C N} holds and f induces
fu: M} — N*. Thus we have a functor Ra+ : Mod(A*) — Mod(A*) given
by Ra(M*) = M} and Ra-(f) = f,. It can be verified that Ra- is a right
adjoint of I4«.

Notations |

Let M* be a non-trivial graded K*-module. .
For an increasing filtration § = (FiM*);cz of M*, we define E*M*, E{ M*,
a subset S(§) of Z and a map cz : S(§) — Z as follows.

EXM* = F;M*/Fi_yM* and EM* = (FiM*/Fi_yM*).
S(3) = {i € Z|ExM* # {0},
If M* is coconnective, put cz(i) = max{j € Z | E{I\/I* # {0}} fori € 5(3). |



Let A* be a graded K*-algebra with product p : A* @K+ A* — A*.
For an increasing filtration § = (F;A*);cz of A*, we give the following list
of conditions on §.

Conditions
(f1) N FA" = {0}
ieZ
(f2) FA* =
(3) EA* = {0} if i +j # k + cz(k) for any k € 5(3).
f4) A map S(§) — Z which assigns i € S(§) to i + cz(i) is injective.
(4) p g 5 J
(F5) W(A* @+ FiAY) C FA* forie Z.
(f6) u(FiA* @k« AJ) C Fi_jA* fori,j € Z.
(F7) w((FiA")SD) @k A) + (Fioj_1 A*)ites() = (F_jA*)ites(d)
fori € S(§),j€Z.
(8) Under (6), uu defines jif - (FiA*)K @k- Al — (Fi_jA*)Itk.
Fori€ S(§) andj € Z, (u M) =1((Fi_j_1A%) +es(i)
= (Fi-1A*)S0) @y Al + (FiA*)S0) @pn (Fi_j_1A¥))



Theorem (The case of the Steenrod algebra)

The excess filtration §) = (FiAjp)icz on Aj satisfies all of the conditions
(f1) ~ (f8) above. Here S(F,) is the set of all non-positive integers and
5(3p) — Z is given by ¢5,(2i —¢) =2i(p—1) —e (e = 0,1).

Definition (Suspension)

Let M* be a graded K*-module. For an integer n, we define a graded
K*-module Z"M* by (£"M*)" = {[n]} x M=" such that the projection
{[n]} x M'=" — M'=" is an isomorphism of K*-modules.

If f: M* — N*is a homomorphism of graded K*-module, we define
Y XM — E"N* by X"f([n], x) = ([n], f(x)).

Remark

Suppose that § = (FjA*),cz satisfies (f5) above. Then § satisfies (f6) if
and only if ¥"(A*/F,_1A*) is an unstable A*-module for any n € Z.




Proposition
For a left A*:modu/e M* with structure map « : A* Q@+ M* — M*, define
a subspace M" of M" by

M" = {x € M"|a(a® x) =0 for any a € F,_1M*}

and put M* = 3> M". If (F;A*);cz satisfies (f6), M* is the largest
ncZ
unstable submodule of M*. Hence we have Ry-(M*) = M*.

Proof: For x e M", b€ A™ and a € Fmtn—1A%, since u(a® b) € F,_1A*
holds by (f6), we have an equality a(a® a(b® x)) = a(u(a® b) ® x) =0
which shows a(b® x) € € M™" Hence M* is an unstable submodule of
M*. It is clear that M* is the largest submodule among unstable
submodules of M*.




Let M* be a left A*-module with structure map a : A* @+ M* — M* and
put N(M*) = Y a(Fp—1A* @+ M™). Then, M* is an unstable if and

neZ
only if N(M*) = {0}. Assume that § satisfies (f5).
Put La«(M*) = M*/N(M*), then La«(M*) is an unstable A*-module.
For a morphism f : M* — N* in Mod(A*), since f(N(M*)) C N(N*)
holds, f induces a morphism La(f) : Lax(M*) — La«(N*) in UMod(A*).
Thus we have a functor La- : Mod(A*) — UMod(A*).

Proposition
If § satisfies (f5), Ia» : UMod(A*) — Mod(A*) has a left adjoint La.

Proof: Since La«la« is the identity functor of UMod(A*), let

£ La<la- = idypiod(a+) be the identity natural transformation.

For M* € Ob Mod(A*), let ny« : M* — Ia«La«(M*) be the quotient map

M* — M*/N(M*). Then np- is natural in M* and that compositions
Las(M*) 220, e Lae (M) 2225 (%),

e (M) 22200 L e (M) 25

Mg (M*)
are identity morphisms of La«(M*) and /s« (M*), respectively.



We denote by Modk~ the category of graded K*-modules and degree
preserving homomorphisms.

The forgetful functor O : Mod(A*) — Modk- has a left adjoint

F: Modk+— Mod(A*) given by F(M*) = A*®@y~ M*, F(f) = ida~ @~ .
Let us denote by F : Modk~ — UMod(A*) the composition of F and
La<, by O : UMod(A*) — Modk+ the composition of I« and O.

Proposition
If § satisfies (f5), F is a left adjoint of O.

Remark
If § satisfies (f5) and (f6), N (F(M*))= Z Fo_1A*®@k+ M" holds for
M* € Ob Modk~. Hence F(M*) is /somorph/c to Y A*/Fr_1A* @k M"

neZ
as a left A*-module.




Let f : A* — B* be a homomorphism of graded K*-algebras.

For a left B*-module N* with structure map 8 : B* Q@+ N* — N*, we
denote by f,(N*) a left A*-module N* with a structure map

B(f @+ idy+) : A* @K+ N* — N*.

Define a functor f, : Mod(B*) — Mod(A*) by N* — f.(N*) for

N* € Ob Mod(B*) and f.(¢) = ¢ for a morphism ¢ of Mod(B*).

f. : Mod(B*) — Mod(A*) has a left adjoint f* : Mod(A*) — Mod(B*)
defined as follows. Put f*(M*) = B* @ a« M* for M* € Ob Mod(A*) and
the left B*-module structure of f*(M*) is defined from the product of B*.
For a homomorphism ¢ : M* — L*, put f*(¢) = idg» ®a+ . Then, f*is
a left adjoint of f,.

Proposition

Let §a- = (FiA*)icz and §g- = (FiB*),cz be increasing filtrations of A*
and B*, respectively. If f : A* — B* satisfies f(F;A*) C F;B* fori € Z,
f. : Mod(B*) — Mod(A*) maps each object of UMod(B*) to that of
UMod(A*). Hence f, : Mod(B*) — Mod(A*) restricts to a functor

fus : UMod(B*) — UMod(A*).




Proposition
If §p+ satisfies (f5), fu. : UMod(B*) — UMod(A*) has a left adjoint.

Proof:

Define £ : UMod(A*) — UMod(B*) to be the following composition.
UMod(A*) 255 Mod(A*) £ Mod(B*) L2555 tiMod(B¥)

Since Ig+ : UMod(B*) — Mod(B*) has a left adjoint

Lg- : Mod(B*) — UMod(B*) and f* : Mod(A*) — Mod(B*) has a right

adjoint f, : Mod(B*) — Mod(A*), we have the following chain of natural

bijections for M* € ObUMod(A*) and N* € ObUMod(B*).

UMod(B*)(f,;(M*), N*) = UMod(B*)(Lg~f*Ia-(M*), N¥)
>~ Mod(B*)(f*Ia-(M*), Ig«(N*))
=~ Mod(A*)(Iax(M*), fulg-(N*))

Mod(A*)(las (M*), Lax fuu (N*))

UMod(A*)(M*, f(N¥))

Hence 1 : UMod(A*) — UMod(B*) is a left adjoint of

fus : UMod(B*) — UMod(A*).

I



Loop functor

Proposition

Assume A* is coconnective and finite type and that § = (FiA*)icz
satisfies (f1), (f3) and (f7).

A left A*-module M* with structure map «:A* Q@k M*— M* is unstable
if and only if a((FiA*)S ()@« MK)={0} for any i € S(F), k > i.

Assume that § satisfies (£6). Since the horizontal rows of the following
diagram are exact, there exists unique map ﬂff’J : E,-kA* QK+ Al — E,-k_jA*
that make the following diagram commute.

Lax l®’ PA* I® Al
—

0— (Fio1A") @A (FA k@Al EFA*®AJ -0

k.j k.j _k
Ju,-ll lu,- ’ o

w\ L *xi*- w\ ] p. *7,-7- %
0— (Fiojr ATk — 2 (R Ayt 2 EIP A 0



If moreover § satisfies (f5), since ;1 maps A* @k, Fi—j_1A* into Fi_j_1 A",
ﬂi’ maps EkA* Q@+ (Fi—j_1A* )j to zero. Hence the exists unique map
jird : EFA* @y (A*/Finj_1A*)] — E[*fA* that make the following

dlagram commute.
Tdpf e QKxTax, i

EFA* @+ AJ ‘ EFA* @ (A*)Fi_j_1A*)
ﬁ:'(’j /J'f( 2 J
j+k px
E,._j A
Remark

Assume that § satisfies (f5) and (f6). § satisfies (f7) if and only if
ﬂCE(’):J . EiCS(i)A* R (A*/Fi—j—lA*)j — EIJLC&(’)A* . (*)

is surjective for i € S(§), j € Z. § satisfies (f8) if and only if (x) is
injective for i € S(§), j € Z. Thus § satisfies (f7) and (f8) if and only if
(%) is an isomorphism for i € S(5§), j € Z.




Let A* be a K*-algebra with an increasing filtration § = (F;A*)icz.
Suppose that § satisfies (£3), (f4), (f5), (f6), (f7) and (f8). For an
unstable A*-module M*, define a left A*-module ®M* as follows. Put

oM = ¥ EFVA @k M

i€S(3)

In other words, (®M*)k = {0} if k # i + cz(i) for any i € S(F) and
(OM*)k = EFDA* @y M7 if k = i + c5(i) for i € S(§) which is uniquely
determined by (f4).
Since F;A* is a left ideal of A* by (f5), EfA* is a left A*-module and we
denote by i : A* @i+ EfA* — EFA* the left A*-module structure.

Let o : A* QK+ M* — M* be the A*-module structure map of M*.
Since M* is unstable, « induces «; : A*/Fi_1A* @k« M' — M*.

We define maps a; x : A @+ (PM*)k — (®M*Y+X for j, k € Z below.

Since (®M*)k = {0} if k # i + cz(i) for any i € S(F), o« should be
trivial k # i+ cz(i) for any i € S(F) or j+ k # s+ cz(s) for any s € S(5).



If there exist i,s € S(§) which satisfy k = i + cz(i) and j + k = s + c5(s),
then such i and s are unique by (f4). In this case, define ¢  to be the
following composition.

j i j i cz (i o i®x idy
Al @y (d)M*)I—‘ng(I) = Al @y~ Ei 5( )A*®K* Mi W_”’)

)ss

(@S @iy

jtes(i) g i ps—ites(s) g -
EI s A ®K* MI — EI § A ®K* MI

id ez (S)A*(X)K*Oz,'

ESCS(S)A* ®K*(A*/Fi—1A*)S_i®K* M E° }
ESCS(S)A* R Ms = ((DM*)S—FCK(S)

Let us denote by a¢ : A* @K+ PM* — GM* the map induced by a;j x's
which gives a left A*-module strucutre of M*. Since ;; maps
Fites(iy-1A" @k~ Eicg(')A* into {0} by (f6), ®M* is an unstable
A*-module.

For a homomorphism ¢ : M* — N* between unstable A*-modules, let
by : PM* — ®N* be the map induced by idECS(;)A* ®K=* @. Then, Py is a

homomorphism of left A*-modules and @ is an endofunctor of UMod(A*).



For an unstable A*-module M* with structure map a: A*®@y - M* — M*, let
& ElA* @y« M — M™J be a restriction of a;: A*/Fi_1 A* @+ M — M*.
We define a map Ay« : M* — M* as follows.
If k =i+ cz(i) for i € S(F), we put

)‘IR/I* _ O—f&() (OM*)k = ’_Cg(f)A* Qp M — Mites() = pk.
If k # i+ cz(i) for any i € S(F), )\’,§/,* L (PM*)k — MK is the trivial map.
Let Ay« be the map induced by )\M* s.

Proposition

Apx s @ homomorphism of left A*-modules and natural in M*.

Let us denote by 74« : A*/F,_1A* — A*/F,A* the quotient map.
For a K*-module M*, we define a map oy« : F(M*) — T 1F(ZM*) by
om=(x @ y) = ([-1],Za~ n(x) @ ([1], ¥)) for x € A*/F,_1A* and y € M*.



Proposition

Let M* be a graded K*-module. If § satisfies (f3) and (f5) ~ (f8), the
following is a short exact sequence.

0— <D]-“(I\/I*) L F(M*) 2% s =1 F(EM*) — 0
Proof: Recall that F(M*) = )" A*/F,_1A* @k~ M". Hence we have
neZ
be(M*) = E Eicﬁ(")A* QK+ ]_—(M*),
i€S(3)
= % S ESOA @ (AT Fr 1 AT) " e M

i€S(§) neZ

By (f3), (f7) and (£8), )\J—c(M*) is an injection onto > EfA* @K+ M",

neZ
which is the kernel of op.



Proposition

Let M* be an unstable A*-module. If § satisfies (f1) ~ (f8), then
> Coker A\« is an unstable A*-module.

Proof:
Let o : A* @+ M* — M* the structure map of M*. Since
Tm Xh 50 = a((FA%)% 0 @ M),

we have (F;A*)5()(Coker Ay+)" = {0} for i € S(F).
If i € S(F) and k > i, the instability of M* and the first proposition in this
section imply (F;A*)%()(Coker Ay )% = {0}.



Suppose that § satisfies (f1) ~ (£8) for the rest of this section unless
otherwise stated.
Define a functor Q : UMod(A*) — UMod(A*) as follows.

For an objevt M* of UUMod(A*), we put QM* = L Coker Ay~ and denote
by fipge : M* — Coker Ap= = L 1QM* the quotient map.
It follows from the above proposition that QM* is an object of UMod(A*).

For a morphism ¢ : M* — N* of UUMod(A*), there exists unique map

@ : Coker Apj« — Coker Ay+ that makes the following diagram commute.
We put Qo = 2p : QM* — QN*.

)\M*

OM* M* ™M Coker Ay = T 1QM* — 0

lw Lp N }'v

ON* 2y N IV Coker Ays = SIQNF —— 0

Proposition

Q is a left adjoint of the desuspension functor ¥ 1.




Remark

Since o= : F(M*) — £ YF(XM*) is a cokernel of Ax(p+) for a graded
K*-module M*, QF (M*) is identified with F(XM*).

Lemma

Assume that a filtration § = (F;A*)icz satisfies (f5), (f6), (f7) and (f8).
Ifi,i+ cz(i) € S(§), the following composition maps
(Fi+cg(l_)A*)cS(i+c5(i)) Rk EiCS(")A* onto ECS(I+C5(I))A* Rk EiCS(I')A*'

i+cz(i)
Acsli+es(D) @ 4. () g Hiy pes(D+es(ites() px
I (~c;§(i+c‘§(i)),<{‘3(i))*1
i+c‘ (i) i+ i " " N ;
g EIC-.E((;S(/C)S( ))A ®K* (A /F,',lA )CS( )
Proposition

Let M* be an unstable A*-module. Y Ker A\« is an unstable A*-module.




Define a functor Q! : UMod(A*) — UMod(A*) as follows.

For an object M* of UMod(A*), we put Q}(M*) = ZKer Ay« and denote
by ¢y - Ker Ay — @ M* the inclusion map.
The above proposition implies that Q*M* is an object of UMod(A*).

For a morphism ¢ : M* — N* of UUMod(A*), there exists unique map
@ : Ker Ay« — Ker Ay« that makes the following diagram commute.
We put Qlp = ¢ : Q'M* — QIN*.

0 — 5 Y10IM* = Ker Ay —M5 dM* M gy

b

00— Y I1QIN* = Ker Ay — ™y ON* 205

Proposition

QL is the first left derived functor of Q and all the higher derived functors
of Q are trivial.




Proof:

Let M* £4° B Qo G B:_ 4 & B, &L be the bar resolusion
of M*.

Consider chain complexes B. = (B}, 0n)nez, ®B. = (¢B};, ®(0n))nez and
Y IOB. = (Z710B}, ¥ 71Q(0,))nez. We denote by \. : ®B. — B. and
7. : B. — ¥~1QB. the chain maps given by Ag:'s and 7jg:'s, respectively.

Agx *
oB: %, Br 1, y-1QB* 5 0 is exact by the definition of QB Since
B, = F(M;) for some graded K*-module, Ag: = Ar(pz) is injective by

A * 17 *
the previous proposition. Hence 0 — ®B;} ST B BN Y 1QBF - 0is
exact. Thus we have a short exact sequence of complexes
0 oB. 2 B. 1y ¥-10B. — 0.

Consider the long exact sequence associated with this short exact
sequence. Clearly, ® is an exact functor. We deduce that
Y LH"(QB.) = H"(X~1QB.) is trivial and that there is an exact sequence

AM*

0 — X HYQB.) = HY(Z1QB.) — oM, 25 M* Ity S -1QM* - 0.
Thus Q"M* = H"(QB.) is trivial if n > 1 and Q! defined above is the first
left derived functor of Q.



Thank you for your patience.
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