```
1. 以下の各問で与えられた条件のもとで、関数 f の極値を求めよ. ただし (21) では 0 < a < b < c < d とする.
```

(1)
$$x^2 + y^2 = 6$$
 のとき, $f(\frac{x}{y}) = x^4 + y^4 + 4xy$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(2)$$
 $x^2 + y^2 = 3$ のとき, $f(\frac{x}{y}) = e^{-x-y}(xy+1)$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(3)
$$x^2 + y^2 = 1$$
 のとき, $f(\frac{x}{y}) = e^{-x-y}(x^3 + y^3 - 3xy)$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(4)$$
 $x^2-2x+y^2=3$ のとき, $f\left(rac{x}{y}
ight) = e^{-2x}(x^2-y^2)$ で定義される $f:\mathbf{R}^2 o \mathbf{R}$.

(5)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 のとき, $f\left(\frac{x}{y}\right) = xy$ で定義される $f: \mathbf{R}^2 \to \mathbf{R}$.

(6)
$$4y^2 - 3x^2 = 1$$
 のとき, $f(\frac{x}{y}) = x^3 + 4y$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(7)
$$x + y + xy^2 = 1$$
 のとき, $f(\frac{x}{y}) = x^2y + x$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(8)
$$2x^2 + y^2 = 12$$
 のとき, $f(\frac{x}{y}) = 4y - xy$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(9)
$$2x^2 + y^2 = 2$$
 のとき, $f(\frac{x}{y}) = xy + \sqrt{2}x$ で定義される $f: \mathbf{R}^2 \to \mathbf{R}$.

$$(10)$$
 $x^2-y^3+1=0$ のとき, $f\left({x \atop y} \right)={3x \over y^2}$ で定義される $f:\left\{ \left({x \atop y} \right) \in {\mathbf R}^2 \middle| y \neq 0 \right\}
ightarrow {\mathbf R}.$

(11)
$$x + y - x^2y = 0$$
 のとき, $f(\frac{x}{y}) = x^3y + 3x^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(12)$$
 $x^2 - 2y^2 = 1$ のとき, $f(\frac{x}{y}) = xy^2 - 4x$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(13)
$$3x^2 - y^3 = 7$$
 のとき, $f(\frac{x}{y}) = xy^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(14)
$$x + y + xy + 5 = 0$$
 のとき, $f(\frac{x}{y}) = x^3y$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(15)
$$4x^2 + y^2 = 4$$
 のとき, $f(\frac{x}{y}) = 2x^3y$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(16)
$$x-2y-xy^2+2=0$$
 のとき, $f\left(\frac{x}{y}\right)=xy^3$ で定義される $f:\mathbf{R}^2\to\mathbf{R}$.

$$(17) x^3 - 4y^3 + 3x^2y = 0$$
 のとき, $f(\frac{x}{y}) = x^2 - 2y$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$

$$(17) \ x^3 - 4y^3 + 3x^2y = 0 \ \text{のとき}, \ f\left(\frac{x}{y}\right) = x^2 - 2y \ \text{で定義される} \ f: \mathbf{R}^2 \to \mathbf{R}.$$

$$(18) \ \frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2} \ (a > 0) \ \text{のとき}, \ f\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} \ \text{で定義される} \ f: \left\{\left(\frac{x}{y}\right) \in \mathbf{R}^2 \middle| \ xy \neq 0\right\} \to \mathbf{R}.$$

(19)
$$\log(x^2+y^2)-2\tan^{-1}\frac{y}{x}=0$$
 のとき, $f(\frac{x}{y})=x^2+2xy-y^2$ で定義される $f:\mathbf{R}^2\to\mathbf{R}$.

$$(20) \sin x + \sin y = 1$$
 のとき, $f(\frac{x}{y}) = \sin x \sin y$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$

$$(20) \sin x + \sin y = 1 \text{ のとき}, f\begin{pmatrix} x \\ y \end{pmatrix} = \sin x \sin y \text{ で定義される } f : \mathbf{R}^2 \to \mathbf{R}.$$

$$(21) \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \text{ かつ } x^2 + y^2 + z^2 = d^2 \text{ のとき}, f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = z^2 \text{ で定義される } f : \mathbf{R}^3 \to \mathbf{R}.$$

$$(22)$$
 $x^2 + y^2 = 5$ のとき, $f(\frac{x}{y}) = x^4 + y^4 - (x+y)^2$ で定義される $f: \mathbf{R}^2 \to \mathbf{R}$.

(23)
$$x^2 + 2y^2 = 3$$
 のとき, $f(\frac{x}{y}) = x^3 + 3xy^2 - 3x$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(24)$$
 $x^2 + 2y^2 + 4y = 7$ のとき, $f(\frac{x}{y}) = x^3 + 3x(y+3)(y-1)$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(25)$$
 $2x^2 + y^2 = 10$ のとき, $f(\frac{x}{y}) = 2x^2 + 4xy + y^2 - 4x$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(26)$$
 $x^2 - 4x + y^2 + 4y = 10$ のとき, $f(\frac{x}{y}) = xy(x-4)(y+4)$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(27)$$
 $x^2 + y^2 = 12$ のとき, $f(\frac{x}{y}) = x^3 - y^3 + 3(x - y)^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(28)
$$x^4 + y^4 = 1$$
 のとき, $f(\frac{x}{y}) = x^2 + y^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(29)$$
 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2$ のとき, $f(\frac{x}{y}) = ax - 3y^{\frac{1}{3}}$ $(a \ge 1)$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(30) x^3 + y^3 - 6axy = 0 (a > 0)$$
 のとき, $f(\frac{x}{y}) = xy$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(31)$$
 $x^3 + y^3 - 6axy = 0$ $(a > 0)$ のとき, $f(\frac{x}{y}) = x^2 + y^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(32)$$
 $x^3 + xy^2 - y^2 = 0$ のとき, $f(\frac{x}{y}) = (x-1)^2 + y^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(33)$$
 $x^2 + y^2 = 1$ のとき, $f(\frac{x}{y}) = x^2 + 4xy + y^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(34) xy + x - y = 0$$
 のとき, $f(\frac{x}{y}) = x^2 + y^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(35)$$
 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ のとき, $f(\frac{x}{y}) = x + y$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

(36)
$$x^2 + xy + y^2 = 1$$
 のとき, $f(\frac{x}{y}) = x^2 + y^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(37)$$
 $x^3 - 2y^3 + 3x^2y + 2 = 0$ のとき, $f(\frac{x}{y}) = x^2 + y^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(38)$$
 $x + 2\log y + e^x y^2 = 1$ のとき, $f(\frac{x}{y}) = x + y^2$ で定義される $f: \mathbb{R}^2 \to \mathbb{R}$.

$$(39)$$
 $x^2 + y^2 + z^2 = 1$ のとき, $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x^2 + y^2 - z^2 + 4xz + 4yz$ で定義される $f: \mathbf{R}^3 \to \mathbf{R}$.

$$(40)$$
 $x^2+y^2+z^2=1$ のとき, $f\left(egin{array}{c} x \\ y \\ z \end{array}
ight)=xyz$ で定義される $f:\mathbf{R}^3 \to \mathbf{R}$.

$$(41)$$
 $x^2+z^2+w^2=4$ かつ $y^2+2z^2+3w^2=9$ のとき, $f\left(egin{array}{c} x \\ y \\ z \\ w \end{array}
ight)=x^2+y^2$ で定義される $f:\mathbf{R}^4\to\mathbf{R}$.

- 2. (1) 与えられた点 $\binom{a}{b}$ を通る xy 平面上の直線のうち, 原点からの距離が最大であるものを求めよ. (2) 楕円 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (a,b>0) 上の点と定点 (c,0) $(c\geqq0)$ との距離の最大値と最小値を求めよ.

1. (1) x, y は条件 $x^2 + y^2 = 6$ を満たすため, $x = \sqrt{6}\cos t, y = \sqrt{6}\sin t$ とおける. このとき, $g: [0, 2\pi] \to \mathbf{R}$ を $g(t) = f\left(\frac{\sqrt{6}\cos t}{\sqrt{6}\sin t}\right)$ で定めれば,

$$g(t) = 36\cos^4 t + 36\sin^4 t + 24\cos t \sin t$$

= $36\left((\cos^2 t + \sin^2 t)^2 - 2\cos^2 t \sin^2 t\right) + 24\cos t \sin t$
= $36 - 72\cos^2 t \sin^2 t + 24\cos t \sin t = 36 - 18\sin^2 2t + 12\sin 2t$

より, $g'(t)=24\cos 2t(1-3\sin 2t)$ である. $\alpha=\sin^{-1}\frac{1}{3}$ とおくと, $0<\alpha<\frac{\pi}{6}$ だから, g の増減表は次のようになる.

t	0		$\frac{\alpha}{2}$		$\frac{\pi}{4}$		$\frac{\pi}{2} - \frac{\alpha}{2}$		$\frac{3\pi}{4}$		$\pi + \frac{\alpha}{2}$		$\frac{5\pi}{4}$		$\frac{3\pi}{2} - \frac{\alpha}{2}$		$\frac{7\pi}{4}$		2π
g'	24	+	0	_	0	+	0	_	0	+	0	_	0	+	0	_	0	+	24
g	36	7	38	>	30	7	38	>	6	7	38	>	30	7	38	>	6	7	36

従って、 $\frac{\alpha}{2}$ 、 $\frac{\pi}{2} - \frac{\alpha}{2}$ 、 $\pi + \frac{\alpha}{2}$, $\frac{3\pi}{2} - \frac{\alpha}{2}$ において g は極大であり、 $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$ において g は極小である. $\cos\alpha = \sqrt{1-\sin^2\alpha} = \frac{2\sqrt{2}}{3}, \cos^2\frac{\alpha}{2} = \frac{1+\cos\alpha}{2} = \frac{3+2\sqrt{2}}{6} = \frac{\left(\sqrt{2}+1\right)^2}{6}, \sin^2\frac{\alpha}{2} = \frac{1-\cos\alpha}{2} = \frac{3-2\sqrt{2}}{6} = \frac{\left(\sqrt{2}-1\right)^2}{6}$ だから $\cos\frac{\alpha}{2} = \frac{\sqrt{2}+1}{\sqrt{6}}$, $\sin\frac{\alpha}{2} = \frac{\sqrt{2}-1}{\sqrt{6}}$ である。故に f は条件 $x^2+y^2=6$ のもとで $\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)$, $\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)$, $\left(\frac{-\sqrt{2}-1}{-\sqrt{2}-1}\right)$ において極大値 38 をとる。また、f は条件 $x^2+y^2=6$ のもとで $\left(\frac{\sqrt{3}}{\sqrt{3}}\right)$, $\left(\frac{-\sqrt{3}}{-\sqrt{3}}\right)$ において極小値 30 をとり、 $\left(\frac{\sqrt{3}}{-\sqrt{3}}\right)$, において極小値 6 をとる。

(2) x,y は条件 $x^2+y^2=3$ を満たすため, $x=\sqrt{3}\cos t,\,y=\sqrt{3}\sin t$ とおける. このとき, $g:[0,2\pi]\to \mathbf{R}$ を $g(t)=f\left(\frac{\sqrt{3}\cos t}{\sqrt{3}\sin t}\right)$ で定めれば, $g(t)=e^{-\sqrt{3}(\cos t+\sin t)}(3\cos t\sin t+1)$ である. $s=\cos t+\sin t=\sqrt{2}\sin\left(t+\frac{\pi}{4}\right)$ と おくと $\cos t\sin t=\frac{s^2-1}{2}=\sin^2\left(t+\frac{\pi}{4}\right)-\frac{1}{2}$ だから, $g(t)=3e^{-\sqrt{6}\sin\left(t+\frac{\pi}{4}\right)}\left(\sin^2\left(t+\frac{\pi}{4}\right)-\frac{1}{6}\right)$ である. よって

$$g'(t) = -3\sqrt{6}e^{-\sqrt{6}\sin\left(t + \frac{\pi}{4}\right)}\cos\left(t + \frac{\pi}{4}\right)\left(\sin\left(t + \frac{\pi}{4}\right) - \frac{1 + \sqrt{2}}{\sqrt{6}}\right)\left(\sin\left(t + \frac{\pi}{4}\right) - \frac{1 - \sqrt{2}}{\sqrt{6}}\right)$$

である. $\sin^{-1}\frac{1-\sqrt{2}}{\sqrt{6}}=\alpha,\ \sin^{-1}\frac{1+\sqrt{2}}{\sqrt{6}}=\beta$ とおく. このとき $-\frac{\pi}{6}<\alpha<0<\frac{\pi}{3}<\beta<\frac{\pi}{2}$ であることに注意すれば, g の増減表は次のようになる.

t	0		$\beta - \frac{\pi}{4}$		$\frac{\pi}{4}$		$\frac{3\pi}{4} - \beta$		$\frac{3\pi}{4} - \alpha$		$\frac{5\pi}{4}$		$\frac{7\pi}{4} + \alpha$		2π
g'		+	0	_	0	+	0	_	0	+	0	_	0	+	
g		7	$\frac{\sqrt{2}+1}{e^{\sqrt{2}+1}}$	\searrow	$\frac{5}{2e^{\sqrt{6}}}$	7	$\frac{\sqrt{2}+1}{e^{\sqrt{2}+1}}$	\searrow	$-\frac{\sqrt{2}-1}{e^{\sqrt{2}-1}}$	7	$\frac{5e^{\sqrt{6}}}{2}$	\searrow	$-\frac{\sqrt{2}-1}{e^{\sqrt{2}-1}}$	7	

従って, $\beta-\frac{\pi}{4},\frac{3\pi}{4}-\beta,\frac{5\pi}{4}$ において g は極大であり, $\frac{\pi}{4},\frac{3\pi}{4}-\alpha,\frac{7\pi}{4}+\alpha$ において g は極小である.

 $(3) \ x, y$ は条件 $x^2+y^2=1$ を満たすため, $x=\cos t, y=\sin t$ とおける. このとき, $g:[0,2\pi] \to \mathbf{R}$ を $g(t)=f(\frac{\cos t}{\sin t})$ で定めれば, $g(t)=e^{-\cos t-\sin t}(\cos^3 t+\sin^3 t-3\cos t\sin t)$ である. $s=\cos t+\sin t=\sqrt{2}\sin\left(t+\frac{\pi}{4}\right)$ とおくと $\cos t\sin t=\frac{s^2-1}{2}=\sin^2\left(t+\frac{\pi}{4}\right)-\frac{1}{2},\cos^3 t+\sin^3 t=(\cos t+\sin t)^3-3\cos t\sin t(\cos t+\sin t)=-\frac{s^3}{2}+\frac{3s}{2}$ だから,

$$g(t) = -\frac{1}{2}e^{-\sqrt{2}\sin\left(t + \frac{\pi}{4}\right)} \left(2\sqrt{2}\sin^3\left(t + \frac{\pi}{4}\right) + 6\sin^2\left(t + \frac{\pi}{4}\right) - 3\sqrt{2}\sin\left(t + \frac{\pi}{4}\right) - 3\right)$$

である.

$$g'(t) = 2e^{-\sqrt{2}\sin(t+\frac{\pi}{4})}\cos(t+\frac{\pi}{4})\sin(t+\frac{\pi}{4})(\sin^2(t+\frac{\pi}{4})-\frac{9}{2})$$

より、つねに $\sin^2\left(t+\frac{\pi}{4}\right)-\frac{9}{2}<0$ であることに注意すれば、g の増減表は次のようになる.

t	0		$\frac{\pi}{4}$		$\frac{3\pi}{4}$		$\frac{5\pi}{4}$		$\frac{7\pi}{4}$		2π
g'		_	0	+	0	_	0	+	0		
g	$\frac{1}{e}$	×	$-\frac{3-\sqrt{2}}{2e^{\sqrt{2}}}$	7	$\frac{3}{2}$	×	$-\frac{e^{\sqrt{2}}(3+\sqrt{2})}{2}$	7	$\frac{3}{2}$	X	$\frac{1}{e}$

従って、 $\frac{3\pi}{4}$ 、 $\frac{7\pi}{4}$ において g は極大であり、 $\frac{\pi}{4}$ 、 $\frac{5\pi}{4}$ において g は極小である.故に f は条件 $x^2+y^2=1$ のもとで $\left(-\frac{1}{\sqrt{2}}\right)$ 、 $\left(-\frac{1}{\sqrt{2}}\right)$ 、において極大値 $\frac{3}{2}$ をとる.また,f は条件 $x^2+y^2=1$ のもとで $\left(\frac{1}{\sqrt{2}}\right)$ において極小値 $-\frac{3-\sqrt{2}}{2e^{\sqrt{2}}}$ を とり、 $\left(-\frac{1}{\sqrt{2}}\right)$ において極小値 $-\frac{e^{\sqrt{2}}(3+\sqrt{2})}{2}$ をとる.

(4) x, y は条件 $(x-1)^2+y^2=4$ を満たすため, $x=2\cos t+1, y=2\sin t$ とおける. このとき, $g:[0,2\pi]\to \mathbf{R}$ を $g(t)=f\left(\frac{2\cos t+1}{2\sin t}\right)$ で定めれば, $g(t)=e^{-4\cos t-2}(8\cos^2 t+4\cos t-3)$ である. 従って $g'(t)=32e^{-4\cos t-2}\sin t\left(\cos t-\frac{1}{\sqrt{2}}\right)\left(\cos t+\frac{1}{\sqrt{2}}\right)$ となるため g の増減表は次のようになる.

t	0		$\frac{\pi}{4}$		$\frac{3\pi}{4}$		π		$\frac{5\pi}{4}$		$\frac{7\pi}{4}$		2π
g'	0	+	0	_	0	+	0	_	0	+	0	_	0
g	$\frac{9}{e^6}$	7	$\frac{1+2\sqrt{2}}{e^{2+2\sqrt{2}}}$	\searrow	$\frac{1-2\sqrt{2}}{e^{2-2\sqrt{2}}}$	7	e^2	X	$\frac{1-2\sqrt{2}}{e^{2-2\sqrt{2}}}$	7	$\frac{1+2\sqrt{2}}{e^{2+2\sqrt{2}}}$	×	$\frac{9}{e^6}$

従って、 $\frac{\pi}{4}$ 、 π 、 $\frac{7\pi}{4}$ において g は極大であり、0、 $\frac{3\pi}{4}$ 、 $\frac{5\pi}{4}$ 、 2π において g は極小である。故に f は条件 $x^2-2x+y^2=3$ のもとで $\binom{1+\sqrt{2}}{\sqrt{2}}$ 、 $\binom{1+\sqrt{2}}{-\sqrt{2}}$ において極大値 $\frac{1+2\sqrt{2}}{e^{2+2\sqrt{2}}}$ をとり、 $\binom{-1}{0}$ において極大値 e^2 をとる。 また、f は条件 $x^2-2x+y^2=3$ のもとで $\binom{3}{0}$ において極小値 $\frac{9}{e^6}$ をとり、 $\binom{1-\sqrt{2}}{\sqrt{2}}$ 、 $\binom{1-\sqrt{2}}{-\sqrt{2}}$ において極小値 $\frac{1-2\sqrt{2}}{e^{2-2\sqrt{2}}}$ をとる。

(5) x, y は条件 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ を満たすため, $x = 3\cos t, y = 2\sin t$ とおける. このとき, $g:[0,2\pi] \to \mathbf{R}$ を $g(t) = f\left(\frac{3\cos t}{2\sin t}\right)$ で定めれば, $g(t) = 3\sin 2t$ である. 従って g の増減表は次のようになる.

t	0		$\frac{\pi}{4}$		$\frac{3\pi}{4}$		$\frac{5\pi}{4}$		$\frac{7\pi}{4}$		2π
g	0	7	3	X	-3	7	3	×	-3	7	0

従って、 $\frac{\pi}{4}$ 、 $\frac{5\pi}{4}$ において g は極大であり、0、 $\frac{3\pi}{4}$ 、 $\frac{7\pi}{4}$ において g は極小である.故に f は条件 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ のもとで $\left(\frac{3}{\sqrt{2}}\right)$ 、 $\left(-\frac{3}{\sqrt{2}}\right)$ 、において極大値 3 をとり、 $\left(-\frac{3}{\sqrt{2}}\right)$ 、において極小値 -3 をとる.

 $(6)\ 4y^2-3x^2=1$ ならば $x=\frac{1}{2\sqrt{3}}\left(t-\frac{1}{t}\right), y=\frac{1}{4}\left(t+\frac{1}{t}\right)$ を満たす $t\neq 0$ がある.そこで,関数 $g:\{t\in {\bf R}|\ t\neq 0\}\to {\bf R}$ を $g(t)=f\left(\frac{\frac{1}{2\sqrt{3}}\left(t-\frac{1}{t}\right)}{\frac{1}{4}\left(t+\frac{1}{t}\right)}\right)=\frac{1}{24\sqrt{3}}\left(t-\frac{1}{t}\right)^3+t+\frac{1}{t}$ で定めると, $g'(t)=\frac{1}{8\sqrt{3}t^4}(t+1)(t-1)\left(t-2+\sqrt{3}\right)\left(t+2-\sqrt{3}\right)\left(t^2+7+4\sqrt{3}\right)$ より g の増減表は次のようになる.

t		-1		$-2+\sqrt{3}$		0		$2-\sqrt{3}$		1	
g'	+	0	_	0	+		+	0	_	0	+
g	7	-2	>	-3	7100	_	-∞ ブ	3	>	2	7

故に f は条件 $4y^2-3x^2=1$ のもとで、 $\begin{pmatrix}1\\-1\end{pmatrix}$ 、 $\begin{pmatrix}0\\\frac12\end{pmatrix}$ において、それぞれ極小値 -3、2 をとり、 $\begin{pmatrix}0\\-\frac12\end{pmatrix}$ 、 $\begin{pmatrix}-1\\1\end{pmatrix}$ において、それぞれ極大値 -2、3 をとる.

(7) $x+y+xy^2=1$ ならば $x=\frac{1-y}{1+y^2}$ だから、関数 $g:\mathbf{R}\to\mathbf{R}$ を $g(y)=f\left(\frac{1-y}{1+y^2}\right)=\frac{1-y^2}{(1+y^2)^2}$ で定義して g の増減を調べる。 $g'(y)=\frac{2y(y^2-3)}{(y^2+1)^3}$ だから g の増減表は次のようになる.

y		$-\sqrt{3}$		0		$\sqrt{3}$	
g'	_	0	+	0	_	0	+
g	>	$-\frac{1}{8}$	7	1	>	$-\frac{1}{8}$	7

故に f は与えられた条件のもとで, $\left(\begin{smallmatrix} \frac{1+\sqrt{3}}{4} \\ -\sqrt{3} \end{smallmatrix} \right)$, $\left(\begin{smallmatrix} \frac{1-\sqrt{3}}{4} \\ \sqrt{3} \end{smallmatrix} \right)$ で極小値 $-\frac{1}{8}$ をとり, $\left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right)$ で極大値 1 をとる.

 $(8) \ x, \ y$ は条件 $2x^2+y^2=12$ を満たすため, $x=\sqrt{6}\cos t, \ y=2\sqrt{3}\sin t$ とおける. このとき, $g:[0,2\pi] \to {m R}$ を $g(t)=f\left(rac{\sqrt{6}\cos t}{2\sqrt{3}\sin t}
ight)$ で定めれば, $g(t)=8\sqrt{3}\sin t+6\sqrt{2}\cos t\sin t$ より,

$$g'(t) = 8\sqrt{3}\cos t + 6\sqrt{2}(\sin^2 t - \cos^2 t) = -12\sqrt{2}\cos^2 t + 8\sqrt{3}\cos t + 6\sqrt{2}$$
$$= -12\sqrt{2}\left(\sqrt{\frac{3}{2}} - \cos t\right)\left(\cos t + \frac{1}{\sqrt{6}}\right)$$

である. $\alpha = \cos^{-1}\left(-\frac{1}{\sqrt{6}}\right) (0 < \alpha < \pi)$ とおくと, g の増減表は次のようになる.

t	0		α		$2\pi - \alpha$		2π
g'		+	0	_	0	+	
g	0	7	$5\sqrt{10}$	>	$-5\sqrt{10}$	7	0

従って、 α において g は極大であり、 $2\pi - \alpha$ において g は極小である。 $\sqrt{6}\cos\alpha = \sqrt{6}\cos(2\pi - \alpha) = -1$ 、 $2\sqrt{3}\sin\alpha = 2\sqrt{3}\sqrt{1-\cos^2\alpha} = \sqrt{10}$ 、 $2\sqrt{3}\sin(2\pi - \alpha) = -\sqrt{10}$ だから f は条件 $2x^2 + y^2 = 12$ のもとで $\begin{pmatrix} -1 \\ \sqrt{10} \end{pmatrix}$ において極大値 $5\sqrt{10}$ をとり、 $\begin{pmatrix} -1 \\ -\sqrt{10} \end{pmatrix}$ において極小値 $-5\sqrt{10}$ をとる.

(9) x,y は条件 $2x^2+y^2=2$ を満たすため、 $x=\cos t,y=\sqrt{2}\sin t$ とおける.このとき、 $g:[0,2\pi]\to \mathbf{R}$ を $g(t)=f\left(\frac{\cos t}{\sqrt{2}\sin t}\right)$ で定めれば、 $g(t)=\sqrt{2}(\cos t\sin t+\cos t)$ より、

$$g'(t) = \sqrt{2}(\cos^2 t - \sin^2 t - \sin t) = \sqrt{2}(1 - 2\sin^2 t - \sin t) = \sqrt{2}(\sin t + 1)(1 - 2\sin t)$$

となるため g の増減表は次のようになる.

t	0		$\frac{\pi}{6}$		$\frac{5\pi}{6}$		$\frac{3\pi}{2}$		2π
g'		+	0	_	0	+	0	+	
g	$\sqrt{2}$	7	$\frac{3\sqrt{6}}{4}$	×	$-\frac{3\sqrt{6}}{4}$	7	0	7	$\sqrt{2}$

従って、 $\frac{\pi}{6}$ において g は極大であり、 $\frac{\pi}{6}$ において g は極小である。故に f は条件 $2x^2+y^2=2$ のもとで $\left(\frac{\sqrt{3}}{2}\right)$ において極大値 $\frac{3\sqrt{6}}{4}$ をとり、 $\left(-\frac{\sqrt{3}}{2}\right)$ において極小値 $-\frac{3\sqrt{6}}{4}$ をとる.

(10) $x^2-y^3+1=0$ ならば $y=(x^2+1)^{\frac{1}{3}}$ だから、関数 $g:\mathbf{R}\to\mathbf{R}$ を $g(x)=f\left(\begin{smallmatrix} x \\ (x^2+1)^{\frac{1}{3}} \end{smallmatrix} \right)=3x(x^2+1)^{-\frac{2}{3}}$ で定義して g の増減を調べる。 $g'(x)=(3-x^2)(x^2+1)^{-\frac{5}{3}}$ だから g の増減表は次のようになる.

x		$-\sqrt{3}$		$\sqrt{3}$	
g'	_	0	+	0	_
g	>	$-\frac{3\sqrt{3}}{2\sqrt[3]{2}}$	7	$\frac{3\sqrt{3}}{2\sqrt[3]{2}}$	×

故に f は与えられた条件のもとで、 $\left(\frac{-\sqrt{3}}{\sqrt[3]{4}} \right)$ で極小値 $-\frac{3\sqrt{3}}{2\sqrt[3]{2}}$ をとり、 $\left(\frac{\sqrt{3}}{\sqrt[3]{4}} \right)$ で極大値 $\frac{3\sqrt{3}}{2\sqrt[3]{2}}$ をとる.

$$(11) \ x+y-x^2y=0 \ \text{ならば} \ y=\frac{x}{x^2-1} \ \text{だから}, \ \text{関数} \ g: \{x\in \textbf{\textit{R}}|\ x\neq\pm 1\} \rightarrow \textbf{\textit{R}} \ \text{を} \ g(x)=f\left(\frac{x}{x^2-1}\right)=\frac{4x^4-3x^2}{x^2-1} \ \text{で定}$$

義して g の増減を調べる. $g'(x)=\frac{2x(2x^2-1)(2x^2-3)}{(x^2-1)^2}$ だから g の増減表は次のようになる.

なる.

x		$-\sqrt{\frac{3}{2}}$		-1		$-\frac{1}{\sqrt{2}}$		0		$\frac{1}{\sqrt{2}}$		1		$\sqrt{\frac{3}{2}}$	
g'	_	0	+		+	0	_	0	+	0	_		-	0	+
g	7	9	700		-∞ ↗	1	\searrow	0	7	1	\searrow $-\infty$		$\infty \setminus$	9	7

故に f は与えられた条件のもとで, $\begin{pmatrix} -\sqrt{\frac{3}{2}} \\ -\sqrt{6} \end{pmatrix}$ と $\begin{pmatrix} \sqrt{\frac{3}{2}} \\ \sqrt{6} \end{pmatrix}$ で極小値 9 、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ で極小値 0 をとり, $\begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \sqrt{2} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\sqrt{2} \end{pmatrix}$ で極大値 1 をとる.

(12) $x^2-2y^2=1$ ならば $x=\frac{1}{2}\left(t+\frac{1}{t}\right),$ $y=\frac{1}{2\sqrt{2}}\left(t-\frac{1}{t}\right)$ を満たす $t\neq 0$ がある。そこで,関数 $g:\{t\in {m R}|\ t\neq 0\}\to {m R}$ を $g(t)=f\left(\frac{\frac{1}{2}\left(t+\frac{1}{t}\right)}{\frac{1}{2\sqrt{2}}\left(t-\frac{1}{t}\right)}\right)=\frac{1}{16}\left(t^3-33t-\frac{33}{t}+\frac{1}{t^3}\right)$ で定めると, $g'(t)=\frac{3}{16t^4}(t+1)(t-1)\left(t-\sqrt{3}-\sqrt{2}\right)\left(t+\sqrt{3}+\sqrt{2}\right)\left(t-\sqrt{3}+\sqrt{2}\right)\left(t+\sqrt{3}-\sqrt{2}\right)$ より g の増減表は次のように

t		$-\sqrt{3}-\sqrt{2}$		-1		$-\sqrt{3}+\sqrt{2}$		0		$\sqrt{3}-\sqrt{2}$		1		$\sqrt{3} + \sqrt{2}$	
g'	+	0	_	0	+	0	_		_	0	+	0	_	0	+
a	Х	$3\sqrt{3}$		4	Я	$3\sqrt{3}$	\		∞ ∖	$-3\sqrt{3}$	Я	-4	\	$-3\sqrt{3}$	Я

故に f は与えられた条件のもとで、 $\begin{pmatrix} -\sqrt{3} \\ -1 \end{pmatrix}$ と $\begin{pmatrix} -\sqrt{3} \\ 1 \end{pmatrix}$ で極大値 $3\sqrt{3}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ で極大値 -4 をとり、 $\begin{pmatrix} \sqrt{3} \\ -1 \end{pmatrix}$ と $\begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$ で極小値 $-3\sqrt{3}$, $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ で極小値 4 をとる.

(13) $3x^2-y^3=7$ ならば $y=(3x^2-7)^{\frac{1}{3}}$ だから、関数 $g:\mathbf{R}\to\mathbf{R}$ を $g(x)=f\left(\frac{x}{(3x^2-7)^{\frac{1}{3}}}\right)=x(3x^2-7)^{\frac{2}{3}}$ で定義して g の増減を調べる。 $g'(x)=7(x^2-1)(3x^2-7)^{-\frac{1}{3}}$ だから g の増減表は次のようになる.

x		$-\sqrt{\frac{7}{3}}$		-1		1		$\sqrt{\frac{7}{3}}$	
g'	+		_	0	+	0	_		+
g	7	0	>	$-2\sqrt[3]{2}$	7	$2\sqrt[3]{2}$	>	0	7

故に f は与えられた条件のもとで, $\left(\begin{smallmatrix} -\sqrt{\frac{7}{3}} \\ 0 \end{smallmatrix} \right)$ で極大値 0, $\left(\begin{smallmatrix} 1 \\ -\sqrt[3]{4} \end{smallmatrix} \right)$ で極大値 $2\sqrt[3]{2}$ をとり, $\left(\begin{smallmatrix} \sqrt{\frac{7}{3}} \\ 0 \end{smallmatrix} \right)$ 極小値 0, $\left(\begin{smallmatrix} -1 \\ -\sqrt[3]{4} \end{smallmatrix} \right)$ で極小値 $-2\sqrt[3]{2}$ をとる.

(14) x+y+xy+5=0 ならば $x\neq -1$ だから $y=\frac{-x-5}{x+1}$ である. 関数 $g:\{x\in \mathbf{R}|x\neq -1\}\to \mathbf{R}$ を $g(x)=f\left(\frac{x}{-x-5}\right)=\frac{-x^4-5x^3}{x+1}$ で定義して g の増減を調べる. $g'(x)=\frac{-x^2(3x+5)(x+3)}{(x+1)^2}$ だから g の増減表は次のように なる.

x		-3		$-\frac{5}{3}$		-1		0	
g'	_	0	+	0	-		_	0	_
g	\ \ \	-27	7	$-\frac{625}{27}$	V		\ \ \	0	V

故に f は与えられた条件のもとで、 $\binom{-3}{1}$ で極小値 -27 をとり、 $\binom{-\frac{5}{3}}{5}$ で極大値 $-\frac{625}{27}$ をとる.

(15) x,y は条件 $4x^2+y^2=4$ を満たすため、 $x=\cos t,y=2\sin t$ とおける。このとき、 $g:[0,2\pi]\to \mathbf{R}$ を $g(t)=f\left(\frac{\cos t}{2\sin t}\right)$ で定めれば、 $g(t)=4\cos^3 t\sin t=\sin 2t(\cos 2t+1)$ である。 $g'(t)=2\cos 2t(\cos 2t+1)-2\sin^2 2t=\cos 4t+\cos 2t=4\cos 3t\cos t$ だから g の増減表は次のようになる。

t	0		$\frac{\pi}{6}$		$\frac{\pi}{2}$		$\frac{5\pi}{6}$		$\frac{7\pi}{6}$		$\frac{3\pi}{2}$		$\frac{11\pi}{6}$		2π
g'	4	+	0	_	0	_	0	+	0	_	0	_	0	+	4
g	0	7	$\frac{3\sqrt{3}}{4}$	>	0	\searrow	$-\frac{3\sqrt{3}}{4}$	7	$\frac{3\sqrt{3}}{4}$	>	0	×	$-\frac{3\sqrt{3}}{4}$	7	0

故に f は与えられた条件のもとで, $\left(-\frac{\sqrt{3}}{2}\right)$, $\left(\frac{\sqrt{3}}{2}\right)$ で極小値 $-\frac{3\sqrt{3}}{4}$ をとり, $\left(\frac{\sqrt{3}}{2}\right)$ で $\left(-\frac{\sqrt{3}}{2}\right)$ で 極大値 $\frac{3\sqrt{3}}{4}$ をとる.

(16) $x-2y-xy^2+2=(1-y)(xy+x+2)$ だから $x-2y-xy^2+2=0$ ならば y=1 または xy+x+2=0 である. 関数 $g_1:\mathbf{R}\to\mathbf{R},\ g_2:\{x\in\mathbf{R}|x\neq0\}\to\mathbf{R}$ を $g_1(x)=f\left(\frac{x}{1}\right)=x,\ g_2(x)=f\left(\frac{x}{2}-1\right)=-\frac{8}{x^2}-\frac{12}{x}-6-x$ で定義する. g_1 は単調に増加するため、直線 y=1 上で f は極値をとらない. $g_2'(x)=\frac{16}{x^3}+\frac{12}{x^2}-1=\frac{-(x+2)^2(x-4)}{x^3}$ だから g_2 の増減表は次のようになる.

x		-2		0		4	
g_2'	_	0	_		+	0	_
g_2	>	0	_⁄~∞		-∞ ↗	$-\frac{27}{2}$	7

よって f は条件 xy+x+2=0 のもとで, $\left(\begin{smallmatrix} 4 \\ -\frac{3}{2} \end{smallmatrix} \right)$ で極大値 $-\frac{27}{2}$ をとる.この点は直線 y=1 上にないため f は与えられた条件のもとで, $\left(\begin{smallmatrix} 4 \\ -\frac{3}{2} \end{smallmatrix} \right)$ で極大値 $-\frac{27}{2}$ をとる.

(17) $x^3-4y^3+3x^2y=(x-y)(x+2y)^2$ だから、条件 $x^3-4y^3+3x^2y=0$ は「x=y または x=-2y」と同値である。 $f\left(\frac{y}{y}\right)=(y-1)^2-1$ だから f は条件 x=y のもとで、 $\left(\frac{1}{1}\right)$ において極小値 -1 をとり、 $f\left(\frac{-2y}{y}\right)=4\left(y-\frac{1}{4}\right)^2-\frac{1}{4}$ だから f は条件 x=-2y のもとで、 $\left(\frac{-1}{2}\right)$ において極小値 $-\frac{1}{4}$ をとる.

 $(18)\ x,y\ \text{ は条件}\ \tfrac{1}{x^2}+\tfrac{1}{y^2}=\tfrac{1}{a^2}\ \text{ を満たすため},\ x=\tfrac{a}{\cos t},\ y=\tfrac{a}{\sin t}\ (t\in\left(0,\tfrac{\pi}{2}\right)\cup\left(\tfrac{\pi}{2},\pi\right)\cup\left(\pi,\tfrac{3\pi}{2}\right)\cup\left(\tfrac{3\pi}{2},\pi\right))\ \text{ とおける}.\ \text{ } \\ \text{ のとき},\ g:\left(0,\tfrac{\pi}{2}\right)\cup\left(\tfrac{\pi}{2},\pi\right)\cup\left(\pi,\tfrac{3\pi}{2}\right)\cup\left(\tfrac{3\pi}{2},\pi\right)\rightarrow \textbf{R}\ \text{ } \\ \text{ } & \text$

 $(19)\;\varphi:\left\{\left(\begin{smallmatrix}r\\\theta\end{smallmatrix}\right)\in \boldsymbol{R}^2\middle|\;r>0,\,\theta\in\boldsymbol{R}\right\}\to\boldsymbol{R}^2\;\text{\not{e}}\;\varphi\left(\begin{smallmatrix}r\\\theta\end{smallmatrix}\right)=\left(\begin{smallmatrix}r\cos\theta\\r\sin\theta\end{smallmatrix}\right)\;\text{で定めれば},\,\varphi\;\text{は}$

$$\left\{ \left(\begin{smallmatrix} r \\ \theta \end{smallmatrix} \right) \in \boldsymbol{R}^2 \, \middle| \, - \tfrac{\pi}{2} < \theta < \tfrac{\pi}{2}, \, r = e^{\theta} \right\} \text{ から } \left\{ \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) \in \boldsymbol{R}^2 \, \middle| \, x > 0, \, \log(x^2 + y^2) - 2 \tan^{-1} \tfrac{y}{x} = 0 \right\} \text{ へ,}$$

$$\left\{ \left(\begin{smallmatrix} r \\ \theta \end{smallmatrix} \right) \in \boldsymbol{R}^2 \, \middle| \, \tfrac{\pi}{2} < \theta < \tfrac{3\pi}{2}, \, r = e^{\theta - \pi} \right\} \text{ から } \left\{ \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) \in \boldsymbol{R}^2 \, \middle| \, x < 0, \, \log(x^2 + y^2) - 2 \tan^{-1} \tfrac{y}{x} = 0 \right\} \text{ へO}$$

全単射を与えるため,条件 $\log(x^2+y^2)-2\tan^{-1}\frac{y}{x}=0$ のもとで f の極値を求めるためには,条件「 $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ かつ $r=e^{\theta}$ 」または「 $\frac{\pi}{2}<\theta<\frac{3\pi}{2}$ かつ $r=e^{\theta-\pi}$ 」における $f\circ\varphi$ の極値を求めればよい. $f\circ\varphi\left(\frac{r\cos\theta}{r\sin\theta}\right)=\sqrt{2}r^2\cos\left(2\theta+\frac{\pi}{4}\right)$ だから $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ かつ $r=e^{\theta}$ の場合, $g(\theta)=f\circ\varphi\left(\frac{e^{\theta}\cos\theta}{e^{\theta}\sin\theta}\right)$ によって $g:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to \mathbf{R}$ を定めれば $g(\theta)=\sqrt{2}e^{2\theta}\sin\left(2\theta+\frac{\pi}{4}\right)$ である. $g'(\theta)=4e^{2\theta}\sin\left(2\theta+\frac{\pi}{2}\right)$ だから g の増減表は次のようになる.

θ		$-\frac{\pi}{4}$		$\frac{\pi}{4}$	
g'	-	0	+	0	_
g	×	$-e^{-\frac{\pi}{2}}$	7	$e^{\frac{\pi}{2}}$	×

従って $,\frac{\pi}{4}$ で g は極大であり $,-\frac{\pi}{4}$ で g は極小である.

 $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$ かつ $r = e^{\theta - \pi}$ の場合, $h(\theta) = f \circ \varphi \left(\frac{e^{\theta - \pi} \cos \theta}{e^{\theta - \pi} \sin \theta} \right)$ によって $h : \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \to \mathbf{R}$ を定めれば $h(\theta) = \sqrt{2}e^{2(\theta - \pi)}\sin \left(2\theta + \frac{\pi}{4} \right)$ である. $h'(\theta) = 4e^{2(\theta - \pi)}\sin \left(2\theta + \frac{\pi}{2} \right)$ だから h の増減表は次のようになる.

θ		$\frac{3\pi}{4}$		$\frac{5\pi}{4}$	
h'	-	0	+	0	1
h	\searrow	$-e^{-\frac{\pi}{2}}$	7	$e^{\frac{\pi}{2}}$	×

従って、g は $\frac{\pi}{4}$ で極大、 $-\frac{\pi}{4}$ で極小であり、h は $\frac{5\pi}{4}$ で極大、 $\frac{3\pi}{4}$ で極小である。 故に f は条件 $\log(x^2+y^2)-2\tan^{-1}\frac{y}{x}=0$ のもとで $\left(\frac{e^{\frac{\pi}{4}}}{\frac{e^{\frac{\pi}{4}}}{\sqrt{2}}}\right)$ 、 $\left(-\frac{e^{\frac{\pi}{4}}}{\sqrt{2}}\right)$ において極大値 $e^{\frac{\pi}{2}}$ をとり、 $\left(-\frac{e^{-\frac{\pi}{4}}}{\sqrt{2}}\right)$ 、において極小値 $-e^{-\frac{\pi}{2}}$ をとる。

 $(20) \sin x + \sin y = 1$ のとき, $\sin y = 1 - \sin x \le 1$ より $\sin x \ge 0$ となるため, x は n がすべての整数を動いたときの 閉区間 $[2n\pi, (2n+1)\pi]$ の合併集合を動く. $f(\frac{x}{y}) = \sin x (1-\sin x)$ だから $g: \mathbf{R} \to \mathbf{R}$ を $g(x) = \sin x (1-\sin x)$ で 定義すれば $g'(x) = \cos x (1-2\sin x)$ だから g の $[2n\pi, (2n+1)\pi]$ における増減表は次のようになる.

x	$2n\pi$		$\frac{(12n+1)\pi}{6}$		$\frac{(4n+1)\pi}{2}$		$\frac{(12n+5)\pi}{6}$		$(2n+1)\pi$
g'		+	0	_	0	+	0	_	
g	0	7	$\frac{1}{4}$	>	0	7	$\frac{1}{4}$	>	0

従って $\left(\frac{n\pi}{(4m+1)\pi}\right)$, $\left(\frac{(4n+1)\pi}{2m\pi}\right)$ (m, n) は任意の整数) において f は最小値 0 をとり, $\left(\frac{(12n+1)\pi}{6}\right)$, $\left(\frac{(12n+1)\pi}{6}\right)$, $\left(\frac{(12m+1)\pi}{6}\right)$, $\left(\frac{(12m+1)\pi}{6}\right)$, $\left(\frac{(12n+1)\pi}{6}\right)$

(21) 条件 $\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$ かつ $x^2+y^2+z^2=d^2$ が成り立つとき, $z^2=d^2-x^2-y^2$ を 1 つ目の式に代入すれば $\frac{a^2+c^2}{a^2(c^2+d^2)}x^2+\frac{b^2+c^2}{b^2(c^2+d^2)}y^2=1$ となる.そこで $\alpha=a\sqrt{\frac{c^2+d^2}{a^2+c^2}}$, $\beta=b\sqrt{\frac{c^2+d^2}{b^2+c^2}}$ とおけば $\frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}=1$ となるため, $x=\alpha\cos t$, $y=\beta\sin t$ とおける.このとき, $z=\pm\sqrt{d^2-\alpha^2\cos^2 t-\beta^2\sin^2 t}$ であり, $g:[0,2\pi]\to \mathbf{R}$ を $g(t)=z^2=d^2-x^2-y^2=d^2-\alpha^2\cos^2 t-\beta^2\sin^2 t$ で定めれば, $g(t)=d^2-\alpha^2-(\beta^2-\alpha^2)\sin^2 t$ となるため $g'(t)=-(\beta^2-\alpha^2)\sin 2t$ である.b>a>0 だから $\beta^2>\alpha^2$ であることに注意すれば g の増減表は次のようになる.

t	0		$\frac{\pi}{2}$		π		$\frac{3\pi}{2}$		2π
g'	0	_	0	+	0	_	0	+	0
g	$\frac{c^2(d^2-a^2)}{a^2+c^2}$	>	$\frac{c^2(d^2-b^2)}{b^2+c^2}$	7	$\frac{c^2(d^2-a^2)}{a^2+c^2}$	>	$\frac{c^2(d^2-b^2)}{b^2+c^2}$	7	$\frac{c^2(d^2-a^2)}{a^2+c^2}$

従って、0、 π 、 2π において g は極大であり、 $\frac{\pi}{2}$ 、 $\frac{3\pi}{2}$ において g は極小である。故に f は条件 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ かつ $x^2 + y^2 + z^2 = d^2$ のもとで $\begin{pmatrix} a\sqrt{\frac{c^2+d^2}{a^2+c^2}} \\ 0 \\ \pm c\sqrt{\frac{d^2-a^2}{a^2+c^2}} \end{pmatrix}, \begin{pmatrix} -a\sqrt{\frac{c^2+d^2}{a^2+c^2}} \\ 0 \\ \pm c\sqrt{\frac{d^2-a^2}{a^2+c^2}} \end{pmatrix}$ において極大値 $\frac{c^2(d^2-a^2)}{a^2+c^2}$ をとり、 $\begin{pmatrix} 0 \\ b\sqrt{\frac{c^2+d^2}{b^2+c^2}} \\ \pm c\sqrt{\frac{d^2-b^2}{b^2+c^2}} \end{pmatrix},$

$$\begin{pmatrix} 0 \\ -b\sqrt{\frac{c^2+d^2}{b^2+c^2}} \\ \pm c\sqrt{\frac{d^2-b^2}{b^2+c^2}} \end{pmatrix} において極小値 \frac{c^2(d^2-b^2)}{b^2+c^2} をとる.$$

(22) x,y は条件 $x^2+y^2=5$ を満たすため, $x=\sqrt{5}\cos t,\,y=\sqrt{5}\sin t$ とおける. このとき, $g:[0,2\pi]\to \mathbf{R}$ を $g(t)=f\left(\frac{\sqrt{5}\cos t}{\sqrt{5}\sin t}\right)$ で定めれば,

$$g(t) = 25\cos^4 t + 25\sin^4 t - 10\cos t \sin t - 5$$

$$= 25\left((\cos^2 t + \sin^2 t)^2 - 2\cos^2 t \sin^2 t\right) - 10\cos t \sin t - 5$$

$$= 20 - 50\cos^2 t \sin^2 t - 10\cos t \sin t = 20 - \frac{25}{2}\sin^2 2t - 5\sin 2t$$

より, $g'(t)=-10\cos 2t(5\sin 2t+1)$ である. $\alpha=-\sin^{-1}\frac{1}{5}$ とおくと, $-\frac{\pi}{6}<\alpha<0$ だから, g の増減表は次のようになる.

t	0		$\frac{\pi}{4}$		$\frac{\pi}{2} - \frac{\alpha}{2}$		$\frac{3\pi}{4}$		$\pi + \frac{\alpha}{2}$		$\frac{5\pi}{4}$		$\frac{3\pi}{2} - \frac{\alpha}{2}$		$\frac{7\pi}{4}$		$2\pi + \frac{\alpha}{2}$		2π
g'	-10	_	0	+	0	_	0	+	0	_	0	+	0	_	0	+	0	_	-10
g	20	7	$\frac{5}{2}$	7	$\frac{41}{2}$	>	$\frac{25}{2}$	7	$\frac{41}{2}$	7	$\frac{5}{2}$	7	$\frac{41}{2}$	>	$\frac{25}{2}$	7	$\frac{41}{2}$	>	20

従って、 $\frac{\pi}{2} - \frac{\alpha}{2}$ 、 $\pi + \frac{\alpha}{2}$, $\frac{3\pi}{2} - \frac{\alpha}{2}$, $2\pi + \frac{\alpha}{2}$ において g は極大であり、 $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$ において g は極小である. $\cos \alpha = \sqrt{1-\sin^2 \alpha} = \frac{2\sqrt{6}}{5}$, $\cos^2 \frac{\alpha}{2} = \frac{1+\cos \alpha}{2} = \frac{5+2\sqrt{6}}{10} = \frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}$, $\sin^2 \frac{\alpha}{2} = \frac{1-\cos \alpha}{2} = \frac{5-2\sqrt{6}}{10} = \frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{10}$ をから $\cos \frac{\alpha}{2} = \frac{\sqrt{2}+\sqrt{3}}{\sqrt{10}}$, $\sin \frac{\alpha}{2} = \frac{\sqrt{2}-\sqrt{3}}{\sqrt{10}}$ である。故に f は条件 $x^2 + y^2 = 5$ のもとで $\left(\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}}\right)$, $\left(\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}}\right)$, $\left(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}}\right)$, $\left(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}}\right)$, において極大値 $\frac{41}{2}$ をとる。また、f は条件 $x^2 + y^2 = 5$ のもとで $\left(\frac{\sqrt{10}}{2}\right)$, $\left(-\frac{\sqrt{10}}{2}\right)$, において極小値 $\frac{5}{2}$ をとり、 $\left(-\frac{\sqrt{10}}{\sqrt{2}}\right)$, において極小値 $\frac{25}{2}$ をとる。

 $(23) \ x, \ y$ は条件 $x^2+2y^2=3$ を満たすため, $x=\sqrt{3}\cos t, \ y=\sqrt{\frac{3}{2}}\sin t$ とおける. このとき, $g:[0,2\pi] \to \mathbf{R}$ を $g(t)=f\left(\sqrt{\frac{3}{2}}\cos t\right)$ で定めれば, $g(t)=\frac{3\sqrt{3}}{2}(2\cos^3 t+3\cos t\sin^2 t-2\cos t)=\frac{3\sqrt{3}}{2}(\cos t-\cos^3 t)$ より, $g'(t)=\frac{3\sqrt{3}}{2}\sin t(2-3\sin^2 t)$ である. $\alpha=\sin^{-1}\sqrt{\frac{2}{3}}$ とおくと, $\frac{\pi}{4}<\alpha<\frac{\pi}{3}$ だから, g の増減表は次のようになる.

	t	0		α		$\pi - \alpha$		π		$\pi + \alpha$		$2\pi - \alpha$		2π
	g'	0	+	0	_	0	+	0	_	0	+	0	_	0
ĺ	g	0	7	1	>	-1	7	0	×	-1	7	1	>	0

従って, α , π , $2\pi - \alpha$ において g は極大であり, 0, $\pi - \alpha$, $\pi + \alpha$ において g は極小である.

 $\cos \alpha = \sqrt{1-\sin^2 \alpha} = \frac{1}{\sqrt{3}}$ だから f は条件 $x^2+2y^2=3$ のもとで $\binom{1}{1}$, $\binom{1}{-1}$ において極大値 1 をとり, $\binom{-\sqrt{3}}{0}$ において極大値 0 をとる.また,f は条件 $x^2+2y^2=3$ のもとで $\binom{-1}{1}$, $\binom{-1}{-1}$ において極小値 -1 をとり, $\binom{\sqrt{3}}{0}$ において極小値 0 をとる.

(24) x,y は条件 $x^2+2(y+1)^2=9$ を満たすため, $x=3\cos t,\,y=\frac{3}{\sqrt{2}}\sin t-1$ とおける. このとき, $g:[0,2\pi]\to \mathbf{R}$ を $g(t)=f\left(\frac{3}{\sqrt{2}}\frac{3\cos t}{\sin t-1}\right)$ で定めれば, $g(t)=27\cos^3 t+\frac{9}{2}\cos t(9\sin^2 t-8)=\frac{9}{2}\cos t-\frac{27}{2}\cos^3 t$ より, $g'(t)=\frac{9}{2}\sin t(8-9\sin^2 t)$ である. $\alpha=\sin^{-1}\frac{2\sqrt{2}}{3}$ とおくと, $\frac{\pi}{3}<\alpha<\frac{\pi}{2}$ だから, g の増減表は次のようになる.

t	0		α		$\pi - \alpha$		π		$\pi + \alpha$		$2\pi - \alpha$		2π
g'	0	+	0	_	0	+	0	-	0	+	0	_	0
g	-9	7	1	>	-1	7	9	×	-1	7	1	>	-9

従って, α , π , $2\pi - \alpha$ において g は極大であり, 0, $\pi - \alpha$, $\pi + \alpha$ において g は極小である.

 $\cos \alpha = \sqrt{1-\sin^2 \alpha} = \frac{1}{3}$ だから f は条件 $x^2+2y^2+4y=7$ のもとで $\begin{pmatrix} 1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-3 \end{pmatrix}$ において極大値 1 をとり, $\begin{pmatrix} -3\\-1 \end{pmatrix}$ において極大値 9 をとる。また, f は条件 $x^2+2y^2+4y=7$ のもとで $\begin{pmatrix} -1\\1 \end{pmatrix}$, $\begin{pmatrix} -1\\-3 \end{pmatrix}$ において極小値 -1 をとり, $\begin{pmatrix} 3\\-1 \end{pmatrix}$ において極小値 -9 をとる。

 $(25) \ x, \ y \ \text{は条件} \ 2x^2 + y^2 = 10 \ \text{を満たすため}, \ x = \sqrt{5}\cos t, \ y = \sqrt{10}\sin t \ \text{とおける}. \ \text{このとき}, \ g:[0,2\pi] \to \textbf{R} \ \text{を} \ g(t) = f\left(\frac{\sqrt{5}\cos t}{\sqrt{10}\sin t}\right)$ で定めれば, $g(t) = 20\sqrt{2}\cos t\sin t - 4\sqrt{5}\cos t + 10 \ \text{よ}\ \text{り}, \ g'(t) = 20\sqrt{2}(1-2\sin^2t) + 4\sqrt{5}\sin t = -40\sqrt{2}\sin^2t + 4\sqrt{5}\sin t + 20\sqrt{2} = -40\sqrt{2}\left(\sin t + \frac{\sqrt{10}}{5}\right)\left(\sin t - \frac{\sqrt{10}}{4}\right)$ である. $\alpha = -\sin^{-1}\frac{\sqrt{10}}{5}, \ \beta = \sin^{-1}\frac{\sqrt{10}}{4}$ とおくと, $-\frac{\pi}{2} < \alpha < 0 < \beta < \frac{\pi}{2}$ であり, $\cos \alpha = \sqrt{1-\sin^2\alpha} = \frac{\sqrt{15}}{5}, \cos \beta = \sqrt{1-\sin^2\beta} = \frac{\sqrt{6}}{4}$ だから, $g(\beta) = 10 + \frac{3\sqrt{30}}{2}, \ g(\pi-\beta) = 10 - \frac{3\sqrt{30}}{2}, \ g(\pi-\alpha) = 10 + 12\sqrt{3}, \ g(2\pi+\alpha) = 10 - 12\sqrt{3}$ となるため, g の増減表は次のようになる.

t	0		β		$\pi - \beta$		$\pi - \alpha$		$2\pi + \alpha$		2π
g'	$20\sqrt{2}$	+	0	_	0	+	0	-	0	+	$20\sqrt{2}$
g	$10 - 4\sqrt{5}$	7	$10 + \frac{3\sqrt{30}}{2}$	>	$10 - \frac{3\sqrt{30}}{2}$	7	$10 + 12\sqrt{3}$	\searrow	$10 - 12\sqrt{3}$	7	$10 - 4\sqrt{5}$

従って, β , $\pi-\alpha$ において g は極大であり, $\pi-\beta$, $2\pi+\alpha$ において g は極小になるため, f は条件 $2x^2+y^2=10$ のもとで $\left(\frac{\sqrt{30}}{\frac{4}{5}}\right)$ において極大値 $10+\frac{3\sqrt{30}}{2}$ をとり, $\left(-\sqrt{3}\right)$ において極大値 $10+12\sqrt{3}$ をとる. また, f は条件 $2x^2+y^2=10$ のもとで $\left(-\frac{\sqrt{30}}{\frac{5}{2}}\right)$ において極小値 $10-\frac{3\sqrt{30}}{2}$ をとり, $\left(\sqrt{3}\right)$ において極小値 $10-12\sqrt{3}$ をとる.

 $(26) \ x, \ y \ \text{ti条件} \ (x-2)^2 + (y+2)^2 = 18 \ \text{を満たすため}, \ x = 3\sqrt{2}\cos t + 2, \ y = 3\sqrt{2}\sin t - 2 \ \text{とおける}. \ \text{このと} \ \text{き}, \ g: [0,2\pi] \to \textbf{R} \ \text{を} \ g(t) = f\left(\frac{3\sqrt{2}\cos t + 2}{3\sqrt{2}\sin t - 2}\right) \ \text{で定めれば}, \ g(t) = (18\cos^2 t - 4)(18\sin^2 t - 4) = 25 - 81\cos^2 2t = -\frac{31+81\cos 4t}{2} \ \text{よ} \ \text{b}, \ g \ \text{ti} \ \left[0,\frac{\pi}{4}\right] \ \text{で増加}, \left[\frac{\pi}{4},\frac{\pi}{2}\right] \ \text{で減少}, \left[\frac{\pi}{2},\frac{3\pi}{4}\right] \ \text{で増加}, \left[\frac{3\pi}{4},\pi\right] \ \text{で減少}, \left[\pi,\frac{5\pi}{4}\right] \ \text{で増加}, \left[\frac{5\pi}{4},\frac{3\pi}{2}\right] \ \text{で減少}, \left[\frac{3\pi}{4},\frac{7\pi}{4}\right] \ \text{で増加}, \left[\frac{7\pi}{4},2\pi\right] \ \text{で極小値} \ -56 \ \text{をと} \ \text{S}. \ \text{従って} \ f \ \text{ti条件} \ x^2 - 4x + y^2 + 4y = 10 \ \text{のもとで} \left(\frac{5}{1}\right), \left(-\frac{1}{1}\right), \left(-\frac{1}{5}\right), \left(\frac{5}{-5}\right) \ \text{において極大値} \ 25 \ \text{をと} \ \text{b}, \left(\frac{3\sqrt{2}+2}{-2}\right), \left(\frac{3\sqrt{2}+2}{-2}\right), \left(\frac{3\sqrt{2}-2}{-2}\right) \ \text{において極小値} \ -56 \ \text{をと} \ \text{S}. \$

(27) x,y は条件 $x^2+y^2=12$ を満たすため, $x=2\sqrt{3}\cos t,y=2\sqrt{3}\sin t$ とおける.このとき, $g:[0,2\pi]\to \mathbf{R}$ を $g(t)=f\left(\frac{2\sqrt{3}\cos t}{2\sqrt{3}\sin t}\right)$ で定めれば, $g(t)=24\sqrt{3}\cos^3 t-24\sqrt{3}\sin^3 t+36(\cos t-\sin t)^2$ より, $g'(t)=-72\sqrt{3}\cos^2 t\sin t-72\sqrt{3}\cos t\sin^2 t-72(\cos^2 t-\sin^2 t)=72(\cos t+\sin t)\left(-\sqrt{3}\cos t\sin t-\cos t+\sin t\right)$ である. $z=\cos t-\sin t$ とお くと, $z^2=1-2\cos t\sin t$ だから, $-\sqrt{3}\cos t\sin t-\cos t+\sin t=\frac{\sqrt{3}}{2}(z^2-1)-z=\frac{\sqrt{3}}{2}\left(z+\frac{1}{\sqrt{3}}\right)\left(z-\sqrt{3}\right)$ であり,さ らに $z=-\sqrt{2}\sin\left(t-\frac{\pi}{4}\right)$ より, $g'(t)=36\sqrt{6}\sin\left(t+\frac{\pi}{4}\right)\left(\sqrt{2}\sin\left(t-\frac{\pi}{4}\right)-\frac{1}{\sqrt{3}}\right)\left(\sqrt{2}\sin\left(t-\frac{\pi}{4}\right)+\sqrt{3}\right)$ が成り立つ. $\alpha=\sin^{-1}\frac{1}{\sqrt{6}}+\frac{\pi}{4}$ とおくと, $\frac{\pi}{4}<\alpha<\frac{\pi}{2}$ であり, $\cos\left(\sin^{-1}\frac{1}{\sqrt{6}}\right)=\frac{\sqrt{30}}{6}$ より $\sin\alpha=\sin\left(\sin^{-1}\frac{1}{\sqrt{6}}+\frac{\pi}{4}\right)=\frac{\sqrt{15}+\sqrt{3}}{6}$ $\cos\alpha=\cos\left(\sin^{-1}\frac{1}{\sqrt{6}}+\frac{\pi}{4}\right)=\frac{\sqrt{15}-\sqrt{3}}{6}$ である.従って $g(\alpha)=g\left(\frac{3\pi}{2}-\alpha\right)=-20$ となるため,g の増減表は次のよう になる.

t	0		α		$\frac{3\pi}{4}$		$\frac{3\pi}{2} - \alpha$		$\frac{7\pi}{4}$		2π	
g'	-72	_	0	+	0	_	0	+	0	_	-72	
g	$36 + 24\sqrt{3}$	×	-20	7	$72 - 12\sqrt{6}$	×	-20	7	$72 + 12\sqrt{6}$	>	$36 + 24\sqrt{3}$	

従って、 $\frac{3\pi}{4}$ 、 $\frac{7\pi}{4}$ において g は極大であり、 α 、 $\frac{3\pi}{2}-\alpha$ において g は極小になるため、f は条件 $x^2+y^2=12$ のもとで $\begin{pmatrix} -\sqrt{6} \\ \sqrt{6} \end{pmatrix}$ において極大値 $72-12\sqrt{6}$ をとり、 $\begin{pmatrix} \sqrt{6} \\ -\sqrt{6} \end{pmatrix}$ において極大値 $72+12\sqrt{6}$ をとる.また、f は条件 $x^2+y^2=12$ のもとで $\begin{pmatrix} \sqrt{5}-1 \\ \sqrt{5}+1 \end{pmatrix}$ と $\begin{pmatrix} -\sqrt{5}-1 \\ -\sqrt{5}+1 \end{pmatrix}$ において極小値 -20 をとる.

 $(28) \ x = r\cos\theta, \ y = \sin\theta \ \texttt{とおくと} \ x^2 + y^2 = r^2 \ \texttt{であり}, \ x^4 + y^4 = 1 \ \texttt{だから} \ r^4(\cos^4\theta + \sin^4\theta) = 1 \ \texttt{である}. \ \texttt{ここで}, \\ \cos^4\theta + \sin^4\theta = (\cos^2\theta + \sin^2\theta)^2 - 2\cos^2\theta \sin^2\theta = 1 - \frac{1}{2}\sin^22\theta \ \texttt{だから} \ r^2 = \frac{\sqrt{2}}{\sqrt{2-\sin^22\theta}} \ \texttt{が成り立つ}. \ \text{従って} \ r^2 \ \texttt{は}, \ \theta \ \text{の関数として区間} \ \left[0,\frac{\pi}{4}\right], \left[\frac{\pi}{2},\frac{3\pi}{4}\right], \left[\frac{\pi}{2},\frac{5\pi}{4}\right], \left[\frac{3\pi}{2},\frac{7\pi}{4}\right] \ \texttt{で単調に増加し}, \ \texttt{区間} \ \left[\frac{\pi}{4},\frac{\pi}{2}\right], \left[\frac{3\pi}{4},\pi\right], \left[\frac{5\pi}{4},\frac{3\pi}{2}\right], \left[\frac{7\pi}{4},2\pi\right] \ \texttt{で単調に減少する}. \ \text{故に} \ r^2 \ \textbf{は} \ \theta = \frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4} \ \text{のときに極大値} \ \sqrt{2} \ \text{をとり}, \theta = 0,\frac{\pi}{2},\pi,\frac{3\pi}{2} \ \text{のときに極小値} \ 1 \ \text{をとる}. \$ 小値 1 をとる.

[別解] $F\left(\frac{x}{y}\right)=x^4+y^4-1$ で $F:\mathbf{R}^2\to\mathbf{R}$ を定義する. $\frac{\partial F}{\partial x}=4x^3, \frac{\partial F}{\partial y}=4y^3$ だから $\frac{\partial F}{\partial x}$ と $\frac{\partial F}{\partial y}$ は原点以外では同時に 0 にはならないが, 原点は $x^4+y^4=1$ で定まる曲線上にない. 従って, 点 $\left(\frac{x}{y}\right)$ において f が条件 $x^4+y^4=1$ のも

とで極値をとるならば, $\frac{\partial f}{\partial x}=2x$, $\frac{\partial f}{\partial y}=2y$ より $\lambda\in \mathbf{R}$ が存在して, 次の関係式が成り立つ.

$$\begin{cases} x^4 + y^4 - 1 = 0 & \cdots (i) \\ 2x = 4\lambda x^3 & \cdots (ii) \\ 2y = 4\lambda y^3 & \cdots (iii) \end{cases}$$

(ii) より x=0 または $2\lambda x^2=1$ である. x=0 の場合は (i) から $y=\pm 1$ である. $2\lambda x^2=1$ の場合、(iii) の両辺に x^2 をかけると $2x^2y=2y^3$ だから y=0 または $y=\pm x$ である。(i) から y=0 ならば $x=\pm 1$ であり, $y=\pm x$ ならば $y=\pm \frac{1}{\sqrt[4]{2}}$ である。故に,条件 $x^4+y^4=1$ のもとで f が極値をとる候補の点は $\pm (\frac{1}{0})$, $\pm (\frac{1}{\sqrt[4]{2}})$, $\pm (\frac{1}{\sqrt[4]{2}})$ である。

 $f(\frac{x}{y})=z$ とおけば、 $z^2=x^4+2x^2y^2+y^4$ 、 $y^2=z-x^2$ 、 $x^2=z-y^2$ だから、条件 $x^4+y^4=1$ のもとでは $2x^2(z-x^2)-z^2+1=0$ 、 $2y^2(z-y^2)-z^2+1=0$ が成り立つ。そこで $G:\mathbf{R}^2\to\mathbf{R}$ を $G(\frac{x}{z})=2w^2(z-w^2)-z^2+1$ で定めて z を $G(\frac{x}{z})=0$ から定まる w の陰関数とみなす。 $\frac{\partial G}{\partial w}=4w(z-2w^2)$ 、 $\frac{\partial G}{\partial z}=2(w^2-z)$ 、 $\frac{\partial^2 G}{\partial w^2}=4(z-6w^2)$ だから次の表が得られる。ただし、 $\frac{\partial G}{\partial z}(\frac{x}{z})=0$ の場合は、z が x の陰関数として定義されず、 $\frac{\partial G}{\partial z}(\frac{y}{z})=0$ の場合は、z が y の陰関数として定義されない。従って、下の表の該当する部分は計算する必要がないため — を挿入した。

$\begin{pmatrix} x \\ y \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	$\begin{pmatrix} \frac{1}{4\sqrt{2}} \\ \frac{1}{4\sqrt{2}} \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{4\sqrt{2}} \\ -\frac{1}{4\sqrt{2}} \end{pmatrix}$	$\begin{pmatrix} \frac{1}{\sqrt[4]{2}} \\ -\frac{1}{\sqrt[4]{2}} \end{pmatrix}$	$ \begin{pmatrix} -\frac{1}{4\sqrt{2}} \\ \frac{1}{4\sqrt{2}} \end{pmatrix} $
$\begin{pmatrix} x \\ z \end{pmatrix}$	$\begin{pmatrix} 1\\1 \end{pmatrix}$	$\begin{pmatrix} -1\\1\end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} \frac{1}{\sqrt[4]{2}} \\ \sqrt{2} \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{4\sqrt{2}} \\ \sqrt{2} \end{pmatrix}$	$\begin{pmatrix} \frac{1}{4\sqrt{2}} \\ \sqrt{2} \end{pmatrix}$	$\left[\begin{array}{c} \left(-\frac{1}{4\sqrt{2}}\right) \\ \sqrt{2} \end{array}\right)$
$\frac{\partial G}{\partial z} \left(\begin{smallmatrix} x \\ z \end{smallmatrix} \right)$	0	0	-1	-1	$-\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$
$\frac{\partial G}{\partial w} \left(egin{array}{c} x \\ z \end{array} \right)$	_	_	0	0	0	0	0	0
$\frac{\partial^2 G}{\partial w^2} \left(\begin{smallmatrix} x \\ z \end{smallmatrix} \right)$	_	_	1	1	$-8\sqrt{2}$	$-8\sqrt{2}$	$-8\sqrt{2}$	$-8\sqrt{2}$
$-\frac{\frac{\partial^2 G}{\partial w^2} \binom{x}{z}}{\frac{\partial G}{\partial z} \binom{x}{z}}$			1	1	-8	-8	-8	-8
$\begin{pmatrix} y \\ z \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$\left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right)$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} \frac{1}{\sqrt[4]{2}} \\ \sqrt{2} \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{4\sqrt{2}} \\ \sqrt{2} \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{4\sqrt{2}} \\ \sqrt{2} \end{pmatrix}$	$\begin{pmatrix} \frac{1}{4\sqrt{2}} \\ \sqrt{2} \end{pmatrix}$
$\frac{\partial G}{\partial z} \left(egin{array}{c} y \\ z \end{array} ight)$	-1	-1	0	0	$-\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$
$\frac{\partial G}{\partial w}\left(egin{array}{c} y \\ z \end{array} ight)$	0	0		_	0	0	0	0
$\frac{\partial^2 G}{\partial w^2} \left(egin{array}{c} y \\ z \end{array} \right)$	1	1		_	$-8\sqrt{2}$	$-8\sqrt{2}$	$-8\sqrt{2}$	$-8\sqrt{2}$
$-\frac{\frac{\partial^2 G}{\partial w^2} \binom{x}{z}}{\frac{\partial G}{\partial z} \binom{x}{z}}$	1	1	_		-8	-8	-8	-8

上の表から条件 $x^4+y^4=1$ のもとで f は $\pm \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\pm \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ において極小値 1 をとり, $\pm \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$, $\pm \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ において極大値 $\sqrt{2}$ をとる.

 $(29) \ x,y \ \text{ は条件} \left(x^{\frac{1}{3}}\right)^2 + \left(x^{\frac{1}{3}}\right)^2 = 2 \ \text{ を満たすため}, \ x = 2\sqrt{2}\cos^3 t, \ y = 2\sqrt{2}\sin^3 t \ \text{ とおける}. \ \text{ このとき}, \ g:[0,2\pi] \rightarrow \textbf{R} \ \text{ を} \ g(t) = f\left(\frac{2\sqrt{2}\cos^3 t}{2\sqrt{2}\sin^3 t}\right) \ \text{ で定めれば}, \ g(t) = 2\sqrt{2}a\cos^3 t - 3\sqrt{2}\sin t \ \text{ より}, \ g'(t) = -6\sqrt{2}a\sin t\cos^2 t - 3\sqrt{2}\cos t = -3\sqrt{2}\cos t(a\sin 2t + 1) \ \text{ である}. \ \alpha = \sin^{-1}\frac{1}{a} \ \text{ とおくと}, \ 0 < \alpha \leq \frac{\pi}{2} \ \text{ であり}, \ g \ \text{ の増減表は次のようになる}.$

t	0		$\frac{\pi}{2}$		$\frac{\pi}{2} + \frac{\alpha}{2}$		$\pi - \frac{\alpha}{2}$		$\frac{3\pi}{2}$		$\frac{3\pi}{2} + \frac{\alpha}{2}$		$2\pi - \frac{\alpha}{2}$		2π
g'	$-3\sqrt{2}$	-	0	+	0	-	0	+	0	_	0	+	0	-	$-3\sqrt{2}$
g	$2\sqrt{2}a$	\searrow	$-3\sqrt{2}$	7	$g(\frac{\pi}{2} + \frac{\alpha}{2})$	X	$g(\pi - \frac{\alpha}{2})$	7	$3\sqrt{2}$	X	$g(\frac{3\pi}{2} + \frac{\alpha}{2})$	7	$g(2\pi - \frac{\alpha}{2})$	7	$2\sqrt{2}a$

従って、 $\frac{3\pi}{2}$ において g は極大で、 $\frac{\pi}{2}$ において g は極小であり、a>1 ならば、さらに $\frac{\pi}{2}+\frac{\alpha}{2}$ 、 $2\pi-\frac{\alpha}{2}$ において g は極大であり、 $\pi-\frac{\alpha}{2}$ 、 $\frac{3\pi}{2}+\frac{\alpha}{2}$ において g は極小である.

$$\cos\alpha = \sqrt{1 - \sin^2\alpha} = \frac{\sqrt{a^2 - 1}}{a}, \ \sin\frac{\alpha}{2} = \sqrt{\frac{1 - \cos\alpha}{2}} = \sqrt{\frac{a - \sqrt{a^2 - 1}}{2a}}, \ \cos\frac{\alpha}{2} = \sqrt{\frac{1 + \cos\alpha}{2}} = \sqrt{\frac{a + \sqrt{a^2 - 1}}{2a}}$$
 స్పార్స్,
$$g\left(\frac{\pi}{2} + \frac{\alpha}{2}\right) = -2\sqrt{2}a\sin^3\frac{\alpha}{2} - 3\sqrt{2}\cos\frac{\alpha}{2} = -\frac{1}{\sqrt{a}}\left(\left(a - \sqrt{a^2 - 1}\right)^{\frac{3}{2}} + 3\sqrt{a + \sqrt{a^2 - 1}}\right)$$

$$g\left(\pi-\frac{\alpha}{2}\right)=-2\sqrt{2}a\cos^{3}\frac{\alpha}{2}-3\sqrt{2}\sin\frac{\alpha}{2}=-\frac{1}{\sqrt{a}}\left(\left(a+\sqrt{a^{2}-1}\right)^{\frac{3}{2}}+3\sqrt{a-\sqrt{a^{2}-1}}\right)$$

$$g\left(\frac{3\pi}{2}+\frac{\alpha}{2}\right)=2\sqrt{2}a\sin^{3}\frac{\alpha}{2}+3\sqrt{2}\cos\frac{\alpha}{2}=\frac{1}{\sqrt{a}}\left(\left(a-\sqrt{a^{2}-1}\right)^{\frac{3}{2}}+3\sqrt{a+\sqrt{a^{2}-1}}\right)$$

$$g\left(2\pi-\frac{\alpha}{2}\right)=2\sqrt{2}a\cos^{3}\frac{\alpha}{2}+3\sqrt{2}\sin\frac{\alpha}{2}=\frac{1}{\sqrt{a}}\left(\left(a+\sqrt{a^{2}-1}\right)^{\frac{3}{2}}+3\sqrt{a-\sqrt{a^{2}-1}}\right)$$
 が得られる。従って、 f は条件 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ のもとで $\begin{pmatrix}0\\-2\sqrt{2}\end{pmatrix}$ において極大値 $3\sqrt{3}$ をとり、 $a>1$ ならば $\begin{pmatrix}-\left(\frac{a+\sqrt{a^{2}-1}}{a}\right)^{\frac{3}{2}}\\\left(\frac{a+\sqrt{a^{2}-1}}{a}\right)^{\frac{3}{2}}\end{pmatrix}$ において極大値 $-\frac{1}{\sqrt{a}}\left(\left(a-\sqrt{a^{2}-1}\right)^{\frac{3}{2}}+3\sqrt{a+\sqrt{a^{2}-1}}\right)$ をとり、 $\begin{pmatrix}\left(\frac{a+\sqrt{a^{2}-1}}{a}\right)^{\frac{3}{2}}\\-\left(\frac{a-\sqrt{a^{2}-1}}{a}\right)^{\frac{3}{2}}\end{pmatrix}$ において極大値 $-\frac{1}{\sqrt{a}}\left(\left(a+\sqrt{a^{2}-1}\right)^{\frac{3}{2}}+3\sqrt{a+\sqrt{a^{2}-1}}\right)$ をとる。また、 f は条件 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ のもとで $\begin{pmatrix}0\\2\sqrt{2}\end{pmatrix}$ において極小値 $-3\sqrt{2}$ をとり、 $a>1$ ならば $\begin{pmatrix}-\left(\frac{a+\sqrt{a^{2}-1}}{a}\right)^{\frac{3}{2}}\\\left(\frac{a-\sqrt{a^{2}-1}}{a}\right)^{\frac{3}{2}}\end{pmatrix}$ において極小値 $-\frac{1}{\sqrt{a}}\left(\left(a+\sqrt{a^{2}-1}\right)^{\frac{3}{2}}+3\sqrt{a-\sqrt{a^{2}-1}}\right)$ をとり、 $\begin{pmatrix}\left(\frac{a-\sqrt{a^{2}-1}}}{a}\right)^{\frac{3}{2}}\end{pmatrix}$ において極小値 $-\frac{1}{\sqrt{a}}\left(\left(a+\sqrt{a^{2}-1}\right)^{\frac{3}{2}}+3\sqrt{a-\sqrt{a^{2}-1}}\right)$

(30) $\binom{x}{y}$ が条件 $x^3 + y^3 - 6axy = 0$ を満たすとき, $x = r\cos t$, $y = r\sin t$ とおくと $r^2(r\cos^3 t + r\sin^3 t - 6a\cos t\sin t) = 0$ だから, r = 0 または $r = \frac{6a\cos t\sin t}{\cos^3 t + \sin^3 t}$ $(t \neq \frac{3\pi}{4} + \pi n$ ただし n は整数) である.故に曲線 $x^3 + y^3 - 3xy = \cos^3 t + \sin^3 t$

$$0 \text{ は} \begin{cases} x = \frac{6a\cos^2t\sin t}{\cos^3t + \sin^3t} \\ y = \frac{6a\cos t\sin^2t}{\cos^3t + \sin^3t} \end{cases} \text{ はよってパラメータ表示される. } \text{ここで}, \frac{6a\cos^2(\pi+t)\sin(\pi+t)}{\cos^3(\pi+t) + \sin^3(\pi+t)} = \frac{6a\cos^2t\sin t}{\cos^3t + \sin^3t}, \\ \frac{6a\cos(\pi+t)\sin^2(\pi+t)}{\cos^3(\pi+t) + \sin^3(\pi+t)} = \frac{6a\cos t\sin^2t}{\cos^3t + \sin^3t} \text{ が成り立つため } t \text{ が動く範囲は区間} \left(-\frac{\pi}{4}, \frac{3\pi}{4}\right) \text{ であるとしてよい}. \end{cases}$$

このとき,
$$g:\left(-\frac{\pi}{4},\frac{3\pi}{4}\right) \to \mathbf{R}$$
 を $g(t)=f\left(\frac{\frac{6a\cos^2t\sin t}{\cos^3t+\sin^3t}}{\frac{6a\cos^2t\sin^2t}{\cos^3t+\sin^3t}}\right)$ で定めれば,

$$g(t) = \frac{36a^2\cos^3t\sin^3t}{(\cos^3t+\sin^3t)^2} = \frac{36a^2\cos^3t\sin^3t}{(\cos t+\sin t)^2(1-\cos t\sin t)^2} = \frac{36a^2\sin^32t}{2(1+\sin 2t)(2-\sin 2t)^2}$$

より, $g'(t)=\frac{108a^2\cos 2t\sin^2 2t(2+\sin 2t)}{(1+\sin 2t)^2(2-\sin 2t)^3}$ となるため, $\left(-\frac{\pi}{4},\frac{\pi}{4}\right]$ で g は単調に増加し, $\left[\frac{\pi}{4},\frac{3\pi}{4}\right]$ で g は単調に減少する.従って, $\frac{\pi}{4}$ において g は極大になるため,f は $\left(\frac{3a}{3a}\right)$ において極大値 $9a^2$ をとる.

(31) $\binom{x}{y}$ が条件 $x^3 + y^3 - 6axy = 0$ を満たすとき, $x = r\cos t$, $y = r\sin t$ とおくと

$$r^2(r\cos^3 t + r\sin^3 t - 6a\cos t\sin t) = 0$$

だから、r=0 または $r=\frac{6a\cos t \sin t}{\cos^3 t + \sin^3 t}$ $(t \neq \frac{3\pi}{4} + \pi n$ ただし n は整数) である。故に曲線 $x^3 + y^3 - 6axy = 0$ は $\begin{cases} x = \frac{6a\cos^2 t \sin t}{\cos^3 t + \sin^3 t} \\ y = \frac{6a\cos t \sin^2 t}{\cos^3 t + \sin^3 t} \end{cases}$ によってパラメータ表示される。ここで、 $\frac{6a\cos^2(\pi + t)\sin(\pi + t)}{\cos^3(\pi + t) + \sin^3(\pi + t)} = \frac{6a\cos^2 t \sin t}{\cos^3 t + \sin^3 t},$ $\frac{6a\cos(\pi + t)\sin^2(\pi + t)}{\cos^3(\pi + t) + \sin^3(\pi + t)} = \frac{6a\cos t \sin^2 t}{\cos^3 t + \sin^3 t}$ が成り立つため t が動く範囲は区間 $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$ であるとしてよい。

このとき,
$$g:\left(-\frac{\pi}{4},\frac{3\pi}{4}\right)\to \mathbf{R}$$
 を $g(t)=f\left(\frac{\frac{6a\cos^2t\sin t}{\cos^3t+\sin^3t}}{\frac{6a\cos^3t+\sin^3t}{\cos^3t+\sin^3t}}\right)$ で定めれば,

$$g(t) = \frac{36a^2\cos^2t\sin^2t}{(\cos^3t + \sin^3t)^2} = \frac{36a^2\cos^2t\sin^2t}{(\cos t + \sin t)^2(1 - \cos t\sin t)^2} = \frac{36a^2\sin^22t}{(1 + \sin 2t)(2 - \sin 2t)^2}$$

より, $g'(t) = \frac{36a^2\sin 4t((\sin 2t+1)^2+2)}{(1+\sin 2t)^2(2-\sin 2t)^3}$ となるため, $\left(-\frac{\pi}{4},0\right]$, $\left[\frac{\pi}{4},\frac{\pi}{2}\right]$ で g は単調に減少し, $\left[0,\frac{\pi}{4}\right]$, $\left[\frac{\pi}{2},\frac{3\pi}{4}\right)$ で g は

単調に増加する. 従って g は $0, \frac{\pi}{2}$ において極小, $\frac{\pi}{4}$ において極大になるため, f は $\binom{0}{0}$ において極小値 0 をとり, $\binom{3a}{3a}$ において極大値 $18a^2$ をとる.

[別解] 原点 $\binom{0}{0}$ は条件 $x^3+y^3-6axy=0$ を満たし、f は原点において最小値 0 をとるため、条件 $x^3+y^3-6axy=0$ のもとでも f は原点で最小値をとる。従って、条件 $x^3+y^3-6axy=0$ のもとで、原点において f は極小値 0 をとる。 $F\binom{x}{y}=x^3+y^3-6axy$ で $F:\mathbf{R}^2\to\mathbf{R}$ を定義する。 $\frac{\partial F}{\partial x}=3x^2-6ay$ 、 $\frac{\partial F}{\partial y}=3y^2-6ax$ であり、条件

$$x^3+y^3-6axy=0$$
 のもとで $\frac{\partial F}{\partial x}$ と $\frac{\partial F}{\partial y}$ は原点以外では同時に 0 にはならない. 実際
$$\begin{cases} x^3+y^3-6axy=0\\ 3x^2-6ay=0\\ 3y^2-6ax=0 \end{cases}$$
 とす

れば、第 2 式から $y=\frac{x^2}{2a}$ で、これを第 3 式に代入すると $\frac{3x}{4a^2}(x^3-8a^3)=0$ だから x=0 または x=2a が得られる. x=0 の場合は $y=x^2=0$ であり、x=2a の場合は $y=\frac{x^2}{2a}=2a$ であるが、x=y=2a は第 1 式を満たさない.従って、原点以外の点 $\binom{x}{y}$ で f が条件 $x^3+y^3-6axy=0$ のもとで極値をとるならば、 $\frac{\partial f}{\partial x}=2x$ 、 $\frac{\partial f}{\partial y}=2y$ より $\lambda\in \mathbf{R}$ が存在して、次の関係式が成り立つ.

$$\begin{cases} x^3 + y^3 - 6axy = 0 & \cdots (i) \\ 2x = \lambda (3x^2 - 6ay) & \cdots (ii) \\ 2y = \lambda (3y^2 - 6ax) & \cdots (iii) \end{cases}$$

x=0 ならば (i) より y=0 となるため, $\binom{x}{y}$ が原点と異なるという仮定に反する. よって $x \neq 0$ だから (iii) を (ii) で 辺々割ると $\frac{y}{x} = \frac{y^2-2ax}{x^2-2ay}$ である. この両辺に $x(x^2-2ay)$ をかけて移項すれば (x-y)(xy+2ax+2ay) = 0 となるため x=y または xy+2ax+2ay=0 である.

x=y の場合、(i) より $2x^3-6ax^2=0$ であり、 $x\neq 0$ だから x=3 である。 xy+2ax+2ay=0 の場合、u=x+y、v=xy とおけば v+2au=0 であり、 $x^3+y^3-6axy=u^3-3uv-6av$ だから (i) より $u^3-3uv-6av=0$ である。 v=-2au を代入すれば、 $u^3+6au^2+12a^2u=0$ が得られ、この左辺は $u((u+3a)^2+3a^2)$ と変形されるため、u=0 である。 よって v=-u=0 だから x=y=0 となり仮定に反するため、この場合は (i) を満たす x=y=0 以外の実数 x,y は存在しない。以上から、条件 $x^3+y^3-6axy=0$ のもとで f が極値をとる原点以外の候補の点は $\binom{3a}{3a}$ のみである。

第 1 象限の点 $\binom{x}{y}$ が $x^3+y^3-6axy=0$ を満たすとき, $x^2+y^2 \leq 18a^2$ であることを示す. u=x+y, v=xy とおけば, $u,v \geq 0$ であり, u=x+y, v=xy を満たす実数 x,y が存在することから $u^2-4v \geq 0$ が成り立つ. ここで, $x^3+y^3-6axy=0$ より, $u^3-3uv-6av=0$ だから $v=\frac{u^3}{3(u+2a)}$ であることから $u^2-4v \geq 0$ に代入して $\frac{u^2(6a-u)}{3(u+2a)} \geq 0$ が得られる. $u \geq 0$ であることに注意すれば $u \leq 6a$ であることがわかる.

一方、 $x^2+y^2=u^2-2v=u^2-\frac{2u^3}{3(u+2a)}=\frac{u^3+6au^2}{3(u+2a)}$ となるため、関数 $g:[0,6a]\to \mathbf{R}$ を $g(t)=\frac{t^3+6at^2}{3(t+2a)}$ で定めれば $x^2+y^2=g(u)$ である。 $g'(t)=\frac{2t((t+3a)^2+3a^2)}{3(t+a)^2}\geqq0$ だから g は単調増加である。 故に $x^2+y^2=g(u)\leqq g(6a)=18a^2$ であることが示された。 $\binom{x}{y}$ が第1象限にあって、条件 $x^3+y^3-6axy=0$ を満たすならば $f\binom{x}{y}\leqq18a^2=f\binom{3a}{3a}$ であるため、f は条件 $x^3+y^3-6axy=0$ のもとで、 $\binom{3a}{3a}$ において極大値 $18a^2$ をとる。

(32) $x^3+xy^2-y^2=0$ ならば $x \neq 1$ であり, $y^2=\frac{x^3}{1-x} \geq 0$ より $0 \leq x < 1$ である.このとき $f\left(\frac{x}{y}\right)=-3x-\frac{1}{x-1}$ だから $\varphi: [0,1) \to \mathbf{R}$ を $\varphi(x)=-3x-\frac{1}{x-1}$ によって定めると $\varphi'(x)=\frac{1-3(x-1)^2}{(x-1)^2}$ となるため, φ は $\left[0,1-\frac{1}{\sqrt{3}}\right]$ で単調に減少し, $\left[1-\frac{1}{\sqrt{3}},1\right)$ で単調に増加する.従って条件 $x^3+xy^2-y^2=0$ のもとで $x \in \left[0,1-\frac{1}{\sqrt{3}}\right]$ ならば $f\left(\frac{x}{y}\right)=\varphi(x) \leq \varphi(0)=f\left(\frac{0}{0}\right)=1$, $x \in \left[1-\frac{1}{\sqrt{3}},1\right)$ ならば $f\left(\frac{x}{y}\right)=\varphi(x) \geq \varphi\left(1-\frac{1}{\sqrt{3}}\right)=f\left(\frac{1-\frac{1}{\sqrt{3}}}{\pm\sqrt{2\sqrt{3}-\frac{10}{3}}}\right)=2\sqrt{3}-3$ となるため,f は $\left(\frac{0}{0}\right)$ で極大値 1 をとり, $\left(\frac{1-\frac{1}{\sqrt{3}}}{\pm\sqrt{2\sqrt{3}-\frac{10}{3}}}\right)$ で極小値 $2\sqrt{3}-3$ をとる.

(33) x,y は条件 $x^2+y^2=1$ を満たすため, $x=\cos t,y=\sin t$ とおける.このとき, $g:[0,2\pi]\to \mathbf{R}$ を $g(t)=f(\frac{\cos t}{\sin t})$ で定めれば, $g(t)=2\sin 2t+1$ だから,g は $\left[0,\frac{\pi}{4}\right]$, $\left[\frac{3\pi}{4},\frac{5\pi}{4}\right]$, $\left[\frac{7\pi}{4},2\pi\right]$ で単調に増加し, $\left[\frac{\pi}{4},\frac{3\pi}{4}\right]$, $\left[\frac{5\pi}{4},\frac{7\pi}{4}\right]$ で単調に減

少するため $\frac{\pi}{4}$, $\frac{5\pi}{4}$ において g は極大であり, $\frac{3\pi}{4}$, $\frac{7\pi}{4}$ において g は極小である. 従って, f は条件 $x^2+y^2=1$ のもとで $\left(\begin{array}{c}\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{array}\right)$, $\left(\begin{array}{c}-\frac{\sqrt{2}}{2}\\-\frac{\sqrt{2}}{2}\end{array}\right)$ において極大値 3 をとり, $\left(\begin{array}{c}\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{array}\right)$, において極小値 -1 をとる.

(34) xy+x-y=0 ならば $x\neq 1$ であり, $y=\frac{1}{1-x}-1$ である. $\varphi:(-\infty,1)\cup(1,\infty)\to \mathbf{R}$ を $\varphi(x)=f\left(\frac{x}{1-x}-1\right)=x^2+\frac{x^2}{(x-1)^2}$ によって定めると $\varphi'(x)=\frac{2x(x-2)(x^2-x+1)}{(x-1)^3}$ だから φ の増減表は次のようになる.

x		0		1		2	
φ'	_	0	+		_	0	+
φ	>	0	7100		$\infty \setminus$	8	7

従って条件 xy + x - y = 0 のもとで f は $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ で極小値 0 をとり, $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$ で極小値 8 をとる.

(35) x,y は条件 $\left(x^{\frac{1}{3}}\right)^2 + \left(x^{\frac{1}{3}}\right)^2 = 1$ を満たすため、 $x = \cos^3 t, y = \sin^3 t$ とおける.このとき、 $g:[0,2\pi] \to \mathbf{R}$ を $g(t) = f\left(\frac{\cos^3 t}{\sin^3 t}\right)$ で定めれば、 $g(t) = \cos^3 t + \sin^3 t$ より、 $g'(t) = 3\sqrt{2}\sin t \cos t \sin\left(t - \frac{\pi}{4}\right)$ である.従って g の増減表は次のようになる.

t	0		$\frac{\pi}{4}$		$\frac{\pi}{2}$		π		$\frac{5\pi}{4}$		$\frac{3\pi}{2}$		2π
g'	0	_	0	+	0	_	0	+	0	_	0	+	0
g	1	>	$\frac{\sqrt{2}}{2}$	7	1	>	-1	7	$-\frac{\sqrt{2}}{2}$	>	-1	7	1

従って、 $0, \frac{\pi}{2}, \frac{5\pi}{4}$ において g は極大であり、それぞれ極大値 $1, 1, -\frac{\sqrt{2}}{2}$ をとり、 $\frac{\pi}{4}, \pi, \frac{3\pi}{2}$ において g は極小であり、それぞれ極小値 $\frac{\sqrt{2}}{2}, -1, -1$ をとる。故に f は条件 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ のもとで、 $\binom{0}{1}, \binom{1}{0}, \binom{-\frac{\sqrt{2}}{4}}{-\frac{\sqrt{2}}{4}}$ においてそれぞれ極大値 $1, 1, -\frac{\sqrt{2}}{2}$ をとり、 $\binom{\frac{\sqrt{2}}{4}}{\frac{\sqrt{2}}{4}}, \binom{-1}{0}, \binom{0}{-1}$ においてそれぞれ極小値 $\frac{\sqrt{2}}{2}, -1, -1$ をとる。

 $(36) \begin{pmatrix} x \\ y \end{pmatrix}$ が条件 $x^2 + xy + y^2 = 1$ を満たすとき, y がとりうる値の範囲は, $x^2 + xy + y^2 = 1$ を x に関する 2 次方程式と みたときに, この方程式が実数解をもつような y の範囲であるため, (判別式) ≥ 0 より, $4-3y^2 \geq 0$ すなわち $|y| \leq \frac{2\sqrt{3}}{3}$ である. 一方 $\binom{x}{y}$ が条件 $x^2 + xy + y^2 = 1$ を満たすとき, $x^2 + xy = 1 - y^2$ だから $f\binom{x}{y} = 1 - y^2 - 2y = 2 - (y+1)^2$ が成り立つ. $|y| \leq \frac{2\sqrt{3}}{3}$ の範囲で y の 2 次関数 $2-(y+1)^2$ は y=-1 のとき最大値 2, $y=\frac{2\sqrt{3}}{3}$ のとき, 最小値 $-\frac{4\sqrt{3}+1}{3}$ をとり, $y=-\frac{2\sqrt{3}}{3}$ のとき, 極小値 $\frac{4\sqrt{3}-1}{3}$ をとる. $x^2 + xy + y^2 = 1$ より y=-1 となる x は 0 と 1 であり, $y=\frac{2\sqrt{3}}{3}$ となる x は $-\frac{1}{\sqrt{3}}$, $y=-\frac{2\sqrt{3}}{3}$ となる x は $\frac{1}{\sqrt{3}}$ であるため, 条件 $x^2 + xy + y^2 = 1$ のもとで f は $\binom{0}{-1}$ と $\binom{1}{-1}$ において最大値 2, $\binom{-\frac{1}{\sqrt{3}}}{\frac{2}{\sqrt{3}}}$ において最小値 $-\frac{4\sqrt{3}+1}{3}$ をとり, $\binom{\frac{1}{\sqrt{3}}}{-\frac{2}{\sqrt{3}}}$ において極小値 $\frac{4\sqrt{3}-1}{3}$ とる.

小値をとり、そのときの点の座標はそれぞれ
$$\begin{pmatrix} \sqrt[3]{\frac{53+19\sqrt{17}}{26}} \\ -\sqrt[3]{\frac{9+2\sqrt{17}}{13}} \end{pmatrix}$$
、 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 、 $\begin{pmatrix} \sqrt[3]{\frac{53-19\sqrt{17}}{26}} \\ -\sqrt[3]{\frac{9-2\sqrt{17}}{26}} \end{pmatrix}$ である。
$$\frac{\sqrt[6]{146+34\sqrt{17}}}{\sqrt[3]{2}} \cos\left(-\tan^{-1}\frac{\sqrt{17}+1}{8}\right) = \frac{8\sqrt[6]{146+34\sqrt{17}}}{\sqrt[3]{2}\sqrt{82+2\sqrt{17}}} = \sqrt[3]{\frac{53+19\sqrt{17}}{26}}$$

$$\frac{\sqrt[6]{146+34\sqrt{17}}}{\sqrt[3]{2}} \sin\left(-\tan^{-1}\frac{\sqrt{17}+1}{8}\right) = -\frac{\left(1+\sqrt{17}\right)\sqrt[6]{146+34\sqrt{17}}}{\sqrt[3]{2}\sqrt{82+2\sqrt{17}}} = -\sqrt[3]{\frac{9+2\sqrt{17}}{13}}$$

$$\frac{\sqrt[6]{146-34\sqrt{17}}}{\sqrt[3]{2}} \cos\left(\pi+\tan^{-1}\frac{\sqrt{17}-1}{8}\right) = -\frac{8\sqrt[6]{146-34\sqrt{17}}}{\sqrt[3]{2}\sqrt{82-2\sqrt{17}}} = \sqrt[3]{\frac{53-19\sqrt{17}}{26}}$$

$$\frac{\sqrt[6]{146-34\sqrt{17}}}{\sqrt[3]{2}} \sin\left(\pi+\tan^{-1}\frac{\sqrt{17}-1}{8}\right) = \frac{(1-\sqrt{17})\sqrt[6]{146-34\sqrt{17}}}{\sqrt[3]{2}\sqrt{82-2\sqrt{17}}} = -\sqrt[3]{\frac{9-2\sqrt{17}}{13}}$$

(38) $x+2\log y+e^xy^2=\log(e^xy^2)+e^xy^2$ だから $z=e^xy^2$ とおけば $x+2\log y+e^xy^2=1$ ならば $\log z+z=1$ である. $g(z)=\log z+z$ で関数 $g:(0,\infty)\to \mathbf{R}$ を定めれば g(1)=1 であり, $g'(z)=\frac{1}{z}+1>0$ だから g は単調増加関数である. 従って g(z)=1 を満たす z>0 は z=1 に限るため $x+2\log y+e^xy^2=1$ は $e^xy^2=1$ すなわち $y=e^{-\frac{x}{z}}$ と同値である. そこで関数 $\varphi:\mathbf{R}\to\mathbf{R}$ を $\varphi(x)=f\left(\frac{x}{e^{-\frac{x}{z}}}\right)=x+e^{-x}$ で定義して, φ の極値を求めればよい. $\varphi'(x)=1-e^{-x}$ より x<0 で $\varphi'(x)<0$, x>0 で $\varphi'(x)>0$ だから φ は $(-\infty,0]$ で単調に減少し, $[0,\infty)$ で単調に増加する. 故に φ は 0 で最小値 1 をとるため, f は (0) で最小値 1 をとる.

(39) 単位球面 $x^2+y^2+z^2=1$ 上の任意の点 $\binom{x}{y}$ は $x=\cos\varphi\sin\theta,\ y=\sin\varphi\sin\theta,\ z=\cos\theta$ と表せる. $g\binom{\varphi}{\theta}=f\binom{\cos\varphi\sin\theta}{\sin\varphi\sin\theta}=\sin^2\theta-\cos^2\theta+4\cos\varphi\sin\theta\cos\theta+4\sin\varphi\sin\theta\cos\theta=2\sqrt{2}\sin\left(\varphi+\frac{\pi}{4}\right)\sin2\theta-\cos2\theta$ に よって関数 g を定めれば、 $\frac{\partial g}{\partial \varphi}=2\sqrt{2}\cos\left(\varphi+\frac{\pi}{4}\right)\sin2\theta,\ \frac{\partial g}{\partial \theta}=4\sqrt{2}\sin\left(\varphi+\frac{\pi}{4}\right)\cos2\theta+2\sin2\theta$ だから $\frac{\partial g}{\partial \varphi}=\frac{\partial g}{\partial \theta}=0$ ならば $\begin{cases}\cos\left(\varphi+\frac{\pi}{4}\right)\sin2\theta=0\ \cdots(i)\end{cases}$ が成り立つ。(i) より $\varphi=\frac{\pi}{4}+n\pi$ または $\theta=\frac{n\pi}{2}$ (n は整数) で ある。 $\varphi=\frac{\pi}{4}+n\pi$ の場合、(ii) より $\tan2\theta=2\sqrt{2}(-1)^{n+1}$ だから $\alpha=\tan^{-1}2\sqrt{2}$ とおけば $\theta=\frac{1}{2}((-1)^{n+1}\alpha+m\pi)$ (m は整数) である。 $\theta=\frac{n\pi}{2}$ の場合、(ii) より $\varphi=-\frac{\pi}{4}+m\pi$ (m は整数) である。故に $\left(\frac{\pi}{2}((-1)^{n+1}\alpha+m\pi)\right)$ において g は極値をとる可能性がある。

 $\frac{\partial^2 g}{\partial \varphi^2} = -2\sqrt{2}\sin\left(\varphi + \frac{\pi}{4}\right)\sin 2\theta, \ \frac{\partial^2 g}{\partial \varphi \partial \theta} = 4\sqrt{2}\cos\left(\varphi + \frac{\pi}{4}\right)\cos 2\theta, \ \frac{\partial^2 g}{\partial \theta^2} = -4\sqrt{2}\sin\left(\varphi + \frac{\pi}{4}\right)\sin 2\theta + 4\cos 2\theta$ సోహి ర

$$|g''\left(\frac{\varphi}{\theta}\right)| = 16\sin^2\left(\varphi + \frac{\pi}{4}\right)\sin^22\theta - 4\sqrt{2}\sin\left(\varphi + \frac{\pi}{4}\right)\sin4\theta - 32\cos^2\left(\varphi + \frac{\pi}{4}\right)\cos^22\theta$$

 $(40) \ \ \text{単位球面} \ \ x^2+y^2+z^2=1 \ \ \text{上の任意の点は} \left(\begin{matrix} \cos\varphi\sin\theta\\\sin\varphi\sin\theta\\\cos\theta \end{matrix} \right) \\ (0 \leq \varphi < 2\pi, \ 0 \leq \theta \leq \pi) \ \ \text{と表せる.} \ \ \text{まず} \ f \ \ \text{は条件}$ $x^2+y^2+z^2=1 \ \ \text{のもとで, 点} \ \ \boldsymbol{n} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \ \boldsymbol{s} = \begin{pmatrix} 0\\0\\-1 \end{pmatrix} \ \ \text{で極値をとらないことをみる.} \ \ \boldsymbol{p}_{\theta} = \begin{pmatrix} \frac{\sin\theta}{\sqrt{2}}\\\frac{\sin\theta}{\sqrt{2}}\\\cos\theta \end{pmatrix}, \ \boldsymbol{q}_{\theta} = \begin{pmatrix} -\frac{\sin\theta}{\sqrt{2}}\\\frac{\sin\theta}{\sqrt{2}}\\\cos\theta \end{pmatrix}$ $\text{とおくと} \ \|\boldsymbol{p}_{\theta}-\boldsymbol{n}\| = \|\boldsymbol{q}_{\theta}-\boldsymbol{n}\| = 2 \left|\sin\frac{\theta}{2}\right|, \ \|\boldsymbol{p}_{\theta}-\boldsymbol{s}\| = \|\boldsymbol{q}_{\theta}-\boldsymbol{s}\| = 2 \left|\cos\frac{\theta}{2}\right| \ \ \text{だから, sin, cos} \ \mathcal{O}$ 連続性により、任

意の $\varepsilon>0$ に対して $0<\delta<\frac{\pi}{2}$ で、条件 $\lceil | heta|<\delta$ ならば $\|m{p}_{ heta}-m{n}\|=\|m{q}_{ heta}-m{n}\|<\varepsilon$ 」と条件 $\lceil | heta-\pi|<\delta$ なら は $\|m{p}_{ heta}-m{s}\|=\|m{q}_{ heta}-m{s}\|<arepsilon$ 」を満たすものがある.一方, $f(m{p}_{ heta})=rac{1}{2}\sin^2 heta\cos heta$, $f(m{q}_{ heta})=-rac{1}{2}\sin^2 heta\cos heta$ だから, $0<| heta|<\delta$ ならば $f(m{p}_{ heta})>0$ かつ $f(m{q}_{ heta})<0$ が成り立ち, $0<| heta-\pi|<\delta$ ならば $f(m{p}_{ heta})<0$ かつ $f(m{q}_{ heta})>0$ が成り 立つため, f は条件 $x^2+y^2+z^2=1$ のもとで, 点 $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\-1 \end{pmatrix}$ で極値をとらないことがわかる. $g\left(egin{array}{c} \varphi \ \theta \end{array}
ight) = f\left(egin{array}{c} \cos \varphi \sin \theta \ \sin \varphi \sin \theta \ \cos \theta \end{array}
ight) = rac{1}{2}\sin 2\varphi \sin^2 \theta \cos \theta$ で関数 g を定めれば、上のことから、 $\varphi \in \mathbf{R},\ 0 < \theta < \pi$ の範囲で $\frac{\cos\theta}{g}$ の極値を調べればよい. $\frac{\partial g}{\partial \varphi} = \cos 2\varphi \sin^2 \theta \cos \theta$, $\frac{\partial g}{\partial \theta} = \frac{1}{2} \sin 2\varphi \sin \theta (2 - 3 \sin^2 \theta)$ だから $\frac{\partial g}{\partial \varphi} = \frac{\partial g}{\partial \theta} = 0$ ならば $\begin{cases} \cos 2\varphi \sin^2 \theta \cos \theta = 0 & \cdots (i) \\ \sin 2\varphi \sin \theta (2 - 3\sin^2 \theta) = 0 & \cdots (ii) \end{cases}$ が成り立つ. $0 < \theta < \pi$ だから $\sin \theta > 0$ であるため, (i) より $\varphi = \frac{\pi}{4} + \frac{n\pi}{2}$ ま たは $\theta = \frac{\pi}{2}$ である. $\varphi = \frac{\pi}{4} + \frac{n\pi}{2}$ の場合, $\sin \theta = \frac{\sqrt{6}}{3}$ だから $\alpha = \sin^{-1} \frac{\sqrt{6}}{3}$ とおけば $\theta = \alpha, \pi - \alpha$ である. $\theta = \frac{\pi}{2}$ の場合, (ii) より $\varphi = \frac{n\pi}{2}$ (n は整数) である. 故に $\left(\frac{\pi}{4} + \frac{n\pi}{\alpha^2}\right), \left(\frac{\pi}{4} + \frac{n\pi}{2}\right), \left(\frac{n\pi}{2}\right)$ において g は極値をとる可能性がある. $\frac{\partial^2 g}{\partial \varphi^2} = -2\sin 2\varphi \sin^2 \theta \cos \theta, \frac{\partial^2 g}{\partial \varphi \partial \theta} = \cos 2\varphi \sin \theta (2 - 3\sin^2 \theta), \frac{\partial^2 g}{\partial \theta^2} = \frac{1}{2}\sin 2\varphi \cos \theta (2 - 9\sin^2 \theta)$ だから $\left|g''\left(\frac{n\pi}{\frac{\pi}{2}}\right)\right| = \cos 2\varphi \sin \theta$ -1<0 となるため,g は $\left(\frac{n\pi}{2}\right)$ で極値をとらない. $\cos \alpha = \frac{\sqrt{3}}{3}$ より $\left|g''\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)\right| = \left|g''\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)\right| = \frac{8}{9} > 0$, $\frac{\partial^2 g}{\partial \varphi^2} \left(\begin{smallmatrix} \frac{\pi}{4} + \frac{n\pi}{2} \\ 0 \end{smallmatrix} \right) = \frac{4\sqrt{3}(-1)^{n+1}}{9}, \\ \frac{\partial^2 g}{\partial \varphi^2} \left(\begin{smallmatrix} \frac{\pi}{4} + \frac{n\pi}{2} \\ \pi - \alpha \end{smallmatrix} \right) = \frac{4\sqrt{3}(-1)^n}{9}$ だから n が偶数ならば g は $\left(\begin{smallmatrix} \frac{\pi}{4} + \frac{n\pi}{2} \\ \alpha \end{smallmatrix} \right)$ において極大値をとり、 $\left(rac{\pi}{4}+rac{n\pi}{2}
ight)$ において極小値をとる. また n が奇数ならば g は $\left(rac{\pi}{4}+rac{n\pi}{2}
ight)$ において極小値をとり, $\left(rac{\pi}{4}+rac{n\pi}{2}
ight)$ において極大 値をとる. 以上から f は条件 $x^2+y^2+z^2=1$ のもとで, $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$, $\begin{pmatrix} -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$, $\begin{pmatrix} -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{pmatrix}$, において極大値 $\frac{\sqrt{3}}{9}$ をとり、 $\begin{pmatrix} -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ 1 \end{pmatrix}$ 、 $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ 1 \end{pmatrix}$ 、 $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ 1 \end{pmatrix}$ 、 $\begin{pmatrix} -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ 1 \end{pmatrix}$ において極小値 $-\frac{\sqrt{3}}{9}$ をとる. $(41) W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^4 \ \middle| \ x^2 + z^2 + w^2 = 4, \ y^2 + 2z^2 + 3w^2 = 9 \right\}$ とおき, $g: Z \to \mathbf{R}$ を $g(\frac{z}{w}) = 13 - 3z^2 - 4w^2$ で定 めれば、任意の $\boldsymbol{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in W$ に対して $x^2 = 4 - z^2 - w^2$, $y^2 = 9 - 2z^2 - 3w^2$ だから $f(\boldsymbol{x}) = x^2 + y^2 = 13 - 3z^2 - 4w^2$ が成り立つため、 $m{x}\in W$ ならば $0\leq f(m{x})\leq 13$ である. $f(m{x})=x^2+y^2=13$ が成り立つための条件は $3z^2+4w^2=0$ すなわち z=w=0 であり、このとき $x=\pm 2,\,y=\pm 3$ (複号任意) である. $f(x)=x^2+y^2=0$ が成り立つための条 件は $z^2+w^2=4$ かつ $2z^2+3w^2=9$ であるが、これは $z=\pm\sqrt{3}$ かつ $w=\pm1$ (複号任意) と同値である. 故に f の 定義域を W に制限した関数は $\begin{pmatrix} 0\\0\\\pm\sqrt{3}\end{pmatrix}$ (複号任意) で最小値 0 をとり, $\begin{pmatrix} \pm 2\\\pm 3\\0\\0\end{pmatrix}$ (複号任意) で最大値 13 をとる. $m{p} = inom{p_1}{p_2}{p_3} \in W$ かつ $m{p}
eq inom{\pm 2}{\pm 3}{\pm 3}{0}, inom{0}{\pm \sqrt{3}}{\pm \sqrt{3}}$ ならば $(p_3) \in Z$ かつ $(p_3) \neq (0), inom{\pm \sqrt{3}}{\pm 1}$ である. $p_3^2 + p_4^2 < 4$ かつ $2p_3^2 + 3p_4^2 < 9$ の場合, $p_1 = a\sqrt{4 - p_3^2 - p_4^2}, \ p_2 = b\sqrt{9 - 2p_3^2 - 3p_4^2}$ を満たすように $a,b = \pm 1$ を選び, れば $t \in (1-\lambda,1)$ に対して $\alpha(t) \in W$ であり, $\alpha(0) = \mathbf{p}$, $f(\alpha(t)) = 13 - (1-t)^2(3p_3^2 + 4p_4^2)$ が成り立つ. $f(\alpha(t))$ は t=0 の前後で単調に増加するため, f の定義域を W に制限した関数は p で極値を取らない. $p_3^2+p_4^2=4$ また は $2p_3^2+3p_4^2=9$ の場合,写像 $\beta:[0,1)\to \mathbf{R}^4$ を $\beta(t)=\begin{pmatrix} a\sqrt{4-(1-t)^2(p_3^2+p_4^2)}\\b\sqrt{9-(1-t)^2(2p_3^2+3p_4^2)}\\(1-t)p_3\end{pmatrix}$ で定義すれば $t\in[0,1)$ に対して $\beta(t) \in W$ であり, $\beta(0) = p$, $f(\beta(t)) = 13 - (1-t)^2(3p_3^2 + 4p_4^2)$ が成り立つ. $f(\beta(t))$ は [0,1) で単調に増加するた め, f の定義域を W に制限した関数は p で極大値を取らない. $p_3^2+p_4^2=4$ かつ $2p_3^2+3p_4^2<9$ の場合, $p_3=2\cos\sigma$, $p_4=2\sin\sigma$ を満たす $-\frac{\pi}{2}\leq\sigma<\frac{3\pi}{2}$ を選ぶ. このとき $2p_3^2+3p_4^2<9$ より $\sigma\in\left(-\frac{\pi}{6},\frac{\pi}{6}\right)\cup\left(\frac{5\pi}{6},\frac{7\pi}{6}\right)$ だから $|t-\sigma|<\mu$

ならば $|\cos t| > \frac{\sqrt{3}}{2}$ を満たす $\mu > 0$ が存在する.写像 $\gamma: (\sigma - \mu, \sigma + \mu) \to \mathbf{R}^4$ を $\gamma(t) = \begin{pmatrix} \frac{0}{b\sqrt{4\cos^2 t - 3}} \\ 2\cos t \end{pmatrix}$ で定義す

れば $t \in (\sigma - \mu, \sigma + \mu)$ に対して $\gamma(t) \in W$ であり, $\gamma(0) = \mathbf{p}$, $f(\gamma(t)) = 4\cos^2 t - 3$ が成り立つ. $\sigma = 0$ または π の 場合, $f(\gamma(t))$ は σ で極大になるため, f の定義域を W に制限した関数は p で極小値を取らない. $\sigma \neq 0, \pi$ の場合, $f(\gamma(t))$ は σ 前後で狭義単調増加関数または狭義単調減少関数になるため, f の定義域を W に制限した関数は $m{p}$ で極 値を取らない. $p_3^2+p_4^2<4$ かつ $2p_3^2+3p_4^2=9$ の場合, $p_3=\frac{3}{\sqrt{2}}\cos au$, $p_4=\sqrt{3}\sin au$ を満たす $-\pi \le au < \pi 2$ を選

ぶ. このとき $p_3^2 + p_4^2 < 4$ より $|\cos \tau| < \frac{\sqrt{6}}{3}$ だから $|t - \tau| < \nu$ ならば $|\cos t| < \frac{\sqrt{6}}{3}$ を満たす $\nu > 0$ が存在する. 写像 $\delta: (\tau - \nu, \tau + \nu) \to \mathbf{R}^4$ を $\delta(t) = \begin{pmatrix} a\sqrt{1-\frac{3}{2}\cos^2 t} \\ 0\\ \frac{3}{\sqrt{2}\cos t} \\ \sqrt{3}\sin t \end{pmatrix}$ で定義すれば $t \in (\tau - \nu, \tau + \nu)$ に対して $\delta(t) \in W$ であり、

 $\delta(0)=m p,\,f(\delta(t))=1-rac{3}{2}\cos^2t\,$ が成り立つ. $au=\pmrac{\pi}{2}\,$ の場合, $f(\delta(t))$ は au で極大になるため, f の定義域を W に制 限した関数は p で極小値を取らない. $\tau \neq 0, \pi$ の場合, $f(\delta(t))$ は τ 前後で狭義単調増加関数または狭義単調減少関数 になるため, f の定義域を W に制限した関数は $oldsymbol{p}$ で極値を取らない. 以上から, f の定義域を W に制限した関数は $\begin{pmatrix} 0 \\ 0 \\ \pm \sqrt{3} \\ -1 \end{pmatrix}$, $\begin{pmatrix} \pm 2 \\ \pm 3 \\ 0 \\ 0 \end{pmatrix}$ 以外の点では極値をとらない.

[別解] $\boldsymbol{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \boldsymbol{R}^4$ に対し, $F: \boldsymbol{R}^4 \to \boldsymbol{R}^2$ を $F(\boldsymbol{x}) = \begin{pmatrix} x^2 + z^2 + w^2 - 4 \\ y^2 + 2z^2 + 3w^2 - 9 \end{pmatrix}$ で定義すると $F'(\boldsymbol{x}) = \begin{pmatrix} 2x & 0 & 2z & 2w \\ 0 & 2y & 4z & 6w \end{pmatrix}$ で ある. $x^2+z^2+w^2=4$ かつ $y^2+2z^2+3w^2=9$ かつ $\mathrm{rank}\,F'(x)\leq 1$ を満たす $x\in \mathbf{R}^4$ があるとき, F'(x) の 第 1 行と第 2 行は零でないため、0 でない実数 r で $r(2x \ 0 \ 2z \ 2w) = (0 \ 2y \ 4z \ 6w)$ を満たすものがある. このとき、 2rx = y = 2z(r-2) = 2w(r-3) = 0 となるため, x = y = 0 であり, z w の一方は 0 でない. よって r = 2 または r=3 であるが, r=2 ならば w=0 だから $x^2+z^2+w^2=4$ かつ $y^2+2z^2+3w^2=9$ から $z^2=4$ かつ $2z^2=9$ が 成り立つことになって矛盾が生じる. 同様に r=3 ならば z=0 だから $x^2+z^2+w^2=4$ かつ $y^2+2z^2+3w^2=9$ から $w^2=4$ かつ $3w^2=9$ が成り立つことになって矛盾が生じる. 故に $x^2+z^2+w^2=4$ かつ $y^2+2z^2+3w^2=9$ ならば rank F'(x)=2 となるため、この条件のもとで f が x で極値をとるとすれば $f'(x)=(\lambda \mu)F'(x)$ を満たす実 数 λ , μ がある. $f'(\mathbf{x}) = (2x 2y 0 0)$ だから次の関係式が成り立つ.

$$\begin{cases} x^2 + z^2 + w^2 = 4 & \cdots (i) \\ y^2 + 2z^2 + 3w^2 = 9 & \cdots (ii) \\ 2x = 2\lambda x & \cdots (iii) \\ 2y = 2\mu y & \cdots (iv) \\ 0 = 2z(\mu + 2\lambda) & \cdots (v) \\ 0 = 2w(\mu + 3\lambda) & \cdots (vi) \end{cases}$$

x = y = 0 ならば (i), (ii) より $w = \pm 1$, $z = \pm \sqrt{3}$ である.

 $x=0, y\neq 0$ ならば (iv) より $\mu=1$ であり, (i) より z, w の少なくとも一方は 0 ではない. $w\neq 0$ ならば (vi) から $\lambda = -\frac{1}{3}$, (v) から z = 0 である. このとき (i) より $w^2 = 4$ となるため, (ii) より $y^2 = -3$ が得られて y が実数である ことと矛盾する. よって w = 0 となるため, (i) より $z = \pm 2$, (ii) より $y = \pm 1$ である.

 $x \neq 0, y = 0$ ならば (iii) より $\lambda = 1$ であり, (ii) より z, w の少なくとも一方は 0 ではない. $z \neq 0$ ならば (v) から $\lambda = -\frac{1}{2}$, (vi) から w = 0 である. このとき (ii) より $z^2 = \frac{9}{2}$ となるため, (i) より $x^2 = -\frac{1}{2}$ が得られて x が実数であ ることと矛盾する. よって z=0 となるため, (ii) より $w=\pm\sqrt{3}$, (i) より $x=\pm1$ である.

 $x,y \neq 0$ ならば (iii), (iv) より $\lambda = \mu = 1$ となるため, (v), (vi) より z = w = 0 である. 従って (i), (ii) から $x = \pm 2, y = \pm 3$ である.

以上から f が条件 $x^2+z^2+w^2=4$ かつ $y^2+2z^2+3w^2=9$ のもとで極値をとる可能性があるのは $\begin{pmatrix} 0\\0\\\pm\sqrt{3}\\\pm1 \end{pmatrix}$, $\begin{pmatrix} \frac{1}{0}\\\pm2\\0 \end{pmatrix}$, $\begin{pmatrix} \frac{1}{0}\\0\\\pm\sqrt{3} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{2}\\0\\0\\\pm\sqrt{3} \end{pmatrix}$ (複号任意) のいずれかである. $\begin{pmatrix} 0\\0\\\pm\sqrt{3}\\\pm1 \end{pmatrix}$ において f は最小値 0 をとるため,この点で f は条件 $x^2+z^2+w^2=4$ かつ $y^2+2z^2+3w^2=9$ のもとでの極小値をとる.また, $x^2+z^2+w^2=4$ と $y^2+2z^2+3w^2=9$ を辺々加えて移項すれば, $f\begin{pmatrix} x\\y\\x\\w \end{pmatrix}=x^2+y^2=13-3z^2-4w^2 \leq 13=f\begin{pmatrix} \frac{1}{2}\\0\\0\\0 \end{pmatrix}$ だから f は $\begin{pmatrix} \frac{1}{2}\\0\\0\\0 \end{pmatrix}$ において条件

 $x^2 + z^2 + w^2 = 4$ かつ $y^2 + 2z^2 + 3w^2 = 9$ のもとでの最大値をとる.

 $D = \{ \begin{pmatrix} z \\ w \end{pmatrix} \in \mathbf{R}^2 | z^2 + w^2 \le 4, \ 2z^2 + 3w^2 \le 9 \}$ とおき, $g : D \to \mathbf{R}$ を $g(\frac{z}{w}) = 13 - 3z^2 - 4w^2$ で定める. $z \in [-2,2]$ ならば $\binom{z}{0} \in D$ であり、このとき $g\binom{z}{0} = 13 - 3z^2 \geqq 1 = g\binom{\pm 2}{0}$ であるため、g は $\binom{\pm 2}{0}$ において極大で はない. また, $t \in \left[-\frac{\pi}{6}, \frac{\pi}{6} \right] \cup \left[\frac{5\pi}{6}, \frac{7\pi}{6} \right]$ ならば $\left(\frac{2\cos t}{2\sin t} \right) \in D$ であり, このとき $g\left(\frac{2\cos t}{2\sin t} \right) = 13 - 12\cos^2 t - 16\sin^2 t = 13\cos^2 t 1-4\sin^2t \leq 1=g\left({ \pm 2 \atop 0} \right)$ であるため, g は $\left({ \pm 2 \atop 0} \right)$ において極小ではない. $w \in \left[-\sqrt{3},\sqrt{3} \right]$ ならば $\left({ 0 \atop w} \right) \in D$ であり, この とき $g(\frac{0}{w})=13-4w^2 \geq 1=g(\frac{0}{\pm\sqrt{3}})$ であるため、g は $\left(\frac{0}{\pm\sqrt{3}}\right)$ において極大ではない。また、 $t\in\left[\frac{\pi}{4},\frac{3\pi}{4}\right]\cup\left[\frac{5\pi}{4},\frac{7\pi}{4}\right]$ ならば $\left(\frac{3}{\sqrt{3}}\cos t\right)\in D$ であり、このとき $g\left(\frac{3}{\sqrt{3}}\cos t\right)=13-\frac{27}{2}\cos^2 t-12\sin^2 t=1-\frac{3}{2}\cos^2 t \leq 1=g\left(\frac{0}{\pm\sqrt{3}}\right)$ であ るため, g は $\begin{pmatrix} 0 \\ \pm \sqrt{3} \end{pmatrix}$ において極小ではない.

以上から、g は $\binom{\pm 2}{0}$ 、 $\binom{0}{\pm \sqrt{3}}$ において極値をとらない. ここで、 $\binom{x}{y}$ $\underset{z}{\sim}$ \in \mathbf{R}^4 が $x^2+z^2+w^2=4$ かつ $y^2+2z^2+3w^2=9$ を満たすならば $f\begin{pmatrix} x\\y\\z\\w \end{pmatrix}=g\begin{pmatrix} z\\w \end{pmatrix}$ が成り立つことから、f は $\begin{pmatrix} 0\\\pm 1\\\pm 2\\0 \end{pmatrix}$ 、 $\begin{pmatrix} \pm 1\\0\\0\\0\\0 \end{pmatrix}$ において、条件 $x^2 + z^2 + w^2 = 4$ かつ $y^2 + 2z^2 + 3w^2 = 9$ のもとでの極値をとらない

- 2. (1) 直線の方向ベクトルを $\binom{\cos t}{\sin t}$ とすれば $\binom{a}{b}$ を通る直線の方程式は $\sin t(x-a) \cos t(y-b) = 0$ だから、この直 線と原点の距離は $|a\sin t - b\cos t| = \sqrt{a^2 + b^2}|\sin(t-\alpha)|$ (ただし α は $0 \le \alpha < 2\pi$, $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$, $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$) を満たす) である. 従って, $t=\alpha+\frac{\pi}{2}+n\pi$ (n は整数) のときに原点からの距離が最大になる. このとき, 直線の方程式 は a(x-a)+b(y-b)=0 となり、これは $\binom{a}{b}$ を通り、 $\binom{a}{b}$ に垂直な直線である.
- (2) 楕円 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 上の任意の点 $\binom{x}{y}$ は $x = a \cos t$, $y = b \sin t$ $(0 \le t < 2\pi)$ と表せる. この点と定点 $\binom{c}{0}$ との距 離の 2 乗を f(t) とおけば $f(t) = (a\cos t - c)^2 + b^2\sin^2 t = (a^2 - b^2)\cos^2 t - 2ac\cos t + b^2 + c^2$ である. a = b の場合, $f(t)=-2ac\cos t+a^2+c^2$ だから c=0 ならば f は値が常に a^2 である定数値関数であり, c>0 ならば f は t=0 で 最小値 $(a-c)^2$ をとり, $t=\pi$ で最大値 $(a+c)^2$ をとる. $a\neq b$ の場合, $f(t)=(a^2-b^2)\left(\cos t-\frac{ac}{a^2-b^2}\right)^2+\frac{b^2(a^2-b^2-c^2)}{a^2-b^2}$ だから f の最大値・最小値は以下のように与えられる.
 - ・ $ac \ge b^2 a^2 > 0$ の場合, f は $t = \pi$ で最大値 $(a+c)^2$ をとり, t = 0 で最小値 $(a-c)^2$ をとる.
 - ・ $b^2-a^2>ac$ の場合, f は $t=\cos^{-1}\frac{ac}{a^2-b^2}$, $2\pi-\cos^{-1}\frac{ac}{a^2-b^2}$ で最大値 $\frac{b^2(a^2-b^2-c^2)}{a^2-b^2}$ をとり, t=0 で最小値
 - ・ $a^2-b^2>ac$ の場合, f は $t=\cos^{-1}\frac{ac}{a^2-b^2}$, $2\pi-\cos^{-1}\frac{ac}{a^2-b^2}$ で最小値 $\frac{b^2(a^2-b^2-c^2)}{a^2-b^2}$ をとり, $t=\pi$ で最大値
 - ・ $ac \ge a^2 b^2 > 0$ の場合, f は $t = \pi$ で最大値 $(a+c)^2$ をとり, t = 0 で最小値 $(a-c)^2$ をとる.

以上から,楕円 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 上の点に対して,定点 $\binom{c}{0}$ との距離を対応させる関数を d とすれば,d の最大値・最小値は以下のように与えられる.

- ・ a=b かつ c=0 の場合, d は値が常に a である定数値関数である.
- ・ $ac \ge |a^2-b^2|$ かつ $c \ne 0$ の場合, d は $\begin{pmatrix} -a \\ 0 \end{pmatrix}$ で最大値 a+c をとり, $\begin{pmatrix} a \\ 0 \end{pmatrix}$ で最小値 |a-c| をとる.

・
$$b^2-a^2>ac$$
 の場合, d は $\left(\frac{\frac{a^2c}{a^2-b^2}}{\pm \frac{b\sqrt{(a^2-b^2)^2-a^2c^2}}{a^2-b^2}}\right)$ で最大値 $b\sqrt{\frac{a^2-b^2-c^2}{a^2-b^2}}$ をとり, $\binom{a}{0}$ で最小値 $|a-c|$ をとる.

・
$$b^2-a^2>ac$$
 の場合, d は $\left(\frac{\frac{a^2c}{a^2-b^2}}{\pm\frac{b\sqrt{(a^2-b^2)^2-a^2c^2}}{a^2-b^2}}\right)$ で最大値 $b\sqrt{\frac{a^2-b^2-c^2}{a^2-b^2}}$ をとり, $\binom{a}{0}$ で最小値 $|a-c|$ をとる. ・ $a^2-b^2>ac$ の場合, d は $\left(\frac{\frac{a^2c}{a^2-b^2}}{\pm\frac{b\sqrt{(a^2-b^2)^2-a^2c^2}}{a^2-b^2}}\right)$ で最小値 $b\sqrt{\frac{a^2-b^2-c^2}{a^2-b^2}}$ をとり, $\binom{-a}{0}$ で最大値 $a+c$ をとる.