CHARACTER FORMULA FOR THE SUPERCUSPIDAL
REPRESENTATIONS OF
GL;, | A PRIME # p

TETSUYA TAKAHASHI

ABSTRACT. The article gives a character formula for the irreducible supercuspidal rep-
resentation of GL;(F') for F' a local field of the residual characteristic p # [.

Introduction

Let [ be a prime, A a central simple algebra of dimension /? over a non-archimedean
local field F and E/F an extension of degree [ in A. Recall that any compact (mod
center) Cartan subgroup of A* is isomorphic to E* for some extension E/F of degree
. As is well-known ([15], [5]), any irreducible supercuspidal representation is obtained
from a quasi-character of E*. The aim of this paper is to get a character formula for the
irreducible supercuspidal representations of A* on the set of elliptic regular elements in
A*. To calculate the character on the split torus is another problem. See Murnaghan’s
papers ([16], [17] and [18]) for this topic. We only remark that the character value on the
elliptic regular conjugacy classes determines uniquely the supercuspidal representation.

When E/F is unramified, a character formula was obtained in [21]. Therefore in this
paper we treat the case E//F is ramified. When the residual characteristic p of F' equals
to [, the ramification is wild. This case is very hard to treat (see e.g. [22]). In this paper,
we assume p # [. Since the case [ = 2 was solved in [13], we assume [ is odd. We note
that A is isomorphic to a division algebra D = D; of dimension [? over F or the algebra
M, (F) of I x [ matrices over F'.

Let D,, be a division algebra of dimension n? over F'. Deligne-Kazhdan-Vignéras [8] and
Rogawski [20] proved an abstract matching theorem: there is a bijection between the set
of equivalence classes of irreducible representations of D, and that of essentially square-
integrable representations of GL,, (F) which preserves the characters up to (—1)"~'. In the
tame case, i.e., when n is prime to the residual characteristic of F', Moy [15] has proved
that there is a bijection between the same sets as above using the concrete construction of
the representations given by Howe [12]. Henniart [10] has shown that two correspondences
coincide when n = [ # p. Thus we only treat the GL case.

In the earlier paper [21], the author gave a character formula of the representation of
GL;(F) and D] which is obtained from a quasi-character of E* where FE is an unramified
extension of F' with degree [. (When [ = 2, the character formula is given in [13]). Then
we essentially use the fact that E/F is a Galois extension. In our case, we need to treat
the case where E/F is non-Galois. In order to treat the non-Galois case, we use the

Date: 2002.1.20 (Revised Version).
2000 Mathematics Subject Classification. Primary 22E50, Secondary 11F70.
Key words and phrases. character formula, supercuspidal representation.
Partially supported by Grant-in-Aid for Scientific Research (C) (No.12640035), Japan Society for the
Promotion of Science. .
1



2 TETSUYA TAKAHASHI

result of Bushnell-Henniart [3] on the base change lift of simple characters. Since the base
change lift is available only for GL case, we do not treat the division algebra case directly.
In addition, the formula of the character near the conductor becomes simpler than that of
the division algebra case (see Lemma 2.5 and Theorem 4.2 (d) in [6]). Our main result is
Theorem 3.12. As in the unramified case, the analogue of Weyl’s character formula holds
for our formula. This does not hold when [ = p (cf. [23]).

Section 1 is devoted to the review of the construction of an irreducible supercuspidal
representation my (resp. my) of GLy(F') (resp. D;) from a generic quasi-character 6 of E*
and the known results about the representation. We note that my is not always monomial,
i.e., induced from a one-dimensional representation, but it can be written as a Q-linear
combination of monomial representations. In fact my is written as a Q-linear combination
of the forms indgL’(F) py where H is a compact mod center subgroup of GL;(F') and py is
a quasi-characters of H.

In section 2, we compute the character of my up to some root numbers. Let G = GL,;(F),
B the normalizer of an Iwahori subgroup of G containing H and 79 = ind5 pg. Since we
treat only elliptic regular conjugacy classes, we consider the character ., on L* where
L/F are extensions of fields of degree . Moreover the case L = E is essential. By the
Frobenius formula and the result of Kutzko ([14]), we have only to calculate the sum

X (@) =Y polaza™)

a€H\B

for x € F in order to get the character formula of my. Therefore it is essential to know
when axa™' € H, which is determined in Lemma 2.1. From this, we get the character
formula of 7y except near the conductor (Proposition 2.2). But this formula contains the
Gauss sum part G(y, j), which is calculated later. The exceptional part can be calculated
directly by taking the explicit matrix form of E* (Lemma 2.4). Except this lemma, there
is no new result in this section. But the proof becomes short and simple. Moreover since
we use the property “intertwining implies conjugacy ”of E/F-minimal (very cuspidal in
the terminology of Carayol [4]) element as the key tool, the result may be extended to
GL,, at least when n is prime to p. Section 3 is devoted to the calculation of the Gauss
sum part G(y, 7). It appears in the character formula on E*. For this purpose, it is the
point that we have only to treat the character of my on U = F*(1 + Pg) — F*(1 + P%).
For this calculation, we use the E*-module structure of various objects. We first assume
E/F is a Galois extension since E*-module structure can be described easily for this
case. This part is analogous to section 1 of [21], but everything becomes easier since we
have only to treat Uf. When E/F is non-Galois, we use the base change lift. Let ¢ be
a primitive [-th root of unity and L = F({). Then L is an unramified extension of F'
and FL/L is Galois. Therefore we can use the tools of the Galois case for GL;(L). Let
Gal(L/F) = (7). By the result of Bushnell-Henniart [3], there is a base change lift 1, of
ne to H} such that the twisted trace of n;, by 7 gives the trace of ny. (See Proposition 3.7
and Lemma 3.8). We remark that we need not assume the characteristic of F' is 0 since we
do not use the Arthur-Clozel base change lift [1]. The method of calculating the twisted
trace of 7y, is similar to that of Galois case. The complete character formula is stated as
Theorem 3.12.

At the end of this introduction, we compare our formula with the known results. The
same type of character formula for the division algebra case was given by Corwin, Moy
and Sally, Jr. [6] and for GL; case by Debacker [7]. Their formulas agree with the result
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given in section 2. It contains some root number associated with a quadratic form. They
have shown that this root number is a root of unity when p # 2. In this paper, we have
determined it completely including the case p = 2 in section 3. Moreover we find the
Kloosterman sum appears in the character formula. These are new results of this paper.
In [23], the author gave the character formula of 7y for GL3 by using the decomposition
of my as E*-module. But this needs the explicit matrix form of an inverse matrix which
is hard to treat for large . We can simplify the proof of the main theorem, although we
treat a general prime /.

Notation

Let F' be a non-archimedean local field. We denote by Op, Pr, wr, kr and vp the
maximal order of F', the maximal ideal of O, a prime element of P, the residue field
of F' and the valuation of F' normalized by vp(wr) = 1. We set ¢ to be the number of
elements in kr. Hereafter we fix an additive character ¢ of F' whose conductor is Pp, i.e.,
1 is trivial on Pr and not trivial on Op. For an extension F over F', we denote by trg,
ng the trace and norm to F' respectively. We set ¥y = ¥ o trg. The trace of matrix is
denoted by Tr. For an irreducible admissible representation m of GL;(F’), the conductoral
exponent of 7 is defined to be the integer f(7) such that the local constant (s, 7, 1)) of
Godement-Jacquet [9] is the form ag=s(/(™=0.

We call m minimal if

f(x) = min f(r @ (0 Nv)),

where 7 runs through the quasi—Acharacters of F*. Let GG be a totally disconnected, locally
compact group. We denote by G the set of (equivalence classes of) irreducible admissible
representations of G. For a closed subgroup H of G and a representation p of H, we
denote by Ind$ p (resp. ind% p) the induced representation (resp. compactly induced
representation) of p to G. For a representation 7 of G, we denote by 7|y the restriction
of mto H.

1. CONSTRUCTION OF THE REPRESENTATION

Let [ # p be an odd prime and F a ramified extension of F' of degree [. Then E can be
embedded into M;(F') and , up to conjugacy, the embedding is unique. Let G = GL;(F).
In this section, we review the construction of supercuspidal representations of G which are
parameterized by the quasi-characters of E*. Of course, this construction is well-known

([4], [15]).

Definition 1.1. Let 6 be a quasi-character of E* and f(#) the exponent of the conductor
of 6 i.e. the minimum integer such that Kerd C 1+ Py;. Then 6 is called generic if

f(6) # 1 mod l. For a generic character 6 of E*, ~y € P]i:f & _ szf @ is defined by

(1.1) 0(1+ ) = Pp(yex) for xe POV
Then F(v9) = E. We denote by E\gxen the set of generic quasi-characters of E*.

We construct an irreducible supercuspidal representation of G = GL,;(F') from 6 € ngen.
For simplicity, we set v = ~yy. Since E/F' is tamely ramified, there exists a prime element
wp of O satisfying w!, € F. Put wp = @, We identifies M;(F) with Endp E and G

with Auty E by the F-basis {wh !, @ ?, ..., wg, 1} of E, which is also an Op-basis of Op.
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By the lattice flag {P%}icz, we construct a maximal compact modulo center subgroup.
The construction of the representation is well-known. For details, see [15].

Definition 1.2. For i € Z, set
Al = {f e My(F)|f(P}) C PL™ forall j € Z}.
Put K = (A°)*,B=E*K and K =1+ A’ for i > 1.

Then K is an Iwahori subgroup of G and B is a normalizer of K. At first we construct
an irreducible representation of B from a generic quasi-character of £*.

Let 6 be a generic quasi-character of E*, i.e., f() = n # 1 mod I. There exists an
element v € Py " such that 8(1+ x) = vg(yz) for € P where m = [(n+1)/2]. Define
1y, on K™ by ¢ (1 + 2) = ¢(Tr(yz)) for v € A™. Then ¢, is a quasi-character of K™.
Put H = EXK™ and define a quasi-character py of H by

(1.2) polh-g) = 6(h),(g)  for heEX, gek™.

Let J be the normalizer of ¢, in B, i.e.,
J=A{a e B[] =1},

where ¢2(z) = ¢y(a wa) for z € K™ Then J = EXK™ where m' = [n/2]. Put

19 = Indj] po.
When n is even, i.e., n = 2m, then J = H = E*K™. By the Clifford theory, 7y is an
irreducible representation of B. We put

(1.3) Ko = Np-

When n is odd, i.e., n = 2m — 1, then J = EXK™ !, Thus 7y is not irreducible. In
this case, we put

1— (%) =0/ .
(14) Ry = lq(l_l)/2 Z Nowx + (i) Mo,

XE(EX/F* (1+PE))
where <%) is the Legendre symbol. The following result is well-known ([15],[19]).

Theorem 1.3. Let the notation be as above. Then kg is an irreducible representation of
B. Put my = indg kg. Then my is an irreducible supercuspidal representation of G such
that

(1) the L-function of mg is 1;
(2) e(mg,¥) = (6, ¢p); in particular f(mg) = f(0) +1;

(3) U{mol0 € E;en} = {m € Ao(G)|fmin(7) Z 0 mod I}, where E runs through iso-
E
morphism classes of ramified extensions of degree | over F and Ao(G) be the set

of equivalent classes of the supercuspidal representations of G.

Remark. If m1 € Ao(G) and fu(m) = 0 mod [, m can be constructed from a regular
quasi-characters of L*, where L is an unramified extension of F' of degree [. The character
formula for such a representation was given in [21].
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Next we construct an irreducible representation of D* = D/ from 6 € Ey . Let f(0) =
n. We recall n # 1 mod [. We define a function . on 1+ PJ by ¥ (1 + 2) = ¢(Tr(yz))
for € Pj. Then 1, is a quasi-character of 1 + Pp. H' = E*(1+ Pj') C D* and define

a quasi-character pj of H' by

(1.5) po(h-g) =0(h)Y,(g)  for heE™, gel+Pp.
When n is even, i.e., n = 2m, we set
(1.6) m = Indb, ).

When n is odd, i.e., n = 2m — 1, we set

- (%) ¢ q
(1.7) ™ = i S ndR g + (7) nd2; s,

XE(EX/F*(1+Pg))”

where (%) is the Legendre symbol. The following result is essentially well-known. (See
[2], [15]).

Theorem 1.4. Let the notation be as above. Then m, is an irreducible minimal represen-
tation of D* such that

. n— — l_
(1) the degree of 7y is ¢~ 1)/2(%_—11);

(2) e(mp,v) = e(0,¢g); in particular f(my) = f(0) +1;
(3) Uimlo € EX,} = {7 € D*|fum(7’) # 0 mod I}, where E runs through the
E

1somorphism classes of ramified extensions of degree | over F.

(4) The correspondence y < mg by way of generic quasi-characters of E* is a bijec-
tion and preserves e-factors and conductoral exponents. (This correspondence is
a special case of Howe’s bijection (see [15]).)

On the other hand, there exists an abstract matching theorem, which is called the
Deligne-Kazhdan correspondence ([8], [20]).

Theorem 1.5. There is a bijection between the set of irreducible representations of D*
and the set of essentially square-integrable representations of G which preserves the char-
acters on elliptic reqular elements. In particular, it preserves e-factors and conductoral
exponents.

By the result of Henniart ([10] Theorem 8.1), these two correspondences coincide.

Theorem 1.6. If1 # p is a prime, Howe’s bijection (1.4) coincides with Deligne-Kazhdan
correspondence (1.5) between the set of essentially square-integrable representations of GL;
and the set of irreducible representations of D]

At the end of this section, we quote the result of Kutzko [14] in the form that the
character formula of 7y on elliptic regular elements is essentially given by the one of kyg.

Theorem 1.7. Let x be an elliptic regular element of G.
(1) If F(z)/F is ramified and x ¢ F*(1+ Py ),

Xorg () = Xy ()-
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(2) If F(x)/F is unramified and x ¢ F*(1 + PE‘(Q)]“)’

Xro(x) = 0.
Proof. These are obtained by applying Proposition 5.5 in [14] to our case. O

Remark. Since

. " G)MA@ v € B — F*(1+ Pp),
. Xrg\T) = 1

q(l—1)/2Xn9 (r) » e F*(1+ Pg),

we have only to calculate x,,.

2. CALCULATION OF THE CHARACTER

Now we begin to calculate the characters of the representations constructed in the
previous section. In this section, we shall get a character formula up to some root numbers.
These root numbers are calculated explicitly in the next section.

Hereafter we fix a generic character 6 and put p = pg, 7 = 1y and so on. Since E/F
is a totally tamely ramified extension, there exists a prime element wg of O such that
wh € Pp — P2, Put @}, = wp. As in the previous section, we identify M;(F) with
Endp(E) by the F-basis {wh?!, @h?, ..., wpg, 1}, which is an Op-basis of Op. Thus we
get the explicit matrix forms of various objects:

0 1 O 0
0 0 1 0
(2.1) wp=|: i i
0 0 - 0 1
wr 0 ........ 0
ajy -+ A (IijGOF 1fl<]
(22) K=<1|............ aiiEOE s
ap -+ a aijEPF 1fZ>j
a e QA oo .
(2.3) w0 ") s €O i<
ag - ay aijGPF 1f2>]
a e QA oo - .
(2.4) Al M UV ay € Op ifi<j
. =< | .o 7 s
a - ay a;; € Pp ifi>y

If ¢ =1mod !, F has a primitive [-th root of unity ¢ and E/F is a Galois extension.
Let o be a generator of Gal(E/F) determined by “wp = wgr(. We denote the diagonal
matrix diag(1,¢1 ¢!72, ..., ¢) by & Then € satisfies £ =1 and £z67! = % for x € E.

Define a natural ring morphism R from A° to kb by the identification of A°/A' with
k.. We note that if R(a) = (ag,a1, - ,_1), Rlwgawy') = (a1,as,-- ,a9). For
convenience, we extend the suffix to Z by putting a; = @; mea:;- The next lemma is the
key tool for the character calculation.
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Lemma 2.1. Let x € P, — (F + P;™), g € B and j a positive integer. If grg™' €
EX(1+ A7), then

. E*(1+ A%) if ¢#1 modl,
g Z;BEX(l%—Aj)Sk if ¢g=1 modI.

Proof. We may assume g € Ay by replacing g by wz"g if g € Ay. Let © = @i, for
xo € Op and R(g) = (ao, @1,...,04-1). Then

R(gnglel) = (aoa;la ala;_lh s 7al—1a;_11+i)7
where oy = g mod s for s € Z. Since v & F+ Py, i # 0 mod [. Therefore grg~lz~! € EX
implies
Qg =1 == if ¢#1modl,
ar=Cag (0<k<1l-1) otherwise,

for some integer j. Since (wpé! = (wy, we get:

c EX(1+AY) if ¢=1modl,
I 2;10 E*X(14 ANH¢rR otherwise.

Thus we may assume g — 1 € A* — (Pg™ + A¥1) for k > 1. Put g — 1 = wjgo and
R(g0) = (8o, B1,- .., Bi—1). Since

grg et =14 (g—1) —2(g —1)z~" mod AF!

=1+ wh(g — 2goz™") mod AFT,

R(go — 2g0x™") = (Bo — B, Br = Brsks - -+ Bio1 — Bi-14x). Therefore grg~'a™" € EXK*!
contradicts g — 1 € A* — (PET! 4 AF+1) Tt implies that if grg~'z~' € EXKJ,

E*(1+ A%) if ¢# 1modl,
g L EX(1+ ANER if g=1mod .

Hence our lemma. O

Put Uy = EX,Uy = F*O},U; = F*(1+ Py) fori > 1 and U} = U; — U4 for j > —1.
The previous lemma gives the character of ny on E* — U,,_;. We remark Autp £ = {1}
if ¢ 1 mod [.

Proposition 2.2. Let v € U} for —1 <i <n—1. Ifi # 0mod [, z is writlen in the
form xz =c(1+y) forc € F and y = whyy € wyOy. Foru € ki and j € (Z)IZ)*, we
define the Gauss sum part G(u,j) by

(2.5) G(u,j) = Z (0 < ; u(agqr — ()ék)OéjJrk) )
ekt /A

(a0, —1) k=0
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where A = {(a,...,a)|a € kp} is the image of the diagonal embedding of kr into k.
Then xy, on U is given as follows:

ZoeAutFE' H(U‘r) L= _17
(2) gAY S e 5 0(°) 0> 0 and n— i even,
Xnp\¥) = i - o,
EAC PUE D SRRICH)
Gyl tyo("wg/wE),¢) i>0 andn —i odd,
where c =1 (n+1i—1)/2 € (Z/IZ)*.

Proof. Put ¢ = axa™' for a,z € G. At first we treat the case z € U*; = E* — F*O5.

Since
Xoo (@) = D polm),

a€H\B
we have only to show that if % € H for a € B, then

H if ¢#1modl,
a € -1 ko _
_GHE it g=1modl.

This follows immediately from Lemma 2.1. ’
Now we treat the case x = c¢(1+y) for c € F and y € P, — (F+ P5™). We may assume
¢ =1 since F* is the center of B. For 1+ k € Kl(»=*+1)/2 and ¢ € B, we have

Xoo(L+y) = D po("(1+))

a€H\B

=C >, > po(" 1+ y)),

1+keKn—i\ K(n—i+1)/2] ac H\B

where C' =

ey =737 In the above expression,

po(“U (1 +y))

o(1+ %+ “(ky — yk))

o(1+%Y)po(1 + (1 +y) ' (ky — yk)))

o(1+° )w(Tw(( y) " (ky — yk)))
= po(1 + %)Y (Tr (1+y) Hky — yk))

= po(1+YY(Te(y" v —“ yy)(1 +y) k)

since yk*> € A" and a(1 4+ y) ' (ky — yk)a™' € A™. If y* 'y — @ yy ¢ A=/ the
map k — w(Tr(y‘flv — aflvy)(l 4+ y)7'k)) is a non-trivial character of A"\ Al(n=+1)/2.
thus

p
p
IZ

> G(Tr(y® = ) (1 +y)"'k) = 0.

ke An—i\ Altn—i+1)/2)
By Lemma 3.3 in [4], Yo y—" vy € A= D/2] g equivalent to @y € EX Kninln=it /2],

Thus it follows from Lemma 2.1 that

Xoo(L+y) = > > po(1+ (1+a)y(1+a)™h).

o€AutF E 14ac H\EX Kl(n—=1)/2]
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By virtue of (1 +y)~'(1+ 0Fy) € K™ and (1 +y)~"Y(1+ ) =1+ (1 +y) " ((ay —
ya) + (ya — ay)a) mod K™,
po(1+ 1) = 01+ )y (1 + )™ (ay — ya))u, (1 +9) ' (ya — ay)a).
Since
Uy (L+y)Hay —ya)) = (Tr(yy(1+y) ™ = (1 +y) y)a) = 1,
U, (1 +y) Hya — ay)a) = ¥, ((ya — ay)a) and |[EX K’ /EXK™| = ¢"=Y0m=3) we obtain

gn =2 N (1 4 ) n — i even,
1+ _ . c€Autp E
X (1 49) gn= N2 S (14 %) S(n —d,0) n—i odd,
c€Autp E
where
S(n —i,0) = > ¥, ((%ya — a%y)a).
a€A(M—i+1)/2 4 FAA(n—i=1)/2\ A(n—i-1)/2
Now we may assume n — i odd and ¢ = 1. Put y = whyo, a = wg%*lmao and
S =S(n—1i,1). Since
(y(l B ay)a _ wE (yowE(n i— 1)/2a0w(En—i—1)/2
B w];(nﬂ 1)/2a0wg+i71)/2y0)a0’

we have by way of the map R : Ag/A; — kb that

S = Z <Z ’YWE yo Oég (n—i—1)/2 — aj(n+i1)/2)aj> .

(o) €K/ A J=0

(The suffix is extended to Z by o = @jmoea:.) At first replacing the suffix j by j + (n +
i —1)/2 and then replacing «;; by a;, we get our lemma. 0

Remark. It is proved that the Gauss sum ¢~ ~Y/2G(u, j) is a fourth root of unity when
p # 2in [6] and [7],

Next we calculate the character on K"~!— K™ We state the character formula including
the case x € E. On K" ! — K™, the Kloosterman sum appears in the formula.

Definition 2.3. For a € kj, we define the Kloosterman sum Kl(a) by

(2.6) Kl(@)= > %o+ +u-1)
(Y0, y1—1) €KL
Yo -Yyi—1=a

Lemma 2.4. Letz =1+ w%‘lxo for xo = diag(ko, ..., ki—1), (ki € OF). Then

(Since ’yw%’l € Og and kg = kp, we regard ’yw}}’l mod Pg as an element of kp.)



10 TETSUYA TAKAHASHI

Proof. By the definition of ny, we have

X (1 + @l diag(ko, . .., ki—1))

=g~ Dm=1) Z U(Tr yawwh diag(ko, . . ., ki_1)a™ ).
acEXK\B

It follows from (2.2) and (2.4) that the set {diag(1,vy1,...,y-1) | ¥ € kr} makes a
complete system of representatives of £ K'\ B. For convenience, put yo = 1. Since

wp diag(l,y1,...,y-1)wy = diag(ys, ..., y-1,1),
we have

Trydiag(1, v, - -, yi1)wp * diag(ko, ..., k1) diag(1,y1, ... y-1) "

-1
=y > kiieni1/y: mod Pr,
i=0

where y; = ¥i moa1- By replacing y; by k;y;_ni1/yi, we get our lemma. O

On K", the character of m = my becomes a constant function on elliptic regular conju-
gacy classes.

Lemma 2.5. Let x be an elliptic reqular element in K™. Then

n_2yi_1)2 (@ = 1)
q —_—,
q—1
Proof. We use the Deligne-Kazhdan correspondence (Theorem 1.5). Since the correspon-

dence preserves the conductoral exponents, there exists a generic character #’ such that

(1-1)/2(¢'-1)
q—1 7’

X!, () = q(”_Q)(l_l)/2—(qql__ll) for z € 1+ Pp. Consequently we have X, (z) = ¢" " (¢*+q+1)
if x € K" is elliptic regular. ([l

Xfr(x) =

f(#') =n and X!, = Xm,- Since 7, is trivial on 1+ Py and its degree is ¢"~%

The character formula on elliptic regular conjugacy classes outside £ can be obtained
easily.

Lemma 2.6. Let x be an elliptic reqular element of B. If x satisfies the condition that
F(z) #£ E and x is not conjugate to an element of F*K", then x,(x) = 0.

Proof. See Lemma 3.3 in [14]. O

3. CALCULATION OF GAUSS SUMS

In this section, we determine the Gauss sum part G(y, n—1i) explicitly. Since G(y,n—1)
depends only on n — i mod [ and y mod Pg, we have only to treat the character of ny on
U by replacing n big enough.

Lemma 3.1. Assume n =2m. Then for x € U7,
(3.1) Xoo(®) = Y > pelatzah).
o€Autp E ac H\EXK™m—1

Proof. Tt follows from Lemma 2.1 that aza™ € H implies a € EXK™ !, Hence our
lemma. 0J
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For the calculation of the sum in the above lemma, we use the E*-module structure of
various objects. When E/F is a Galois extension, it is easy to treat. Thus we first assume
E/F is Galois, i.e., ¢ = 1 mod I. We recall £ is the diagonal matrix diag(1, "1, ¢!72,...,¢)
where ( is an I-th root of unity in F' and ¢ satisfies ¢ = 1 and éxé™! = %2 for x € E
where o is the generator of Gal(E/F) determined by “wp = wg(. By the explicit matrix
form of ' and A;, we obtain:

M(F) =F & E¢ & --- B¢

A° =0 & O & - Ot

(3.2) Al =P @® Pg¢ © --- Ppg!
Al—l — Péfl D Péflf D Péflé-l—l

Lemma 3.2. A complete system of representatives of H\E* K™ is given by
{1+ wg_lalf +--+ wg_lal,lgl’l | a; € kr}.
Proof. 1t is obvious from (3.2). O

Fora=1+a1&+- 4171 € A™71 plaxa™?) for x € U; can be expressed explicitly
in terms of aq,...,a;_1. At first, we determine the coefficients of a~! with respect to the
F-basis {1,¢,...,671.

Lemma 3.3. Fora = Zé;t ;& (o € E), put

A(CL) = (gjai—j modl)ng’,jgl—l

a

Qo a1 aq
o ‘o :
= 0 - e M,(E)
. (o2 O{lil
1—2 -1
-y o 7 a7 g

and let Ag(a) be the (1,k + 1)-cofactor of A(a). Then
-1
- Aj(@)
=Y Y
2 A @)

where |A(a)| is the determinant of A(a).

Proof. By the map A : My(F) — M;(E), we can embed M;(F) into M;(E). Then our
lemma follows from Cramer’s formula. 0

Lemma 3.4. Assume n = 2m and 3(m — 1) > 2m. Letc € F*,y € P2 " and a =
1+ Zé;ll ;&0 € K™ 1. Then

-1
poac(l+y)a™t) = 0(c(1 +y))vp (waﬂal_j - "jmz—j"j%)y) .

j=1
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Proof. 1t is obvious that we may assume ¢ = 1. Since
g tagat =1+ (g (a—1)g—(a—1))a""
-1
=1+ (2:(”]99_1 — 1)ozj§j) a !,
j=1

Zl 1( gg 1 1)ozj§j € A™ and Tr(yz€’?) = 0 for all x € E, we have:

po(g taga™) =1, (( (Pg9™" - 1)aj§j)a‘1>

| s, T
|
—_

I
=Yy ( ("gg™" — 1)04j0](fZ—j(a))> 7
7=1
where f;(a) € E is defined by al = Zé tf (a)¢?. Put g =1+ y. In the last equation,
ye P, fi_; € PP and “ggt — 1 =y — y mod P2 2. Thus we get
-1

po(gtaga™) = ¢ (Z(Jj'Vfl—j(a)ajaj - WUj(fl—j(a))ij)y>

=1

by virtue of trg uv = trg ° uv for any u,v € E. It follows from Lemma 3.3 that

fi—i(a) = /T/l\(Ja()a]) = q;_j mod PZ"2.

By the assumption 3m — 3 > 2m, we obtain the desired formula. 0

Proposition 3.5. Assume ¢ =1 mod [, n = 2m and m > 3.
(1) Forz e U,

Xoo (@) = "2 Y 0(7x).

(2) For an even integer n andy € Op, G(y,n—1) = ¢“"Y/2. In particular, G(y,n—1)
depends neither on n nor on y.

Proof. By Lemmas 3.1, 3.2 and 3.4, we have for c € F* and y € 1 + Pg

-1
X (¢(1 4+ Y)) 29 (1+4° y Z f(Oéh.--,al—l;Uly)?
=0

(a1e-ss az_l)E(PE_l/PE)H

where
-1

flaa, . ;) = vp <Z(’704j”]dzj - ”_lej”_j%)y> :
j=1
Put S; = {(a1,...,011) € (PRY/PEY | ap = 0 for k< j,a; # 0} and ;(y) =
Z(al 7777 ar_1)ES; flag,...,aq-1;y). Then

= -1

Xo (L)) =D 0(e(L+7y) Y (7).

i=0 j=1
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Ifog =--=aq-12=0, f(au,...,a—1;y) = 0. Thus we have
1-1
S =g
=41/

For 1 <j < (I —1)/2, I;(y) is proportional to

S te((ve o =7 v o)),

oy €EPR/ PR

Since a; # 0, the map

-y = oy on =7 o7 ey
is a bijection from Pp~'/P® to kp. Therefore I;(y) = 0. Consequently we get the first
part of our lemma. G(y,n — 1) = ¢*~Y/2 follows from Proposition 2.2 and the first
part. [

Next we assume ¢ —1 # 0 mod [. In this situation, it is rather difficult to describe
E*-module structure of various objects since F' has no [-th primitive root of unity and
E/F is not Galois. In order to apply the result of Galois case, we use the base change
lift of simple characters by Bushnell-Henniart [3]. Let ¢ be a primitive [-th root of unity
and L = F(¢). Then L/F is an unramified extension of degree d where d is the smallest
integer satisfying ¢¢ = 1 mod [. The generator 7 of Gal(L/F) is determined by ¢ = ¢*
where k = r=Y/dand r is a generator of (Z/IZ)*. We add the subscript L to the base
changed objects. Then M;(L) = My(F) ®r L and E;, = E®p L ~ EL. Ey is a ramified
Galois extension over L of degree [, an unramified extension over E of degree d with
Gal(EL/FE) = Gal(L/F) = (1) and a non-Abelian Galois extension over F' of degree ld.
(We embed F into Ey, by the map: z — z ® 1).

As in the previous section, we identifies M;(L) with End; £} and G, = GL;(L) with
Auty, E;, by the L-basis {wgl, -+ wg, 1} of B, which is also an Op-basis of Op,. By
the lattice flag { P}, }icz, we define

Al ={f e M(L)|f(PL,) C PL* forall jeZ}.

Put K, = (A%)*,B, = E; K and Kt = 1+ A% for ¢ > 1. For a subgroup M; C By,
(resp. M C B), we set Mj = M N L*K;, (resp. M' = M N F*K). By the result of
Kutzko (Theorem 1.7), it suffices to calculate the character of Kk = kg instead of my. In
fact, we have only to get the character of 7y|g1. Therefore we have only to treat the base
change of ng|p: to B}, where B} = LK.

Definition 3.6. Let 6 be a generic character of E* with f(#) = n and 6(1 + z) =
Y(trg(yzr)) for © € Pp. We define a base change lift 67, of § to L™ by 0, = 0 o ng, /.
Then 01(1 + x) = ¢r(trg, /o yr) for 2 € PR . (Recall m = [(n 4 1)/2].) The base change
lift pr, of p|gr to Hf = L*(1+ Pg, )K" is defined by

pr(h-g) =0L(h)Yr(Try(g—1))  for heL*(1+ Pg), g€ K]
We define the base change 7, of n|g: to B} by

Bl
nr = IndHE PL-
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By virtue of 8, o7 = 0, we have py o7 = py. Thus we can define an extension pj, of

pr to H} x (1) by
pr(x x 1) = pp(x) forx € Hj.

Now we apply the result of Bushnell-Henniart [3] to our case and get the character
relation between 7y and 7. Put U, ; = L*(1+Pf, ) fori > 0and Uj, ; = Ug, i —Ug, it
By (12.19) Corollary in [3] and the fact (7)-fixed space {(L*K%) is equal to F*K', the
following result follows.

Proposition 3.7. Let x € Ug, 1. Between the set
{9 € HN(E*E™ ) | gnp,p(x)g™ € H'}
and the set
{he HIN(ELKD ™) | ha™h™" € HL},
there is a bijection i with the property
pr(¥(9)2 (¥ (9))™") = plgne, /p(x)g ™).
Combining this with Lemma 3.1, we have:

Lemma 3.8.

(3.3) Xng (N, /B () = > prlaz’a™).
a€HI\(EF K1)t
axra"1eH]

Since np, /5(L*(1+ Pp,)) = F*(1 + Py), it suffices to calculate the right hand side of
(3.3) for x € Up, ;.

As in the Galois case, set & = diag(1,¢"™1,¢"72,...,¢) € My(L). Then ¢ satisfies &' = 1,
¢ = ¢F and

Exét =% forany xz € Ep,

where o is the generator of Gal(F/L) determined by “wp = wgr(. Moreover we have

7ot = ¢F and

M(L) =E, & E & -+ Eg!

AV =0 & O @® -+ Ot

(3.4) A, =Pg, © Pt © Pp, &1
AFU Pl g Pl o pLlgt

We note that any element of K} can be written in the form (14+a; &4+ - -+ay_1€71)
for o; € PEL-

Lemma 3.9. Leti <m anda = 1+m€+asl®+- 417" fora; € Og andx € Uy, ;.
Then ax™a™* € Hy, is equivalent to o € ngi and o = Tap, for j=0,1,....,d—1 and
h=1,r..., 7Y/ (The suffiz of a; is extended to Z by o = tj med1-)

Proof. Tt follows from Lemma 3.2 that if a *2"a € H, there exist 7o € O and v; € Py
for 1 < j <1 —1 such that

(I+aré+- a1 & e =yl +1E+ 7+ + 38
(1 + TOZ1fk + Ta2€2k N Ta1—1€(l_1)k)-
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It implies
ol=kr otTer okr
=71 +v-x7 Toq + Yi—ok as+ -+ 77 Tayg)

ok T o' TFT a%kr
L’ =y + o + vk’ Tag -+’ )

-2k

[ —k o T T
ar” = vo(Vi—k + Yi—2k a;+ -+ Tayq).

Thus we have
hk

ane’ © = x'oy, mod P (h € (Z/IZ)").

By eliminating apk, apiz, - . ., Qppa-1, we get
K _

ap =ng,/e(®)" ng, /5(x) Loy, mod PEL.
Since ng, (2)"ng, /p(x) ™" € 14+ Ph — Py, oy € PT o g By 27 vl € 1+ P}, we obtain
ap € P and apy = "y, mod Py forj=0,1,....d=land h = 1,r,... =0/ O
Lemma 3.10. Assume n = 2m and m > 3. Let v € 1+ Pg, — P%L and a = 1 +
Zglzzl)/d Z;lzl T, &% for o, € PPt Then

(1-1)/d ‘
(3.5) pr(ax’a o) =g Z tre, /e(u 7 ) trg, /p(r — 1)

i

.
where u; = Y% _yi.

Proof. By Lemma 3.9, Taa™' € Hp. Since pr(Taa™) = 1, it implies pp(ax"a"'g™!) =
pr(aza=tg™!). By the same way as Lemma 3.4, we have:

(-1)/d d .
_lej
prlaz’a a7t =Yg, (vij — vij)(z —1)
=1 gj=1
J . 117 - - 7
where v; ; =77 "0, ‘o wi. Since 0" ¥ 77 = 770" and 7y = v, we have
d d
P Jo—rt j § -t
T 0 T T0
E (vij — Vi ;) g (" AL Yoy O_yi)
j=1 7j=1
d , .
_ 7'5 o o
= E (Yo, a_pi —7 A7 i)
J=1
i i i
=trg, p(v” ap =7 Y7 i),
This implies the equation (3.5). O

It is time to get the character value of x, on Uy.
Proposition 3.11. Let x € 14 Pg, — P; and n=2m > 6. Then
q _
Yol p(@) = (1) a0, ()

and

G(y,j) = (%) g~V
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for ally € krp and j odd.
Proof. By Proposition 3.7, Lemmas 3.8, 3.9, 3.10 and 3.11, we have:

(1-1)/d |
(3.6) Xo(np,p(x) = 0L(x) > e Z trg, p(ui — 7 w;) trg, p(c — 1)
(o)

where u; = ’)/Oério-riOé_ri and (o )1<i<q-1y/a € (Pt /PR )=D/4. First we assume (I—1)/d

is odd. Then <%> = —1, d is even and "o,s = a_,.. Let F; be the (" Td/2> fixed

field. Then E;/E; is a quadratic unramified extension, a;. il i =ng, /B, (i), NE, /B
induces a surjection from @ 'O, /1 + Py, to wp"~ 2(9}3 /1+ Pg, and each fiber of the
/2

induced map has ¢*/? + 1 elements. Moreover the map x +— trpg, /g, (x — 7 'z induces a

surjective kp-linear map from PZ"~/P2"~' to Py'/Op. Thus we have:

(1-1)/d

Z ZbE Z trEL/E o’ Ul) tI"EL/E(.CE — 1)

a,i€Pg ! /PR,
= (1—(¢"?+1)).
Putting this into 3.6, we get:

Xn(nE, /p(x)) = 0(2)(1 — (qd/2 4 1))(1—1)/d
_ 2, ()

and it follows from Proposition 2.2 that G(y, j) = —¢""V/? for all y € kr and j odd. Now

we assume (I — 1)/d is even. Then (¢) =1 and it follows from the same argument as in

!
the proof of Proposition 3.5 that

X, () = 00 )l |0/
— 4102, (z).

By Proposition 2.2, we have G(y,j) = ¢"=Y/2 for all y € kr and j odd in this case. [
Putting all these together, we can state the character formula.

Theorem 3.12. Let E be a ramified extension of F with degree l, 0 a generic quasi-
character of E* with f(0) =n and ™ = my the irreducible supercuspidal representation of
GLy(F) defined in section 1. Put Uy = F*O}, U; = F*(1+ PL) and U =U; —Ujn
for j > 1. Let x be an elliptic reqular element of GL;(F) and Autp E the group of
automorphism of E over F.

(1) If F(x)/F is unramified, then

Xa(w) = § 4 EVPEZR0C) w = (1 +y)

)
force F* y € Pr-
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(2) If F(z)/F is ramified and F(x) % E, then

;

\

0 if xg F*(1+ P,

-1
gD () KI((yey ) 11 %)
‘7:

if x=c(l+oy " dag(ke,...,k_1)+2)
for ce F* k €kf,z¢€ Py

l_
gn=(-1)/2 %0(@

if w=c(l+y) for ceF* ye Py,

(3) When z € E, then

Xr(T) =

\

() e s g

oc€Autp E
if xeU; for 0<j<n-—1,

g UD20(c) KI((yawyy o))

if x=c(l+@y wy) for c€F* x9€OF,

I
q(n—2)(l—1)/2 (2_11) 9(0)

if x=c(1+vy) for ce F* ye Pg.

(See (2.6) for the definition of the Kloosterman sum Kl(a).)
Proof. 1t follows from (1.8), Theorem 1.7, Lemmas 2.4, 2.5, 2.6, Propositions 2.2, 3.5

and 3.11

17

0

Remark. By Theorem 1.6, the character formula of the representation 7 of D* is given
by the same formula for my.
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