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Abstract. The article gives a character formula for the irreducible supercuspidal rep-
resentation of GLl(F ) for F a local field of the residual characteristic p 6= l.

Introduction

Let l be a prime, A a central simple algebra of dimension l2 over a non-archimedean
local field F and E/F an extension of degree l in A. Recall that any compact (mod
center) Cartan subgroup of A× is isomorphic to E× for some extension E/F of degree
l. As is well-known ([15], [5]), any irreducible supercuspidal representation is obtained
from a quasi-character of E×. The aim of this paper is to get a character formula for the
irreducible supercuspidal representations of A× on the set of elliptic regular elements in
A×. To calculate the character on the split torus is another problem. See Murnaghan’s
papers ([16], [17] and [18]) for this topic. We only remark that the character value on the
elliptic regular conjugacy classes determines uniquely the supercuspidal representation.

When E/F is unramified, a character formula was obtained in [21]. Therefore in this
paper we treat the case E/F is ramified. When the residual characteristic p of F equals
to l, the ramification is wild. This case is very hard to treat (see e.g. [22]). In this paper,
we assume p 6= l. Since the case l = 2 was solved in [13], we assume l is odd. We note
that A is isomorphic to a division algebra D = Dl of dimension l2 over F or the algebra
Ml(F ) of l × l matrices over F .

Let Dn be a division algebra of dimension n2 over F . Deligne-Kazhdan-Vignéras [8] and
Rogawski [20] proved an abstract matching theorem: there is a bijection between the set
of equivalence classes of irreducible representations of D×

n and that of essentially square-
integrable representations of GLn(F ) which preserves the characters up to (−1)n−1. In the
tame case, i.e., when n is prime to the residual characteristic of F , Moy [15] has proved
that there is a bijection between the same sets as above using the concrete construction of
the representations given by Howe [12]. Henniart [10] has shown that two correspondences
coincide when n = l 6= p. Thus we only treat the GL case.

In the earlier paper [21], the author gave a character formula of the representation of
GLl(F ) and D×

l which is obtained from a quasi-character of E× where E is an unramified
extension of F with degree l. (When l = 2, the character formula is given in [13]). Then
we essentially use the fact that E/F is a Galois extension. In our case, we need to treat
the case where E/F is non-Galois. In order to treat the non-Galois case, we use the
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result of Bushnell-Henniart [3] on the base change lift of simple characters. Since the base
change lift is available only for GL case, we do not treat the division algebra case directly.
In addition, the formula of the character near the conductor becomes simpler than that of
the division algebra case (see Lemma 2.5 and Theorem 4.2 (d) in [6]). Our main result is
Theorem 3.12. As in the unramified case, the analogue of Weyl’s character formula holds
for our formula. This does not hold when l = p (cf. [23]).

Section 1 is devoted to the review of the construction of an irreducible supercuspidal
representation πθ (resp. π′θ) of GLl(F ) (resp. D×

l ) from a generic quasi-character θ of E×

and the known results about the representation. We note that πθ is not always monomial,
i.e., induced from a one-dimensional representation, but it can be written as a Q-linear
combination of monomial representations. In fact πθ is written as a Q-linear combination

of the forms ind
GLl(F )
H ρθ where H is a compact mod center subgroup of GLl(F ) and ρθ is

a quasi-characters of H.
In section 2, we compute the character of πθ up to some root numbers. Let G = GLl(F ),

B the normalizer of an Iwahori subgroup of G containing H and ηθ = indB
H ρθ. Since we

treat only elliptic regular conjugacy classes, we consider the character χπθ
on L× where

L/F are extensions of fields of degree l. Moreover the case L = E is essential. By the
Frobenius formula and the result of Kutzko ([14]), we have only to calculate the sum

χηθ
(x) =

∑

a∈H\B
ρθ(axa

−1)

for x ∈ E in order to get the character formula of πθ. Therefore it is essential to know
when axa−1 ∈ H, which is determined in Lemma 2.1. From this, we get the character
formula of ηθ except near the conductor (Proposition 2.2). But this formula contains the
Gauss sum part G(y, j), which is calculated later. The exceptional part can be calculated
directly by taking the explicit matrix form of E× (Lemma 2.4). Except this lemma, there
is no new result in this section. But the proof becomes short and simple. Moreover since
we use the property “intertwining implies conjugacy ”of E/F -minimal (very cuspidal in
the terminology of Carayol [4]) element as the key tool, the result may be extended to
GLn, at least when n is prime to p. Section 3 is devoted to the calculation of the Gauss
sum part G(y, j). It appears in the character formula on E×. For this purpose, it is the
point that we have only to treat the character of πθ on U∗1 = F×(1 + PE)− F×(1 + P 2

E).
For this calculation, we use the E×-module structure of various objects. We first assume
E/F is a Galois extension since E×-module structure can be described easily for this
case. This part is analogous to section 1 of [21], but everything becomes easier since we
have only to treat U∗1 . When E/F is non-Galois, we use the base change lift. Let ζ be
a primitive l-th root of unity and L = F (ζ). Then L is an unramified extension of F
and EL/L is Galois. Therefore we can use the tools of the Galois case for GLl(L). Let
Gal(L/F ) = 〈τ〉. By the result of Bushnell-Henniart [3], there is a base change lift ηL of
ηθ to H1

L such that the twisted trace of ηL by τ gives the trace of ηθ. (See Proposition 3.7
and Lemma 3.8). We remark that we need not assume the characteristic of F is 0 since we
do not use the Arthur-Clozel base change lift [1]. The method of calculating the twisted
trace of ηL is similar to that of Galois case. The complete character formula is stated as
Theorem 3.12.

At the end of this introduction, we compare our formula with the known results. The
same type of character formula for the division algebra case was given by Corwin, Moy
and Sally, Jr. [6] and for GLl case by Debacker [7]. Their formulas agree with the result
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given in section 2. It contains some root number associated with a quadratic form. They
have shown that this root number is a root of unity when p 6= 2. In this paper, we have
determined it completely including the case p = 2 in section 3. Moreover we find the
Kloosterman sum appears in the character formula. These are new results of this paper.
In [23], the author gave the character formula of πθ for GL3 by using the decomposition
of πθ as E×-module. But this needs the explicit matrix form of an inverse matrix which
is hard to treat for large l. We can simplify the proof of the main theorem, although we
treat a general prime l.

Notation

Let F be a non-archimedean local field. We denote by OF , PF , $F , kF and vF the
maximal order of F , the maximal ideal of OF , a prime element of PF , the residue field
of F and the valuation of F normalized by vF ($F ) = 1. We set q to be the number of
elements in kF . Hereafter we fix an additive character ψ of F whose conductor is PF , i.e.,
ψ is trivial on PF and not trivial on OF . For an extension E over F , we denote by trE,
nE the trace and norm to F respectively. We set ψE = ψ ◦ trE. The trace of matrix is
denoted by Tr. For an irreducible admissible representation π of GLl(F ), the conductoral
exponent of π is defined to be the integer f(π) such that the local constant ε(s, π, ψ) of
Godement-Jacquet [9] is the form aq−s(f(π)−l).

We call π minimal if
f(π) = min

η
f(π ⊗ (η ◦ Nr)),

where η runs through the quasi-characters of F×. Let G be a totally disconnected, locally

compact group. We denote by Ĝ the set of (equivalence classes of) irreducible admissible
representations of G. For a closed subgroup H of G and a representation ρ of H, we
denote by IndG

H ρ (resp. indG
H ρ) the induced representation (resp. compactly induced

representation) of ρ to G. For a representation π of G, we denote by π|H the restriction
of π to H.

1. Construction of the representation

Let l 6= p be an odd prime and E a ramified extension of F of degree l. Then E can be
embedded into Ml(F ) and , up to conjugacy, the embedding is unique. Let G = GLl(F ).
In this section, we review the construction of supercuspidal representations of G which are
parameterized by the quasi-characters of E×. Of course, this construction is well-known
([4], [15]).

Definition 1.1. Let θ be a quasi-character of E× and f(θ) the exponent of the conductor
of θ i.e. the minimum integer such that Ker θ ⊂ 1 + P n

E . Then θ is called generic if

f(θ) 6≡ 1 mod l. For a generic character θ of E×, γθ ∈ P 1−f(θ)
E − P

2−f(θ)
E is defined by

(1.1) θ(1 + x) = ψE(γθx) for x ∈ P [(f(θ)+1)/2]
E .

Then F (γθ) = E. We denote by Ê×
gen the set of generic quasi-characters of E×.

We construct an irreducible supercuspidal representation of G = GLl(F ) from θ ∈ Ê×
gen.

For simplicity, we set γ = γθ. Since E/F is tamely ramified, there exists a prime element
$E of OE satisfying $l

E ∈ F . Put $F = $l
E. We identifies Ml(F ) with EndF E and G

with AutF E by the F -basis {$l−1
E , $l−2

E , . . . , $E, 1} of E, which is also an OF -basis of OE.
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By the lattice flag {P i
E}i∈Z, we construct a maximal compact modulo center subgroup.

The construction of the representation is well-known. For details, see [15].

Definition 1.2. For i ∈ Z, set

Ai = {f ∈ Ml(F )|f(P j
E) ⊂ P j+i

E for all j ∈ Z}.
Put K = (A0)×, B = E×K and Ki = 1 + Ai for i ≥ 1.

Then K is an Iwahori subgroup of G and B is a normalizer of K. At first we construct
an irreducible representation of B from a generic quasi-character of E×.

Let θ be a generic quasi-character of E×, i.e., f(θ) = n 6≡ 1 mod l. There exists an
element γ ∈ P 1−n

E such that θ(1+x) = ψE(γx) for x ∈ Pm
E where m = [(n+1)/2]. Define

ψγ on Km by ψγ(1 + x) = ψ(Tr(γx)) for x ∈ Am. Then ψγ is a quasi-character of Km.
Put H = E×Km and define a quasi-character ρθ of H by

(1.2) ρθ(h · g) = θ(h)ψγ(g) for h ∈ E×, g ∈ Km.

Let J be the normalizer of ψγ in B, i.e.,

J = {a ∈ B | ψa
γ = ψγ},

where ψa
γ(x) = ψγ(a

−1xa) for x ∈ Km. Then J = E×Km′
where m′ = [n/2]. Put

ηθ = IndB
H ρθ.

When n is even, i.e., n = 2m, then J = H = E×Km. By the Clifford theory, ηθ is an
irreducible representation of B. We put

(1.3) κθ = ηθ.

When n is odd, i.e., n = 2m − 1, then J = E×Km−1. Thus ηθ is not irreducible. In
this case, we put

(1.4) κθ =
1−

(q
l

)
q(l−1)/2

lq(l−1)/2

∑

χ∈(E×/F×(1+PE))̂

ηθ⊗χ +
(q
l

)
ηθ,

where
(q
l

)
is the Legendre symbol. The following result is well-known ([15],[19]).

Theorem 1.3. Let the notation be as above. Then κθ is an irreducible representation of
B. Put πθ = indG

B κθ. Then πθ is an irreducible supercuspidal representation of G such
that

(1) the L-function of πθ is 1;
(2) ε(πθ, ψ) = ε(θ, ψE); in particular f(πθ) = f(θ) + l;

(3)
⋃
E

{πθ|θ ∈ Ê×
gen} = {π ∈ A0(G)|fmin(π) 6≡ 0 mod l}, where E runs through iso-

morphism classes of ramified extensions of degree l over F and A0(G) be the set
of equivalent classes of the supercuspidal representations of G.

Remark . If π ∈ A0(G) and fmin(π) ≡ 0 mod l, π can be constructed from a regular
quasi-characters of L×, where L is an unramified extension of F of degree l. The character
formula for such a representation was given in [21].



CHARACTER FORMULA FOR GLl 5

Next we construct an irreducible representation of D× = D×
l from θ ∈ E×

gen. Let f(θ) =
n. We recall n 6≡ 1 mod l. We define a function ψγ on 1 + Pm

D by ψγ(1 + x) = ψ(Tr(γx))
for x ∈ Pm

D . Then ψγ is a quasi-character of 1 + Pm
D . H ′ = E×(1 + Pm

D ) ⊂ D× and define
a quasi-character ρ′θ of H ′ by

(1.5) ρ′θ(h · g) = θ(h)ψγ(g) for h ∈ E×, g ∈ 1 + Pm
D .

When n is even, i.e., n = 2m, we set

(1.6) π′θ = IndD×
H′ ρ′θ.

When n is odd, i.e., n = 2m− 1, we set

(1.7) π′θ =
1−

(q
l

)
q(l−1)/2

lq(l−1)/2

∑

χ∈(E×/F×(1+PE))̂

IndD×
H′ ρ′θ⊗χ +

(q
l

)
IndD×

H′ ρ′θ,

where
(q
l

)
is the Legendre symbol. The following result is essentially well-known. (See

[2], [15]).

Theorem 1.4. Let the notation be as above. Then π′θ is an irreducible minimal represen-
tation of D× such that

(1) the degree of π′θ is q(n−2)(l−1)/2 (ql−1)
q−1

;

(2) ε(π′θ, ψ) = ε(θ, ψE); in particular f(π′θ) = f(θ) + l;

(3)
⋃
E

{π′θ|θ ∈ Ê×
reg} = {π′ ∈ D̂×|fmin(π

′) 6≡ 0 mod l}, where E runs through the

isomorphism classes of ramified extensions of degree l over F .
(4) The correspondence π′θ ↔ πθ by way of generic quasi-characters of E× is a bijec-

tion and preserves ε-factors and conductoral exponents. (This correspondence is
a special case of Howe’s bijection (see [15]).)

On the other hand, there exists an abstract matching theorem, which is called the
Deligne-Kazhdan correspondence ([8], [20]).

Theorem 1.5. There is a bijection between the set of irreducible representations of D×

and the set of essentially square-integrable representations of G which preserves the char-
acters on elliptic regular elements. In particular, it preserves ε-factors and conductoral
exponents.

By the result of Henniart ([10] Theorem 8.1), these two correspondences coincide.

Theorem 1.6. If l 6= p is a prime, Howe’s bijection (1.4) coincides with Deligne-Kazhdan
correspondence (1.5) between the set of essentially square-integrable representations of GLl

and the set of irreducible representations of D×
l .

At the end of this section, we quote the result of Kutzko [14] in the form that the
character formula of πθ on elliptic regular elements is essentially given by the one of κθ.

Theorem 1.7. Let x be an elliptic regular element of G.

(1) If F (x)/F is ramified and x 6∈ F×(1 + P n
F (x)),

χπθ
(x) = χκθ

(x).



6 TETSUYA TAKAHASHI

(2) If F (x)/F is unramified and x 6∈ F×(1 + P
[n/l]+1
F (x) ),

χπθ
(x) = 0.

Proof. These are obtained by applying Proposition 5.5 in [14] to our case. ¤

Remark. Since

(1.8) χκθ
(x) =





(q
l

)
χηθ

(x) x ∈ E× − F×(1 + PE),

1

q(l−1)/2
χηθ

(x) x ∈ F×(1 + PE),

we have only to calculate χηθ
.

2. Calculation of the character

Now we begin to calculate the characters of the representations constructed in the
previous section. In this section, we shall get a character formula up to some root numbers.
These root numbers are calculated explicitly in the next section.

Hereafter we fix a generic character θ and put ρ = ρθ, η = ηθ and so on. Since E/F
is a totally tamely ramified extension, there exists a prime element $E of OE such that
$l

E ∈ PF − P 2
F . Put $l

E = $F . As in the previous section, we identify Ml(F ) with
EndF (E) by the F -basis {$l−1

E , $l−2
E , . . . , $E, 1}, which is an OF -basis of OE. Thus we

get the explicit matrix forms of various objects:

$E =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
$F 0 . . . . . . . . 0



,(2.1)

K =







a11 · · · a1l

. . . . . . . . . . . .
al1 · · · all




∣∣∣∣∣∣

aij ∈ OF if i < j
aii ∈ O×

F

aij ∈ PF if i > j



 ,(2.2)

A0 =







a11 · · · a1l

. . . . . . . . . . . .
al1 · · · all




∣∣∣∣∣∣
aij ∈ OF if i ≤ j
aij ∈ PF if i > j



 ,(2.3)

A1 =







a11 · · · a1l

. . . . . . . . . . . .
al1 · · · all




∣∣∣∣∣∣
aij ∈ OF if i < j
aij ∈ PF if i ≥ j



 .(2.4)

If q ≡ 1 mod l, F has a primitive l-th root of unity ζ and E/F is a Galois extension.
Let σ be a generator of Gal(E/F ) determined by σ$E = $Eζ. We denote the diagonal
matrix diag(1, ζ l−1, ζ l−2, . . . , ζ) by ξ. Then ξ satisfies ξl = 1 and ξxξ−1 = σx for x ∈ E.

Define a natural ring morphism R from A0 to kl
F by the identification of A0/A1 with

kl
F . We note that if R(a) = (α0, α1, · · · , αl−1), R($Ea$

−1
E ) = (α1, α2, · · · , α0). For

convenience, we extend the suffix to Z by putting αi = αi mod l. The next lemma is the
key tool for the character calculation.
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Lemma 2.1. Let x ∈ P i
E − (F + P i+1

E ), g ∈ B and j a positive integer. If gxg−1 ∈
E×(1 + Aj), then

g ∈
{
E×(1 + Aj) if q 6≡ 1 mod l,⋃l−1

k=0E
×(1 + Aj)ξk if q ≡ 1 mod l.

Proof. We may assume g ∈ A0 by replacing g by $−k
E g if g ∈ Ak. Let x = $i

Ex0 for
x0 ∈ O×

E and R(g) = (α0, α1, . . . , αl−1). Then

R(gxg−1x−1) = (α0α
−1
i , α1α

−1
i+1, . . . , αl−1α

−1
l−1+i),

where αs = αs mod l for s ∈ Z. Since x 6∈ F +P i+1
E , i 6≡ 0 mod l. Therefore gxg−1x−1 ∈ E×

implies
{
α0 = α1 = · · · = αl−1 if q 6≡ 1 mod l,

αk = ζjα0 (0 ≤ k ≤ l − 1) otherwise,

for some integer j. Since ξ$Eξ
−1 = ζ$E, we get:

g ∈
{
E×(1 + A1) if q ≡ 1 mod l,⋃l−1

k=0E
×(1 + A1)ξk otherwise.

Thus we may assume g − 1 ∈ Ak − (P k+1
E + Ak+1) for k ≥ 1. Put g − 1 = $k

Eg0 and
R(g0) = (β0, β1, . . . , βl−1). Since

gxg−1x−1 ≡ 1 + (g − 1)− x(g − 1)x−1 mod Ak+1

≡ 1 +$k
E(g0 − xg0x

−1) mod Ak+1,

R(g0 − xg0x
−1) = (β0 − βk, β1 − β1+k, . . . , βl−1 − βl−1+k). Therefore gxg−1x−1 ∈ E×Kk+1

contradicts g − 1 ∈ Ak − (P k+1
E + Ak+1). It implies that if gxg−1x−1 ∈ E×Kj,

g ∈
{
E×(1 + Aj) if q 6≡ 1 mod l,⋃l−1

k=0E
×(1 + Aj)ξk if q ≡ 1 mod l.

Hence our lemma. ¤

Put U−1 = E×, U0 = F×O×
E , Ui = F×(1+P i

E) for i ≥ 1 and U∗i = Ui−Ui+1 for j ≥ −1.
The previous lemma gives the character of ηθ on E× − Un−1. We remark AutF E = {1}
if q 6≡ 1 mod l.

Proposition 2.2. Let x ∈ U∗i for −1 ≤ i < n − 1. If i 6≡ 0 mod l, x is written in the
form x = c(1 + y) for c ∈ F and y = $i

Ey0 ∈ $i
EO×

E . For u ∈ k×F and j ∈ (Z/lZ)×, we
define the Gauss sum part G(u, j) by

(2.5) G(u, j) =
∑

(α0,...,αl−1)∈kl
F /∆

ψ

(
l−1∑

k=0

u(αk+1 − αk)αj+k

)
,
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where ∆ = {(α, . . . , α)|α ∈ kF} is the image of the diagonal embedding of kF into kl
F .

Then χηθ
on U∗i is given as follows:

χηθ
(x) =





∑
σ∈AutF E θ(

σx) i = −1,

q[(i+1)/2](l−1)
∑

σ∈AutF E θ(
σx) i > 0 and n− i even,

q[i/2](l−1)
∑

σ∈AutF E θ(
σx)

G(γ$n−1
E y0(

σ$E/$E)i, c) i > 0 and n− i odd,

where c = i−1(n+ i− 1)/2 ∈ (Z/lZ)×.

Proof. Put ax = axa−1 for a, x ∈ G. At first we treat the case x ∈ U∗−1 = E× − F×O×
E .

Since

χηθ
(x) =

∑

a∈H\B
ρθ(

ax),

we have only to show that if ax ∈ H for a ∈ B, then

a ∈
{
H if q 6≡ 1 mod l,⋃l−1

k=0Hξ
k if q ≡ 1 mod l.

This follows immediately from Lemma 2.1.
Now we treat the case x = c(1+y) for c ∈ F and y ∈ P i

E− (F +P i+1
E ). We may assume

c = 1 since F× is the center of B. For 1 + k ∈ K [(n−i+1)/2] and a ∈ B, we have

χηθ
(1 + y) =

∑

a∈H\B
ρθ(

a(1 + y))

= C
∑

1+k∈Kn−i\K[(n−i+1)/2]

∑

a∈H\B
ρθ(

a(1+k)(1 + y)),

where C = 1
Kn−i\K[(n−i+1)/2] . In the above expression,

ρθ(
a(1+k)(1 + y)) = ρθ(1 + ay + a(ky − yk))

= ρθ(1 + ay)ρθ(1 + a((1 + y)−1(ky − yk)))

= ρθ(1 + ay)ψ(Tr γa((1 + y)−1(ky − yk)))

= ρθ(1 + ay)ψ(Tr a−1

γ(1 + y)−1(ky − yk))

= ρθ(1 + ay)ψ(Tr(ya−1

γ − a−1

γy)(1 + y)−1k)

since yk2 ∈ An and a(1 + y)−1(ky − yk)a−1 ∈ Am. If ya−1
γ − a−1

γy 6∈ A1−[(n−i+1)/2], the

map k 7→ ψ(Tr(ya−1
γ − a−1

γy)(1 + y)−1k)) is a non-trivial character of An−i\A[(n−i+1)/2];
thus ∑

k∈An−i\A[(n−i+1)/2]

ψ(Tr(ya−1

γ − a−1

γy)(1 + y)−1k) = 0.

By Lemma 3.3 in [4], ya−1
γ−a−1

γy ∈ A1−[(n−i+1)/2] is equivalent to a−1
γ ∈ E×Kn−i−[(n−i+1)/2].

Thus it follows from Lemma 2.1 that

χηθ
(1 + y) =

∑
σ∈AutF E

∑

1+a∈H\E×K[(n−i)/2]

ρθ(1 + (1 + a)σy(1 + a)−1).
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By virtue of (1 + y)−1(1 + (1+a)y) ∈ Km and (1 + y)−1(1 + (1+a)y) ≡ 1 + (1 + y)−1((ay −
ya) + (ya− ay)a) mod Kn,

ρθ(1 + (1+a)y) = θ(1 + y)ψγ((1 + y)−1(ay − ya))ψγ((1 + y)−1(ya− ay)a).

Since

ψγ((1 + y)−1(ay − ya)) = ψ(Tr(yγ(1 + y)−1 − γ(1 + y)−1y)a) = 1,

ψγ((1 + y)−1(ya− ay)a) = ψγ((ya− ay)a) and |E×Kj/E×Km| = q(l−1)(m−j), we obtain

χηθ
(1 + y) =





qm−(n−i)/2
∑

σ∈AutF E

θ(1 + σy) n− i even,

qm−(n−i+1)/2
∑

σ∈AutF E

θ(1 + σy)S(n− i, σ) n− i odd,

where

S(n− i, σ) =
∑

a∈A(n−i+1)/2+E∩A(n−i−1)/2\A(n−i−1)/2

ψγ((
σya− aσy)a).

Now we may assume n − i odd and σ = 1. Put y = $i
Ey0, a = $

(n−i−1)/2
E a0 and

S = S(n− i, 1). Since

(ya− ay)a = $n−1
E (y0$

−(n−i−1)/2
E a0$

(n−i−1)/2
E

−$
−(n+i−1)/2
E a0$

(n+i−1)/2
E y0)a0,

we have by way of the map R : A0/A1 → kl
F that

S =
∑

(αj)∈kl
F /∆

ψ

(
l−1∑
j=0

γ$n−1
E y0(αj−(n−i−1)/2 − αj−(n+i−1)/2)αj

)
.

(The suffix is extended to Z by αj = αj mod l.) At first replacing the suffix j by j + (n +
i− 1)/2 and then replacing αij by αj, we get our lemma. ¤

Remark. It is proved that the Gauss sum q−(l−1)/2G(u, j) is a fourth root of unity when
p 6= 2 in [6] and [7],

Next we calculate the character onKn−1−Kn. We state the character formula including
the case x 6∈ E. On Kn−1 −Kn, the Kloosterman sum appears in the formula.

Definition 2.3. For a ∈ k×F , we define the Kloosterman sum Kl(a) by

(2.6) Kl(a) =
∑

(y0,...,yl−1)∈kl
F

y0···yl−1=a

ψ(y0 + · · ·+ yl−1).

Lemma 2.4. Let x = 1 +$n−1
E x0 for x0 = diag(k0, . . . , kl−1), (ki ∈ O×

F ). Then

χηθ
(x) = q(l−1)(m−1) Kl

(
(γ$n−1

E )l

l∏
j=0

kj

)
.

(Since γ$n−1
E ∈ OE and kE = kF , we regard γ$n−1

E mod PE as an element of kF .)
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Proof. By the definition of ηθ, we have

χηθ
(1 +$n

E diag(k0, . . . , kl−1))

=q(l−1)(m−1)
∑

a∈E×K1\B
ψ(Tr γa$n

E diag(k0, . . . , kl−1)a
−1).

It follows from (2.2) and (2.4) that the set {diag(1, y1, . . . , yl−1) | yi ∈ k×F } makes a
complete system of representatives of E×K1\B. For convenience, put y0 = 1. Since

$E diag(1, y1, . . . , yl−1)$
−1
E = diag(y1, . . . , yl−1, 1),

we have

Tr γ diag(1, y1, . . . , yl−1)$
n−1
E diag(k0, . . . , kl−1) diag(1, y1, . . . , yl−1)

−1

≡ γ$n−1
E

l−1∑
i=0

kiyi−n+1/yi mod PF ,

where yi = yi mod l. By replacing yi by kiyi−n+1/yi, we get our lemma. ¤
On Kn, the character of π = πθ becomes a constant function on elliptic regular conju-

gacy classes.

Lemma 2.5. Let x be an elliptic regular element in Kn. Then

χπ(x) = q(n−2)(l−1)/2 (ql − 1)

q − 1
.

Proof. We use the Deligne-Kazhdan correspondence (Theorem 1.5). Since the correspon-
dence preserves the conductoral exponents, there exists a generic character θ′ such that

f(θ′) = n and χπ′
θ′

= χπθ
. Since π′θ′ is trivial on 1+P n

D and its degree is q(n−2)(l−1)/2 (ql−1)
q−1

,

χπ′
θ′
(x) = q(n−2)(l−1)/2 (ql−1)

q−1
for x ∈ 1+P n

D. Consequently we have χπθ
(x) = qn−1(q2+q+1)

if x ∈ Kn is elliptic regular. ¤
The character formula on elliptic regular conjugacy classes outside E× can be obtained

easily.

Lemma 2.6. Let x be an elliptic regular element of B. If x satisfies the condition that
F (x) 6' E and x is not conjugate to an element of F×Kn, then χπ(x) = 0.

Proof. See Lemma 3.3 in [14]. ¤

3. Calculation of Gauss sums

In this section, we determine the Gauss sum part G(y, n−i) explicitly. Since G(y, n−i)
depends only on n− i mod l and y mod PE, we have only to treat the character of ηθ on
U∗1 by replacing n big enough.

Lemma 3.1. Assume n = 2m. Then for x ∈ U∗1 ,

(3.1) χηθ
(x) =

∑
σ∈AutF E

∑

a∈H\E×Km−1

ρθ(a
σxa−1).

Proof. It follows from Lemma 2.1 that axa−1 ∈ H implies a ∈ E×Km−1. Hence our
lemma. ¤
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For the calculation of the sum in the above lemma, we use the E×-module structure of
various objects. When E/F is a Galois extension, it is easy to treat. Thus we first assume
E/F is Galois, i.e., q ≡ 1 mod l. We recall ξ is the diagonal matrix diag(1, ζ l−1, ζ l−2, . . . , ζ)
where ζ is an l-th root of unity in F and ξ satisfies ξl = 1 and ξxξ−1 = σx for x ∈ E
where σ is the generator of Gal(E/F ) determined by σ$E = $Eζ. By the explicit matrix
form of E and Ai, we obtain:

(3.2)

Ml(F ) = E ⊕ Eξ ⊕ · · · Eξl−1

A0 = OE ⊕ OEξ ⊕ · · · OEξ
l−1

A1 = PE ⊕ PEξ ⊕ · · · PEξ
l−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Al−1 = P l−1

E ⊕ P l−1
E ξ ⊕ · · · P l−1

E ξl−1.

Lemma 3.2. A complete system of representatives of H\E×Km−1 is given by

{1 +$m−1
E α1ξ + · · ·+$m−1

E αl−1ξ
l−1 | αi ∈ kF}.

Proof. It is obvious from (3.2). ¤

For a = 1+α1ξ+ · · ·+αl−1ξ
l−1 ∈ Am−1, ρ(axa−1) for x ∈ U∗1 can be expressed explicitly

in terms of α1, . . . , αl−1. At first, we determine the coefficients of a−1 with respect to the
F -basis {1, ξ, . . . , ξl−1}.

Lemma 3.3. For a =
∑l−1

j=0 αjξ
j (αj ∈ E), put

Λ(a) = (σj

αi−j mod l)0≤i,j≤l−1

=




α0
σαl−1 · · · σl−1

α1

α1
σα0

. . .
...

...
. . . . . . σl−1

αl−1

αl−1 · · · σl−2
α1

σl−1
α0



∈ Ml(E)

and let Λk(a) be the (1, k + 1)-cofactor of Λ(a). Then

a−1 =
l−1∑
j=0

Λj(a)

|Λ(a)|ξ
j,

where |Λ(a)| is the determinant of Λ(a).

Proof. By the map Λ : Ml(F ) → Ml(E), we can embed Ml(F ) into Ml(E). Then our
lemma follows from Cramer’s formula. ¤

Lemma 3.4. Assume n = 2m and 3(m − 1) ≥ 2m. Let c ∈ F×, y ∈ Pm−1
E and a =

1 +
∑l−1

j=1 αjξ
j ∈ Km−1. Then

ρθ(ac(1 + y)a−1) = θ(c(1 + y))ψE

(
l−1∑
j=1

(γαj
σj

αl−j − σ−j

γαl−j
σ−j

αj)y

)
.
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Proof. It is obvious that we may assume c = 1. Since

g−1aga−1 = 1 + (g−1(a− 1)g − (a− 1))a−1

= 1 +

(
l−1∑
j=1

(σj

gg−1 − 1)αjξ
j

)
a−1,

∑l−1
j=1(

σj
gg−1 − 1)αjξ

j ∈ Am and Tr(γxξj) = 0 for all x ∈ E, we have:

ρθ(g
−1aga−1) = ψγ

(
(

l−1∑
j=1

(σj

gg−1 − 1)αjξ
j)a−1

)

= ψγ

(
l−1∑
j=1

(σj

gg−1 − 1)αj
σj

(fl−j(a))

)
,

where fj(a) ∈ E is defined by a−1 =
∑l−1

j=0 fj(a)ξ
j. Put g = 1 + y. In the last equation,

γ ∈ P 1−n
E , fl−j ∈ Pm−1

E and σj
gg−1 − 1 ≡ σj

y − y mod P 2m−2
E . Thus we get

ρθ(g
−1aga−1) = ψE

(
l−1∑
j=1

(σ−j

γfl−j(a)
σ−j

αj − γσj

(fl−j(a))αj)y

)

by virtue of trE u
σj
v = trE

σ−j
uv for any u, v ∈ E. It follows from Lemma 3.3 that

fl−j(a) =
Λl−j(a)

|Λ(a)| ≡ αl−j mod P 2m−2
E .

By the assumption 3m− 3 ≥ 2m, we obtain the desired formula. ¤
Proposition 3.5. Assume q ≡ 1 mod l, n = 2m and m ≥ 3.

(1) For x ∈ U∗1 ,

χηθ
(x) = q(l−1)/2

l−1∑
j=0

θ(σj

x).

(2) For an even integer n and y ∈ OF , G(y, n−1) = q(l−1)/2. In particular, G(y, n−1)
depends neither on n nor on y.

Proof. By Lemmas 3.1, 3.2 and 3.4, we have for c ∈ F× and y ∈ 1 + PE

χηθ
(c(1 + y)) =

l−1∑
i=0

θ(c(1 + σi

y))
∑

(α1,...,αl−1)∈(P m−1
E /P m

E )l−1

f(α1, . . . , αl−1;
σi

y),

where

f(α1, . . . , αl−1; y) = ψE

(
l−1∑
j=1

(γαj
σj

αl−j − σ−j

γαl−j
σ−j

αj)y

)
.

Put Sj = {(α1, . . . , αl−1) ∈ (Pm−1
E /Pm

E )l−1 | αk = 0 for k < j, αj 6= 0} and Ij(y) =∑
(α1,...,αl−1)∈Sj

f(α1, . . . , αl−1; y). Then

χηθ
(c(1 + y)) =

l−1∑
i=0

θ(c(1 + σi

y))
l−1∑
j=1

Ij(
σi

y).
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If α1 = · · · = α(l−1)/2 = 0, f(α1, . . . , αl−1; y) = 0. Thus we have

l−1∑

j=(l+1)/2

Ij(y) = q(l−1)/2.

For 1 ≤ j ≤ (l − 1)/2, Ij(y) is proportional to
∑

αl−j∈P m
E /P m+1

E

ψE((γαj
σj

αl−j − σ−j

γαl−j
σ−j

αj)y).

Since αj 6= 0, the map

αl−j 7→ γαj
σj

αl−j − σ−j

γαl−j
σ−j

αj

is a bijection from Pm−1
E /Pm

E to kF . Therefore Ij(y) = 0. Consequently we get the first
part of our lemma. G(y, n − 1) = q(l−1)/2 follows from Proposition 2.2 and the first
part. ¤

Next we assume q − 1 6≡ 0 mod l. In this situation, it is rather difficult to describe
E×-module structure of various objects since F has no l-th primitive root of unity and
E/F is not Galois. In order to apply the result of Galois case, we use the base change
lift of simple characters by Bushnell-Henniart [3]. Let ζ be a primitive l-th root of unity
and L = F (ζ). Then L/F is an unramified extension of degree d where d is the smallest
integer satisfying qd ≡ 1 mod l. The generator τ of Gal(L/F ) is determined by τζ = ζk

where k = r(l−1)/dand r is a generator of (Z/lZ)×. We add the subscript L to the base
changed objects. Then Ml(L) = Ml(F )⊗F L and EL = E ⊗F L ' EL. EL is a ramified
Galois extension over L of degree l, an unramified extension over E of degree d with
Gal(EL/E) = Gal(L/F ) = 〈τ〉 and a non-Abelian Galois extension over F of degree ld.
(We embed E into EL by the map: x 7→ x⊗ 1).

As in the previous section, we identifies Ml(L) with EndLEL and GL = GLl(L) with
AutLEL by the L-basis {$l−1

E , · · · , $E, 1} of EL, which is also an OL-basis of OEL
. By

the lattice flag {P i
EL
}i∈Z, we define

Ai
L = {f ∈ Ml(L)|f(P j

EL
) ⊂ P j+i

EL
for all j ∈ Z}.

Put KL = (A0
L)×, BL = E×

LKL and Ki
L = 1 + Ai

L for i ≥ 1. For a subgroup ML ⊂ BL

(resp. M ⊂ B), we set M1
L = M ∩ L×KL (resp. M1 = M ∩ F×K). By the result of

Kutzko (Theorem 1.7), it suffices to calculate the character of κ = κθ instead of πθ. In
fact, we have only to get the character of ηθ|B1 . Therefore we have only to treat the base
change of ηθ|B1 to B1

L where B1
L = L×KL.

Definition 3.6. Let θ be a generic character of E× with f(θ) = n and θ(1 + x) =
ψ(trE(γx)) for x ∈ Pm

E . We define a base change lift θL of θ to L× by θL = θ ◦ nEL/E.
Then θL(1 + x) = ψL(trEL/L γx) for x ∈ Pm

EL
. (Recall m = [(n+ 1)/2].) The base change

lift ρL of ρ|H1 to H1
L = L×(1 + PEL

)Km
L is defined by

ρL(h · g) = θL(h)ψL(Tr γ(g − 1)) for h ∈ L×(1 + PEL
), g ∈ Km

L .

We define the base change ηL of η|B1 to B1
L by

ηL = Ind
B1

L

H1
L
ρL.
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By virtue of θL ◦ τ = θL, we have ρL ◦ τ = ρL. Thus we can define an extension ρ̃L of
ρL to H1

L o 〈τ〉 by

ρ̃L(xo τ) = ρL(x) for x ∈ H1
L.

Now we apply the result of Bushnell-Henniart [3] to our case and get the character
relation between ηL and η̃L. Put UEL,i = L×(1+P i

EL
) for i > 0 and U∗EL,i = UEL,i−UEL,i+1.

By (12.19) Corollary in [3] and the fact 〈τ〉-fixed space 〈τ〉(L×Ki
L) is equal to F×Ki, the

following result follows.

Proposition 3.7. Let x ∈ UEL,1. Between the set

{g ∈ H1\(E×Km−1)1 | gnEL/E(x)g−1 ∈ H1}
and the set

{h ∈ H1
L\(E×

LK
m−1
L )1 | hxτh−1 ∈ H1

L},
there is a bijection ψ with the property

ρL(ψ(g)xτ(ψ(g))−1) = ρ(gnEL/E(x)g−1).

Combining this with Lemma 3.1, we have:

Lemma 3.8.

(3.3) χηθ
(nEL/E(x)) =

∑

a∈H1
L\(E×L Km−1

L )1

axτa−1∈HL

ρL(axτa−1).

Since nEL/E(L×(1 + P i
EL

)) = F×(1 + P i
E), it suffices to calculate the right hand side of

(3.3) for x ∈ U∗EL,1.

As in the Galois case, set ξ = diag(1, ζ l−1, ζ l−2, . . . , ζ) ∈ Ml(L). Then ξ satisfies ξl = 1,
τξ = ξk and

ξxξ−1 = σx for any x ∈ EL,

where σ is the generator of Gal(EL/L) determined by σ$E = $Eζ. Moreover we have
τστ−1 = σk and

(3.4)

Ml(L) = EL ⊕ ELξ ⊕ · · · ELξ
l−1

A0
L = OEL

⊕ OEL
ξ ⊕ · · · OEL

ξl−1

A1
L = PEL

⊕ PEL
ξ ⊕ · · · PEL

ξl−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Al−1

L = P l−1
EL

⊕ P l−1
EL

ξ ⊕ · · · P l−1
EL

ξl−1.

We note that any element ofK1
L can be written in the form (1+α1ξ+α2ξ

2+· · ·+αl−1ξ
l−1)

for αi ∈ PEL
.

Lemma 3.9. Let i < m and a = 1+α1ξ+α2ξ
2+· · ·+αl−1ξ

l−1 for αj ∈ OE and x ∈ U∗EL,i.

Then axτa−1 ∈ HL is equivalent to αj ∈ Pm−i
EL

and αhkj = τj
αh for j = 0, 1, . . . , d− 1 and

h = 1, r, . . . , r(l−1)/d−1. (The suffix of αj is extended to Z by αj = αj mod l.)

Proof. It follows from Lemma 3.2 that if a−1xτa ∈ HL, there exist γ0 ∈ O×
E and γj ∈ Pm

EL

for 1 ≤ j ≤ l − 1 such that

(1 + α1ξ + · · ·+ αl−1ξ
l−1)x = γ0(1 + γ1ξ + γ2ξ

2 + · · ·+ γl−1ξ
l−1)

(1 + τα1ξ
k + τα2ξ

2k + · · ·+ ταl−1ξ
(l−1)k).
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It implies

x = γ0(1 + γl−k
σl−kτα1 + γl−2k

σl−2kτα2 + · · ·+ γk
σkταl−1)

αk
σk

x = γ0(γk + τα1 + γl−k
σl−kτα2 + · · ·+ γ2k

σ2kταl−1)

. . . . . .

αl−k
σl−k

x = γ0(γl−k + γl−2k
σl−2kτα1 + · · ·+ ταl−1).

Thus we have
αhk

σhk

x = xταh mod Pm
EL

(h ∈ (Z/lZ)×).

By eliminating αhk, αhk2 , . . . , αhkd−1 , we get

αh = nEL/E(x)σk

nEL/E(x)−1αh mod Pm
EL
.

Since nEL
(x)σk

nEL/E(x)−1 ∈ 1 + P i
E − P i+1

E , αk ∈ Pm−i
EL/E. By xσk

x−1 ∈ 1 + P i
EL

, we obtain

αh ∈ Pm−i
EL

and αhkj = τj
αh mod Pm

EL
for j = 0, 1, . . . , d−1 and h = 1, r, . . . , r(l−1)/d−1. ¤

Lemma 3.10. Assume n = 2m and m ≥ 3. Let x ∈ 1 + PEL
− P 2

EL
and a = 1 +∑(l−1)/d

i=1

∑d
j=1

τj
αriξrikj

for αri ∈ Pm−1
EL

. Then

(3.5) ρL(axτa−1x−1) = ψE




(l−1)/d∑
i=1

trEL/E(ui − σ−ri

ui) trEL/E(x− 1)




where ui = γαri
σri

α−ri.

Proof. By Lemma 3.9, τaa−1 ∈ HL. Since ρL(τaa−1) = 1, it implies ρL(axτa−1g−1) =
ρL(axa−1g−1). By the same way as Lemma 3.4, we have:

ρL(axτa−1x−1) = ψEL




(l−1)/d∑
i=1

d∑
j=1

(vi,j − σ−rikj

vi,j)(x− 1)




where vi,j = γτj
αri

τjσri

α−ri . Since σrikj
τ j = τ jσri

and τγ = γ, we have

d∑
j=1

(vi,j − σ−rikj

vi,j) =
d∑

j=1

(γτj

αri
τjσri

α−ri − τjσ−ri

γτj

α−ri
τjσ−ri

σ−ri)

=
d∑

j=1

τj

(γαri
σri

α−ri − σ−ri

γσ−ri

αriα−ri)

= trEL/E(γαri
σri

α−ri − σ−ri

γσ−ri

αriα−ri).

This implies the equation (3.5). ¤
It is time to get the character value of χη on U∗1 .

Proposition 3.11. Let x ∈ 1 + PEL
− P 2

EL
and n = 2m > 6. Then

χη(nEL/E(x)) =
(q
l

)
q(l−1)/2θ(nEL/E(x))

and
G(y, j) =

(q
l

)
q(l−1)/2
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for all y ∈ kF and j odd.

Proof. By Proposition 3.7, Lemmas 3.8, 3.9, 3.10 and 3.11, we have:

(3.6) χη(nEL/E(x)) = θL(x)
∑

(αri )

ψE




(l−1)/d∑
i=1

trEL/E(ui − σ−ri

ui) trEL/E(x− 1)




where ui = γαri
σri

α−ri and (αri)1≤i≤(l−1)/d ∈ (Pm−1
EL

/Pm
EL

)(l−1)/d. First we assume (l−1)/d

is odd. Then
(q
l

)
= −1, d is even and τd/2

αri = α−ri . Let Ei be the 〈σri
τ d/2〉-fixed

field. Then EL/Ei is a quadratic unramified extension, αri
σri

τd/2
αri = nEL/Ei

(αri), nEL/Ei

induces a surjection from $m−1
E OEL

/1 + PEL
to $2m−2

E OEi
/1 + PEi

and each fiber of the

induced map has qd/2 + 1 elements. Moreover the map x 7→ trEL/Ei
(x − σ−ri

x induces a
surjective kF -linear map from P 2m−2

Ei
/P 2m−1

Ei
to P−1

E /OE. Thus we have:

∑

αri∈P m−1
EL

/P m
EL

ψE




(l−1)/d∑
i=1

trEL/E(ui − σ−ri

ui) trEL/E(x− 1)




= (1− (qd/2 + 1)).

Putting this into 3.6, we get:

χη(nEL/E(x)) = θL(x)(1− (qd/2 + 1))(l−1)/d

= −q(l−1)/2θL(x)

and it follows from Proposition 2.2 that G(y, j) = −q(l−1)/2 for all y ∈ kF and j odd. Now
we assume (l − 1)/d is even. Then

(
q
l

)
= 1 and it follows from the same argument as in

the proof of Proposition 3.5 that

χη(nEL/E(x)) = θL(x)|kEL
|(l−1)/2d

= q(l−1)/2θL(x).

By Proposition 2.2, we have G(y, j) = q(l−1)/2 for all y ∈ kF and j odd in this case. ¤

Putting all these together, we can state the character formula.

Theorem 3.12. Let E be a ramified extension of F with degree l, θ a generic quasi-
character of E× with f(θ) = n and π = πθ the irreducible supercuspidal representation of
GLl(F ) defined in section 1. Put U0 = F×O×

E , Uj = F×(1 + P j
E) and U∗j = Uj − Uj+1

for j ≥ 1. Let x be an elliptic regular element of GLl(F ) and AutF E the group of
automorphism of E over F .

(1) If F (x)/F is unramified, then

χπ(x) =





0 x 6∈ F×(1 + P n
F (x)),

q(n−2)(l−1)/2 (ql−1)
q−1

θ(c) x = c(1 + y)

for c ∈ F×, y ∈ P n
F (x).
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(2) If F (x)/F is ramified and F (x) 6' E, then

χπ(x) =





0 if x 6∈ F×(1 + P n−1
F (x)),

q(n−2)(l−1)/2θ(c) Kl((γ$n−1
E )l

l−1∏
j=0

kj)

if x = c(1 +$n−1
E diag(k0, . . . , kl−1) + z)

for c ∈ F×, ki ∈ k×F , z ∈ P n
F (x),

q(n−2)(l−1)/2 (ql−1)
q−1

θ(c)

if x = c(1 + y) for c ∈ F×, y ∈ P n
F (x).

(3) When x ∈ E, then

χπ(x) =





(q
l

)n−j

qj(l−1)/2
∑

σ∈AutF E

θ(σx)

if x ∈ U∗j for 0 ≤ j < n− 1,

q(n−2)(l−1)/2θ(c) Kl((γ$n−1
E x0)

l)

if x = c(1 +$n−1
E x0) for c ∈ F×, x0 ∈ O×

E ,

q(n−2)(l−1)/2 (ql−1)
q−1

θ(c)

if x = c(1 + y) for c ∈ F×, y ∈ P n
E .

(See (2.6) for the definition of the Kloosterman sum Kl(a).)

Proof. It follows from (1.8), Theorem 1.7, Lemmas 2.4, 2.5, 2.6, Propositions 2.2, 3.5
and 3.11 ¤
Remark. By Theorem 1.6, the character formula of the representation π′θ of D× is given
by the same formula for πθ.
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