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and related topics. This volume contains the texts of all lectures.
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Shimura correspondence for Maass wave forms
and Selberg zeta functions

Tsuneo ARAKAWA  (Rikkyo University)

B S (BRI

0 Introduction

Shimura in [Shm| established a significant correspondence from holomorphic modu-
lar forms of even integral weight 2k — 2 to modular forms of half integral weight k& —1/2
which is consistent with the actions of Hecke operators. The converse correspondence
was given by Shintani [Shn| in terms of period integrals. After these results, Kohnen
(I[Koh]) showed that this correspondence yields a bijection from the space Sor_o of
holomorphic modular forms of weight 2k — 2 on SLy(Z) to the plus space S, Jg Of
modular cusp forms of weight £ — 1/2 on I'y(4). On the other hand the plus space
corresponds bijectively to the space J;1™” of holomorphic Jacobi cusp forms (resp. the

space J,‘zkl P of skew holomorphic Jacobi cusp forms ([Ski], [Sk2])) of weight k and
index 1 on SLy(Z) if k is even (resp. odd). We exhibit here the isomorphisms in the
case of k > 1 being odd:

(0.1) Sona = S ) T P

As for the Maass wave forms Katok-Sarnak in [KS| formed the Shimura correspon-
dence from the space of even Maass wave forms to a certain plus space consisting of
automorphic forms of weight 1/2. This work is understood to give an analogue of
Shintani’s converse correspondence to the case of Maass wave forms.

A purpose of this article is to explain an analogue of the right correspondence in
the above (0.I]) in the case of Maass wave forms. Another purpose is to interpret
this Shimura correspondence for Maass wave forms from viewpoints of Selberg zeta
functions and resolvent Selberg trace formulas. Finally we discuss some arithmetic
aspects of Selberg zeta functions and also some applications.

We explain a little more in details. Let I' = SLy(Z) and H§"" denote the space
of even functions f € Hy = L*(I'\$) satisfying f(—z) = f(z). It is known by Katok-
Sarnak [KS| that to each Hecke eigen Maass wave form f € HE'" there corresponds an
automorphic form g in the plus space of weight 1/2 having reasonable properties. The
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whole plus space corresponds to the space H_; 4, of automorphic forms attached to the
theta multiplier system x defined by (IL2]). This space plays an alternative role of the
space of skew holomorphic Jacobi cusp forms in ([(.I]). We have computed the resolvent
trace formula for H§"" and that of H_;/4,. There attached to the space HG'" the
Selberg zeta function Ze,e,(s) is introduced, while associated to the multiplier system
X we have the Selberg zeta function Z,(s) (see ([210), ([23]) ). By comparing the both
resolvent trace formulas for H§"" and H_; 4, the conjectural bijectivity of the Katok-
Sarnak correspondence will be reduced to some simple relationship of the two Selberg
zeta functions concerned, which will be presented as a new conjecture (Conjecture [).
Towards the solution of our conjecture we discuss an explicit arithmetic expression
of the Selberg zeta function Z, (s). The explicit espression of Zg,,(s) can easily be
obtained similarly from that of Z(s), the original Selberg zeta function for SLs(Z).

Finally as an application of the trace formula for H§"*" the prime geodesic theorem
(([#.4), Theorem [6) for GLo(Z) will be given. This will be a refinement of the original
result for the group SLy(Z) due to Sarnak [Sal.

1 Shimura correspondence for Maass wave forms

We use the symbol e(w) for exp(2miw). Throughout this article I denotes the modular
“ Z € SLy(R) and
z € 9, J(A, z) := cz + d denotes the usual factor of automorphy for SLs(R). For a
non-zero complex number w, argw is chosen so that —7 < argw < 7 and the branch
of a holomorphic function w® = exp(slogw) (w # 0) is fixed once and for all. For
A, B € SLy(R), the cocycle oq9x(A, B) is given by

group SLy(Z). Let $ denote the upper half plane. For A =

oar(A, B) = exp(2ik{arg J(A, Bz) + arg J(B, z) — arg J(AB, z)})

(note here that the right hand side is independent of z).

Following [Fi], we give a definition of a multiplier system of I'. Let V' be a finite
dimensional C-vector space equipped with a positive definite hermitian scalar product
(v,w) (v,w € V) and let U(V') denote the group of unitary tansformations of V' with
respect to the scalar product. A map x : I' — U(V) is called a multipier system of T’
of weight 2k (k € R), if it satisfies

(i) x(=12) = e"?™*idy, idy being the identity map of V.
(ii) X(AB) = oo(A, B)x(A)x(B) for all A, B €T.
We set, for A € SLy(R) and a function f on 9,

FIIM, K](2) = jar(2) " f(Mz)



with ju(2) = exp(2ik arg J(M, z)). Let Hy,,, denote the space of V-valued measurable
functions on $) with the properties

(i) fIIM,k]=x(M)f forall M €T,

) (f.f) = / U FEN () < o0

Then Hj,, forms a Hilbert space with respect to the scalar product

(f.9) = / L UELIEMLE), (g€ )

The differential operator Ay which is consistent with the action f|[A, k] is given by

A fundamental subspace D of Hy,, consists of C*-class functions f satisfying
(Apf, A f) < co. Since —Ay is symmetric on D, it is known by [Ro].I, Satz3.2 that
there exists the unique self—adpmt extension —Aj, : D — Hk x> Where D denotes the

domain of definition of Ak By the self-adjointness of Ak, eigen values of Ak are
all real numbers. So we let

1
)\n:1+ri Mo <A< <A< -0)
denote all distinct eigen values of —A,. We may choose 7, so that r, € (0, 00)U[0, 00).

Denote by Hy . (s) the space of C*-class functions f € Hy, satisfying —Ayf = s(1—s)f.
It is known that Hy ,(s) is a finite dimensional C-vector space. Moreover

1
d, —dlmHkX( +iry)

gives the multiplicity of \,, = %1"‘7% of —Ay. Let s, a € C. The spectral series attached
to the multiplier system (T', x) is defined by

(1.1) Sex(sia) =3 <( b )

— 5—1/2) +7r2 (a—1/2) + 72

It is known that the infinite series is absolutely convergent for s, a with s # % +ir,,
a 7& + ir,. Then Sr,(s,a) indicates a meromorphic function of s whose poles are
located at s = 5 £ ir,. They are simple poles except for s = 1/2 (r, = 0).



In this note we exclusively concider the following two cases. First let k =0,V =C
and x be the trivial character of I'. Then

H(] = HOvX = L2(F\f))

A function f of H, is called an even function if it satisfies f(—%) = f(z). Let HE""
(resp. H§""(s) (s € C)) be the subspace of H, consisting of even functions (resp. even
C?-class functions with —A.f = s(1 — s)f). We denote by S&¢"(s,a) the spectral
series attached to the space H§"" and the differential operator Ay = yQ(aa—;2 + (;9—;2)
which is similarly defined as in ().

Another one is the multiplier system obtained from the theta transformation for-

mula. Let 0;(7,2) (i =0, 1) be the usual theta series defined by
0;(1,2) = Z e((n+i/2)°t + (2n +1i)z).
nez

The theta transformation law for these theta series is described as follows:

(h0) ) =<Garm)rarrmvon (3 ) (u=(1 g) <r).

where U(M) is a unitary matrix of size two. For the convenience we consider the
complex conjugate x of U:

(1.2) (M) =T (M eT).

Since we have x(—15) = €™/21,, x forms a multiplier system of I" with weight —1/2.

Let H_1/4, and H_1,4,(s) be the spaces defined as above for this multiplier x and I.
We explain here the Maass wave form version of the correspondences in (0.1I).

Denote by j(M, 1) (M € I'y(4)) Shimura’s factor of automorphy on I'y(4) given by

J(M, 1) = 6(MT)/6(7),

0(7) being the theta series 0y(7,0) = Y, ., e(n?7). Katok-Sarnak defined a certain plus
space consisting of Maass wave forms of weight 1/2. For s € C let T denote the space
consisting of C?%-class functions g : § — C satisfying the following two conditions:

(i) g(Mz) = g(2)j(M, 2)|cz+d|~/? for all M € I'y(4) and / |9(2)|? dw(z) < +o0,
Fo(4)\$

(ii) ¢ has a Fourier expansion of the form:



where we impose the condition that if n = 2, 3 mod 4, then necessarily B(n,y) = 0.
Moreover we assume the Fourier coefficients B(n,y) for n # 0 are given of the form

(1.3) B(n,y) = b(n)Wiignn/a, s—12(4mylnl),
where W, g denotes the usual Whittaker function.

Then a modified version of the second isomorphism in ([(.I]) generalized to Maass
wave forms is given by

Proposition 1 There exists the following anti C-linear isomorphism

(14) Horjan(s) = T3

S

given by H_1/4,X(s) S5¢9= ( z(l) ) — G(1) = go(47) + g1(471) € Tg.

Remark. We note that, if s is real or of the form s = % + ¢r with r real, then
T} = T2, and moreover that T;" = {0}, otherwise. In particular if s = 1/4, then the
space 17, = T3, is nothing but M, (To(4)).

For the proof of the proposition we refer to [Ard].
An analogue of the correspondences in ([0.]) to Maass wave forms is described as
follows:

1
Hgven (28 _ 5) ~ T:_ &= H—1/47X(8)-

b

Here the symbol ”~” means that there exists a certain correspondence from
HEv" (25 — 3) to T, described as in the following theorem due to Katok-Sarnak [KS].

Theorem 2 ([KS]) Lets € C and let f be an even Hecke eigen Maass wave form
of H§""(2s — 1/2). Then there exists g = Y, ., B(n,y)e(nz) € T," whose Fourier
coefficients satisfy the relation

b(—n) =n"** 3" flap)|AutT|™ (n € Zsy),

T, det 2T=n

where T' runs through all the S Ly(7Z)-equivalence classes of positive definite half-integral
symmetric matrices T with det 2T = n and |AutT| denotes the order of the unit group

of T. Moreover zr is the point in §) corresponding to T ; namely if we write T = tg=tg™!

with g € GL$ (R), then zp = g(i).

Remark. 1t is expected that for each Hecke eigen Maass wave form f there exists at
least one non-zero g corresponding to f. Under this expectation

(1.5) dim HE (25 — 1/2) < dim T (?).



2 Selberg zeta functions concerned

The Selberg zeta functions Ze,e,(s) has been introduced in [Ar3] to describe the trace
formula for HE"". Let Prm™(I") be the set of primitive hyperbolic elements P of I" with
trP > 2 and Prm™*(T')! the set consisting of P € Prm™* (') that are primitive even in
GLy(Z). Set T = GLy(Z) — SLy(Z). An elemnet of T' is called primitive hyperbolic, if
trP # 0 and P cannot be represented as any power of any element of I'. Let Prm*(f)
be the set of primitive hyperbolic elements P of T with trP > 0. For any element
P e Prm™*(T) (or P € Prm™ (")) let N(P) denote the square of the eigen value (> 1)
of P. For any subset S of GLy(Z) which is stable under the SLs(Z)-conjugation we
denote by S/I" the set of I'-conjugacy classes in S. We define Zgye,(s) by

(21)  Zewen(s) = [] H (1 — (- (PO)‘S—m>2 < TI' ﬁ (1 _N(P)_s_m»

{Py}r m=0 {P}r m=0

where {Py}r is taken over Prm™(I')/T" and the product pr}r indicates that {P}r

runs through Prm™(T')!/T. The zeta function Z.,.,(s) is absolutely convergent for
Re(s) > 1. Moreover it is immediate to see from (2.1)) that the logarithmic derivative
of Zeyen($) is given by

= 1 1
(22) even Z Z OgN —ms 4 Z Z . j—g]]VV PPOO (Po)fns

even (P}r m= 1 {Po}r TL>0

In [Arl] we obtained the resolvent trace formula for the space H_ 4, involving the
zeta function Z, (s) given by

(2.3) z(s)= I 1I det(12 - X(P)N(P)*S*m).

{P}rePrm*(T)/T m=0

On the other hand in [Ar3], [Ard] we computed the resolvent trace formula for
the space Hg"*" and compared the both trace formulas for H_; /4, and H§"" in an
explicit manner. As an important consequence of this comparison we have the following
fundamental theorem which connects the spectral series with the Selberg zeta functions
concerned.

Theorem 3 Let s =2s —1/2 and a’ = 2a — 1/2 with Re(s) > 1, Re(a) > 1. Then

21 S - (5770 - 57 0)

A
7 1z
— 4 Seven / ( even _ even ) .
( F(d) — (3 —1) Zem<s) 2(2a' — 1) Zm(“) )




For the proof we refer to [Ard].
In (24) we expect that the hyperbolic contributions of the both hand sides should
coincide. Therefore we may present the following conjecture.

Conjecture 4 We have

A A
Z—X(s) = %(25 —1/2)  or egivalently, Z,(5)* = Zepen(25 —1/2).
X even

Towards the solution of the conjecture it will be necessary to obtain explicit arith-
metic expressions of the zeta functions Z,(s) and Ze,e,(2s — 1/2); in particular that of
Zy(s).

3 Arithmetic forms

For M = ( (i Z ) € GLy(Z) (M # £1,), we write
~ b (d—a)/2 and n _ 1=
e T N

where 5 = ged(b,d — a,c¢) (B is often denoted by 5(M)). By a straightforward compu-
tation it is not dificult to see that, for P € GLy(Z),

n(PMP™) = (det P)~'Pn(M)P.

Let t := a + d be the trace of M. The trace of U(M) for M € I', t > 2 is given by

(3.1) trU(M):m 3 e(tiQQ,u)M(A)).

MUEZ) (t—2)Z "

The matrix entries of U(M) have been computed by Skoruppa-Zagier [SZ] in terms of
Gaussian sums. The formula above is easily derived from their results. We note that
this trace depends only on I'-conjugacy class of M:

trU(P~'MP) = ttU(M) (P eT).

Let D range over all positive discriminants and C,,.(D) denote the set of all primitive
ny  ny/2
N9 / 2 ns
Cyy the collection of such N € C,, (D) with D varying in all positive discriminants D.
The modular group I" acts on Cp, (also on C,(D)) in a usual manner by N — PN'P

half integral symmetric matrices N = ) with n2 —4nyns = D. Denote by
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(N € Cp, P €T). Denote by Cp.(D)//T" (resp. Cp.//T") the set of the I'-equivalence
classes in Cp(D) (resp. Cy,) and by h(D) the cardinality of this finite set C,,.(D)//T’;
namely h(D) is the class number of primitive binary integral quadratic forms with
discriminant D. Let ep = %ﬁ denote the minimal solution of the Pell equation
t? — 3°D = 4 with t, 8 € Zo. Moreover we denote by €%, = M the minimal
solution of the Pell equation 3 — 32D = —4 with to, 8y € Z if it exists (in this case
ep = (€p)?).
It is known that there exists a bijection from Prm™(T") to C,,:

(3.2) Prm*(T') 3 P —— n(P) € C,,.

and that it induces a bijective map from the set Prm™(T')/T" of all the I'-conjugacy

classes in Prm™(I") onto C,,//I'. For each N = < nn}Z n;/2 ) € Cp (D) the opposite
2 3

map is given by

_(E=0Pn2)/2 fm T
N — P_< By (t+ﬁn2)/2> € Prm™(I).

We define, for each positive discriminant D and a positive integer m,

ComD) = 3 ul(x(P)™),

NeCpr(D)//T

where P corresponds to N by the above bijective map, namely, n(P) = N. Then we
have another expression of (2} /Z,)(s):

Z Z CX . lOg iDQBn 65277187
€p

D>0m=1

t+ VD

where ep = — with (¢, 3) denoting the minimal solution of the Pell equation

t? — DB* = 4, t, B € Zso. To obtain this expression we note that tr(x(P™)) =
tr(x(P)™). Since x(P)™ are unitary matrices of size two, the values which tr(x(P)™)
can take are rather limited. We have tried to compute C,,,(D), but at present we
have got only partial results.

Proposition 5 Let D be a positive discriminant with D = 1 mod 4. Assume that

to + BV D

there exists a fundamental unit €%, = — (to, Bo € Zso) with (to, Bo) giving

the minimal solution of the Pell equation t3 — DBZ = —4 (namely, N(¢%) = —1) and



moreover assume that ty is odd. For each N € Cp.(D), chosse P € Prm™(T") which
corresponds to N by n(P) = N. Then we have

tr(x(P)™) = 2 cos % (m € Zy).

Accordingly,

Proof. Let €p, €%, P and N be the same as above. We note that ep = (€%)?, pP= OGN,
from which we have t — 2 = t2 and 8 = t(3y. The expression (B.1) implies that

1
plt—2
where for each prime p dividing ¢t — 2 we set

b= 3 tznar(D)- 5 (L)

MHEZ/peL AnELfpeZ O

with p¢||t —2 (this means that p¢ divides t —2 and p*™! does not). For each prime p the
function e(z) restricted to Q extends to a continuous function e,(z) on Q, in such a
manner that e,(z) = e(z) for z € Q. Let a prime p divide ¢ — 2. By the assumption on
to, p is an odd prime. We may assume that N is SLy(Z,)-equivalent to ( g —u91 D >
with u € Z;. Then,

b= a(fo))( T a(-feoe)),

A mod pe @ mod p¢

If we write to = p/t) with (¢, p) =1, then e = 2f and

Iy =Gy () Gy (-2,

to to

X
where we put, for a € Z,

It is well-known and easy to see that

o { pf/? if f is even,
fla) =
P pU=V29 (a)G(y,)  if f is odd,

9



where 1, is the non-trivial quadratic character modulo p (¢, is extended to Z;) and
G(1p) is the usual Gaussian sum associated to 1,

G(y) = Z Vp(@)ep(z).

z mod p
Using the identity G(,)* = 1,(—1)p, one can compute J, in an explicit manner:
pie/? if f is even,
- { P2, (D) if fis odd.
Since t — 32D = —4, we have 1,(D) = 1. Therefore by (8.3) we conclude that
trU(P) = 1, namely, try(P) = 1.

Set, for any M € T,
w(M)=detU(M).
Then w forms a character of I'. We now borrow some notations and results from [Ar2].

[ o ng/2
We may assume N = ( na/2

n2+\/ﬁ
o= ——

2711

) € Cp (D) to be reduced; namely, ny, ng > 0 and

ng > ny + n3. Set

Then N is reduced, if and only if « satisfies the condition
(3.4) a>1 and 0<a <1,

which amounts to saying that a has a purely periodic continued fraction expansion:

1

O_/:bl— (bjGZ,bl,...,bTEQ).

by —

This expansion is denoted by
(3.5) a=[[by,bg,...,b]]

(for this type of continued fraction expansion and the relationship with quadratic forms
we refer to Zagier [Zal). Here r is called the period of . Let B denote the I'-equivalence
class in C,, (D) represented by N. Then the period r depends only on the class B and

10



is denoted by r(B). Let B* be the class of Cp,.(D) represented by N* = —'QNQ with
Q= ( _12 _11 ) Then we know in the proof of Proposition 5.1 of [Ar2] that

w(P) = jr(B)=r(B")
Moreover it is known that if there exists €%, with norm —1, then 7(B) = r(B*). There-
fore det U(P) = w(P) = 1. This means that U(P) is GLy(C)-conjugate to some

(eo egg ) with § € R. Then trU(P) = 2cosf = 1, which implies § = +7/3 4 2n7

(n € Z). Thus,
trU(P™) = tr(U(P)™) = 2cosmf = 2 cos %
We have completed the proof of Proposition Al 1

Let Z(s) denote the ordinary Selberg zeta function for I':

26s)= ]I ﬁ (1 - N(P)‘S‘m>.

{P}rePrm*(T)/T m=0

It is well-known ([Sal, [Hel]) and easy to see from the bijection ([32) that Z(s) has the
following arithmetic expression:

260 = T (=)

D>0m=0

A4 l
26 = S wo E_DM .

D>0m=1

For each positive discriminant D let C, (D) be the subset of C,,.(D) consisting of
N for which there exists a P € I' with PN'P = —N. Denote by C,,. the union of
all C, (D) with D varying in all positive discriminants. We see easﬂy that for each
D only the case of either C (D) = ¢ or C, (D) = Cp,.(D) occurs and moreover that
C,.(D) = Cp.(D) if and only if €}, with norm —1 exists.

Therefore one can consider the set C;.(D)//T" (or C,.//T) of I'-equivalence classeis
in C, (D) (in C,,). Then it is easy to show in a 81m11ar manner that there exists a
bijection from Prm™(T) onto C,, via the map Prm™(I') > P +— n(P) € C,, and that

it induces a bijective map from the set Prm™*(I')/T" onto C//T.

11



Consequently by (2.10), (22), we have the expression for Z,e,(s):

Zeven(8) = H H(l_ _1)me s+m)> " H H<1 5+m)> (D)’

D>0 m=0 D>0 m=0
Z! 2h(D log eD 2h(D log eD
even (8) _ Z Z —2ms + Z Z )7ns’
Zeven D>0m=1 D>0 nig
o

where # (resp. 7) indicates that D runs over all positive discriminants for which €Y,
with norm —1 exist (resp. for which €% do not exist).

4 Prime geodesic theorem
It is known originally by Sarnak [Sa] that

(4.1) Y logN(P) = X +O(X7*).

{P}r
N(P)<X

and hence that

(4.2) > h(D)log((ep)?) = X* + O(X=7)

D>0
ED§X

(note that (£2) is easily derived from (41]) with the help of the bijection from Prm™(T")/T
onto Cp,.//I'). The best possible error term in the right hand side of ([4.2]) is O(X57)
which is given by Luo-Sarnak [LS].

Similarly by using the Selberg trace formula for the space H{"*" and by a general
procedure (cf. [Iw], [He]) the following estimate follows:

(4.3) 1( Z log N(P) + Z log N(P0)2) = X +O(Xit) (e >0),

2
{P}r {Po}r
N(P)SX N(Po)<£X

where the summations indicate that {P}r and {Fy}r run through Prm™(T")/I" and
Prm™(T")/T" with the conditions N(P) < X and N(F) < X, respectively. Then by
comparing (41 and (43]) we have

(4.4) Y7 logN(Py)? = X + O(X %),

{Po}r
N(Py)SX

Therefore in the arithmetic terminology we have

12



Theorem 6 Assume e > 0. We have

X2 3
4. = — ate
(4.5) E h(D)log((€%)?) 5 + O(X27)
D>0
Q<X
and

Z h(D)log((ep)?) = X2+ O(X27),

D>0
€D éX

where the second summation indicates that D runs through all positive discriminants
for which fundamental units with norm —1 do not exist.

Proof. The former identity is a direct consequence of ([A4]) and the bijectivity of the
map from Prm™(I")/I" onto C,.//T, while the latter one is derived from (£.2]) and (1)
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Skew holomorphic Jacobi forms
of general degree

RERA: - Bl2EptoERt MRHFH— (Shuichi Hayashida)

Graduate School of Science, Osaka University

Introduction

In the study of modular forms of half integral weight, it is well known that
Kohnen’s plus space (a certain subspace of elliptic modular forms of half in-
tegral weight) of weight “even integer minus 1/2” is isomorphic to the space
of Jacobi forms of index 1 (cf. Eichler-Zagier[3] Theorem 5.4). Moreover,
Skoruppa[l4] introduced the notion of skew holomorphic Jacobi forms which
satisfy a certain transformation formula like Jacobi forms but not holomor-
phic functions, and he constructed a linear isomorphism between skew holo-
morphic Jacobi forms of index 1 and Kohnen’s plus space of weight “odd in-
teger minus 1/2” in the case of degree 1. This notion of skew holomorphic Ja-
cobi forms was generalised for higher degree by Arakawa[l]. There are several
works about the Jacobi form of general degree (cf. [1],[2],[8],[10], [11],[15], L8]
etc), but there are few results about skew holomorphic Jacobi forms of gen-
eral degree except Arakawall].

The purpose of this article is to investigate skew holomorphic Jacobi
forms of general degree. This article is a summarisation of three papers of
Hayashida[4],[5],[6]. In Section [Il we describe the definition of skew holomor-
phic Jacobi forms following Arakawal[l]. Skew holomorphic Jacobi forms are
not holomorphic functions but vanish under a certain differential operator
A which will be defined in Section[Il In Section 2 we give an isomorphism
between plus space of general degree and the space of skew holomorphic Ja-
cobi forms of index 1 of general degree. In Section B we construct Klingen
type Eisenstein series of skew holomorphic Jacobi forms. In order to obtain
this construction, we used a certain differential operator An,. In Section (]
we give an analogue of the Zharkovskaya’s theorem for Siegel modular forms
of half integral weight.



1 Skew holomorphic Jacobi forms

We denote Sp,(R) the real symplectic group of size 2n. Let $),, denote Siegel
upper half space of degree n, and let ©,,; = $,, x M,,;(C).

Skew holomorphic Jacobi forms was first introduced by Skoruppa[l4] as
function on ®;;, and he showed the isomorphism between Kohnen’s plus
space and the space of skew holomorphic Jacobi forms of index 1 in the case
of degree 1. This notion of skew holomorphic Jacobi forms was generalised
for higher degree by Arakawa[l]. In this section, we would like to describe
the definition of skew holomorphic Jacobi forms following Arakawa[l]. We
prepare some notations.

Let G, be the Jacobi group, Gj ; is a subgroup of Sp,4;(R) as follows,

J .
Gn,l —

0
I
0 c Spn+l (R)
0

O % ¥ ¥

*
*
*
0 1

We put I, = G, N Sppii(Z).
We denote the action of Sp,(R) on $,, by

M-Z = (AZ+ B)(CZ+ D)™

where M = (4 5) € Sp,(R), and Z € 9,,.
Let M > 0 be a symmetric half integral matrix of size [. Now we describe
the definition of the skew holomorphic Jacobi forms.

Definition 1 (skew holomorphic Jacobi forms cf. [1). Let F(r,z) be
a function on ®,,;, holomorphic on 9, and real analytic on M, ;(C). We say
F'is a skew holomorphic Jacobi form of weight k of index M belongs to F;il,
if F' satisfies the following two conditions :

(1) We put Fp(Z) == F(1,2)e(tr(MT)) for Z = (:,—z :,) € Dnii, then
Fry satisfies
Fulv-2) = det(CZ + D) |det(CZ + D)'Fu(Z) ,
for every y = (2 F) € Iy
(2) F has the Fourier expansion as follows :

F(Ta Z) =
3 C(N,R)e(Nt — %(4]\7 — RM UR)Imr +' Rz),

NeSymn,ReM,, i(Z)



where we denote by Sym, the set of all half integral symmetric matrices
of size n, and C(N, R) = 0 unless 4N — RM™ 'R < 0.

Moreover, if Fourier coefficients satisfy a condition that C(N, R) = 0 unless
AN — RM™ YR <0, we say F is a skew holomorphic Jacobi cusp form.

We set differential operators 2 := <1+—63’t . ), 1= ( 2 ) for (1,2) €

5T : 2 7t 0245
- , 6 ._1(_8 _ ;&
D1, where 054 is the Kronecker’s delta symbol, and 7 = o \ s Z&ys,t)’

where T4y (Tesp. Ysi) is the real part (resp. the imaginary part) of 7. We
define a differential operator

B R R
AM = SWZE—&M &

We note the following equivalence. If a function F' on D, satisfies the
condition (1) of the definition of skew holomorphic Jacobi forms, and ifn > 1,
then the condition (2) is equivalent to the following condition

(2) A F =0,.

We denote the vector space of skew holomorphic Jacobi forms (resp. skew
holomorphic Jacobi cusp forms) of weight k of index M by Jg% (T (resp.

Tkt ().

2 Isomorphisms between skew holomorphic
Jacobi forms of index 1 and plus spaces

First, we shall describe the definition of Siegel modular forms of half integral
weight.
For positive integer ¢, we put

T§"(q) = {M = (A5) € Spa(Z) | C =0 (modq)}
is the congruence subgroup of the symplectic group Sp,(Z).
We define a character ¢ on F(()") (4), ¢ is given by (M) := (%) for
M=(45)erg’ (@),

We put the standard theta series §"(Z) and put a function j(M, Z) as
follows:

0"(2) = > e('mZm),  (Z€H)

meZ™
, 0"(M - Z n
i0n2) = TUCEL arerfu.zes,),



then this j(M, Z) satisfies
J(M,Z)? = (M) det(CZ + D) for any M = (4 5) € F(”)(4)

Let k be an integer, x be a Dirichlet character modulo ¢, and 4|q. A
holomorphic function F(Z) on $, is said to be a Siegel modular form of
weight k& — 1/2 with character x belongs to F(()") (q) if F satisfies

F(M - Z) = x(det DYj(M, Z)** ' F(Z) , for any M = (48) e T{"(q),

and in the case of n = 1 we need that the function F'(Z) is holomorphic at all
cusps of F(()l)(q). We denote the set of such functions by Mk_l/g(Fé”)(q), X)-
If n = 0 then we denote Mk,l/Q(F(()O)(q), x) = C for & > 0. Also, we denote
the set of cusp forms in Mk_l/g(F(”)( )s X) by Si—1/2(T T (q), x).

Next, we define a subspace M, 1/2( " (4),9") of My 1/2( ") (4), )
(u=0or1) by

M (D67 (4), ")
= {h( ) € My 1/2(F( (4),9") | the coefficients ¢(T) =0,
unless 7 = —(=1)*"u'y mod 4 Sym, for some u € AL

We also define S 1/2( " (4),4") by

Sy (M6 (), 40") = M (D57 (4),4") N Son(T67(4), 0")

We say that M, 1/2(F(()n) (4),7") is the plus space.

Let M > 0 be a half integral symmetric matrix of size [ and let R €
M,,.(Z), we put the theta series

Vrm(T,2) = Z e(tr (M (t[(A+ ReM)™ D] + 2 2(A + R2M)™1)))),

)\EMn’l(Z)

where 7[(A + R2M)™ )] =t (A + R2M)"Y)7(XA + R(2M) ™).
Let F(1,z) € Jg% (L), then F satisfies the condition (1) of the definition
of skew holomorphic Jacobi forms, we can see

F(r,z+ 1A+ pu) = e(—tr (MM +2°02))) F(7, 2)

for every A\, € M,,;(Z). Hence, we have the following equation,

F(r,2) = Z Fr(T)0rMm(T,2)

ReEM,, 1(Z) /(M 1(Z)(2M))
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where Fr(7) are uniquely determined and Fr(—7) are holomorphic functions
on . If we set F(7,2) = >y o C(N, R)e(NT — (4N — RM™ MR Im 7 +'
R'z), then we can write Fg by

Fa()= Y C(NR) e(itr(élN — RMR)7) .
Nesymn,
4N—RM~1tR<0

In this section, from here, we consider only the case [ =1, M =1, and
we put v, 1= v, ;.

Let F(7,2) = > ,czomyn Fr(T)0:(T,2) € JEE (). We define a holomor-
phic function o(F)(1) = >, (7020 £+(—47), then we have the following
theorem.

Theorem 1. o(F) is an element of M, 1/2( ( ), W* 1. Moreover, the

map o : JH(T)) — ME 1/2(I‘(")( ), W*1) induces the linear isomorphism
over C. The space of skew holomorphic Jacobi cusp forms corresponds with
the space of cusp forms of plus space by this isomorphism. This isomorphism
map o commutes with Hecke operators of both spaces.

We note that if degree n is odd and integer k is even, then it is easy to
see that My, /5(T5"(4),4) = Jgk (T7) = {0}.

We denote the space of holomorphlc Jacobi forms of weight & of index 1 of
degree n by Ji. 1 (') (cf. Ibukiyama [8]), then the table of linear isomorphisms
between the plus space and the holomorphic (or skew holomorphic) Jacobi
forms of index 1 is given as follows.

" k even odd
+ uy o
M, 1/2< ( ), v = 0 Jea(T2) | 5 (T2)
1 ST | Jra(T5)

3 Klingen type Eisenstein series

We shall construct Klingen type Eisenstein series of skew holomorphic Jacobi
forms. Let r be an integer (0 < r < n). We prepare the following subgroups,

A1 0 By Bs
Ty = {gz (‘éf o B;) € Spn(Z) | Ay, By, Cy, Dy € MT(Z)},

0 0 0 D4

—
B
=3,

I
—
VR
oQox
co Lo

B 0 nOtON

00 Al te ok J AB

DO) 0 01, =X\ GFn,l| (C’D)EF[n,r]7
01 00 1



Let F(m,21) € J,jﬁ{f[”Sp(F;f) and let & be an integer satisfies K =1 mod 2
(1 is the size of M). We define a function F* on ©,,; as

(3.1) F*(1,2) .= F(m,21) ,
where 7 = (tﬁ 2 , 2= (Zl> and (71,21) € D,..
T2 T3 Z2
We consider the following function
(32) EZ?’I“(F7 (T7 Z)) = Z (F*’k,M’y)(TJ Z) ) (T7 Z) S gn-l'

J J
Ver[n,r],l\rn,l

The above sum does not depend on the choice of the representative elements.
Because F' is a cusp form, we can show the fact that there exists a constant
C which satisfies

|F (1, 21)| det (Y1) 2e(—tr(MIB,(iY1) 1 61)) < C,

for every (1, 21) € ©,.;, where 3, and Y are the imaginary part of z; and 7
respectively. Hence, by the same calculation as Ziegler[I8] Theorem2.5, we
can show the fact that if k >n+ {4+ 1 then Eflkr is uniformly absolutely
convergent in the wider sense on D,,;. It is clear that E3* (F; (7, z)) satisfies
the condition (1) of the definition of skew holomorphic Jacobi forms of weight
k of index M belongs to I';]

We can show the following equation :
(3.3) A (B (F;5(1,2) = 0Op.

Because this equation induces the shape of the Fourier expansion of
E;ikr(F : (7, 2)), and by using Shimura correspondence and Kécher principle,
we can show the fact that E2*(F;(7,z)) satisfies the condition (2) of the
definition of skew holomorphic Jacobi forms. Hence, we have the following
theorem.

Theorem 2. Let M > 0 and F € J5,(T)). If k > n+1+r+1 satisfies
k=1 mod 2, then Ei¥(F;(7,2)) is an element of J¥,(T}).

We note that we can obtain the above theorem under the assumption on
M >0 (cf.[4]).

We shall show that the Siegel operator of skew holomorphic Jacobi forms

has same properties as holomorphic Jacobi forms case (cf. Ziegler[18]).
For a function F(r,z) on ©,,;, we define a function

OUF) (T, 21) = tE+mmF (it ). (), (11,21) € D

Then ®7'(F) is a function on ®,;. This @] is called the Siegel operator.
By direct calculation, we have the following proposition.
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Proposition 3. Let F(r,z) € Ji%,(T;) be a skew holomorphic Jacobi form,
then ®7(F) is also a skew holomorphic Jacobi form in Ji%(T7).

Moreover, we have the following theorem.

Theorem 4. If integer k satisfies k >n+1+1r+1 and k =1 mod 2, then
we have O (ESh (F;(1,2))) = F(r1,21) for every F(ri,z) € J,jfj{flusP(Fi) .
Hence, the Siegel operator ®)' induces a surjective map from J,jkM(Fi) to
Tt (L),

Now, we imitate some Arakawa’s work[2]. We assume the following con-
dition on M > 0.

(4.1) If M[z] € Z for x € (2M) "' M, 1(Z), then necessarily, x € M;1(Z).

By the same argument with Arakawa [2] (Proposition 4.1, Theorem 4.2
of [2]), we deduce the following Proposition [l and Theorem

Proposition 5. Let F € Ji%(I']). Under the condition (4.1) on M, we
have F € J,jﬁj“sp(r;{) if and only if ®7_(F) = 0.

Theorem 6. Assume that M satisfies the condition (4.1). Let k be a positive
integer which satisfies k > 2n+ 1+ 1 and k = | mod 2. Then we have
the direct sum decomposition Ji*%(I'7) = @, J:mr)(l"@, where J,‘:’]j’éf) =
(B (Fi(,2)|F € TG (T}

In section 2 theorem [II we obtained the isomorphism between the plus
space and the space of skew holomorphic Jacobi forms of index 1. Hence, by
using theorem [6] if £ is an odd integer which satisfies k > 2n+ 2, we can also
obtain a similar decomposition for the plus space of degree n of weight k — %
with trivial character. Namely, under these conditions, we can deduce the
fact that the plus space of weight k — % is spanned by Klingen-Cohen type
Eisenstein series (which corresponds to the Klingen type Eisenstein series of

skew holomorphic Jacobi form of index 1) and cusp forms.

4 Zharkovskaya’s theorem

In this section, we give an analogue of the Zharkovskaya’s theorem for Siegel
modular forms of half integral weight, and quote a conjecture.

Let ¢ > 0 be an integer divisible by 4. Let F' € Mk_l/g(Fé") (q), x) be an
eigenfunction for the action of a certain Hecke ring. This F' has a Fourier
expansion

F(z) = ) [f(N)e(NZ),

NeSym},
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where we denote by Sym; the set of all semi positive definite half integral
symmetric matrices of size n. From the definition of M, _; /2(Fén)(q), X), it
follows that f(*UNU) = f(N) for every U € SL,(Z).

Here, we describe a result of Zhuravlev[I7]. Let A be a completely multi-
plicative function which grows no faster than some power of argument, and
let N > 0 be a matrix in Sym;.

Theorem 7 (Zhuravlev). When the real part of s is sufficiently large, The
following series has Fuler expansion,

A(det M) f(MNM) Prp(N, A, p=°)
(4.1) Z (det M )s+k=3/2 - H Qr,(N\p*)
MESLTL(Z)\M,J{(Z) p:prime P
(det M,q)=1

where we denote by M, (Z) all positive determinant matrices in M, ,(Z), and
Pr,(N, X, 2) is the polynomial of z which degree is at most 2n, Qr, (A, z) is
the polynomial of z which degree is 2n. Especially Qp,(X, 2) is not depend
on the choice of N. The polynomial Qp,(\, z) was defined as follows,

n

(42)  Qrp(N2) = ] - aipx(A@)2)1 = aix(®)A(p)2),

i=0
+1
where o, are the p-parameters of F'.

We denote the Siegel operator by ®. Oh-Koo-Kim [12] showed the exis-
tence of a commuting relation between Hecke operators and the Siegel op-
erator acting on the Siegel modular forms of half integral weight, and they
showed also the fact that if ' € M, /Q(F((]")(q), X) is a Hecke eigen form

then ®(F) € Mk,l/g(F(()"_l)(q), X) is also a Hecke eigen form.

We put L(s, A F) = [T, s @ra(hpH32) (sce eq(@), eq@),
then we obtain the following theorem, this is an analogue of the theorem of

Zharkovskaya [16].
Theorem 8. We assume ®(F) # 0, then we have
L(s,\,F) = Li(s—n+1,X Egy_2,,2)L(s,\, ®(F)),

where we put
Li(s, \, Bapeonne) =[] (1= A@)p™*) 7 (1 = Ap)x(p)*p™ 7)1,
p(p,a)=1
If k >n+1 then Li(s, A, Eop_on42) is the L-function of Fisenstein series of
degree 1 of weight 2k — 2n with character x? twisted by .

8



Above theorem was first observed by Hayashida-Ibukiyama [7] in the case
ofn =2 A=1, and x = 1. Here, we have the case of higher degree with
character.

Let F € Mk,l/g(f‘((]?)(él)) be a Hecke eigen form, and we assume ®(F') # 0,
then

L(s,F) = L(s,®(F)) L(s, Ea_4),

up to Euler 2-factor. Let f € Map_o(SL(2,Z)) be a Hecke eigen form which

corresponds to ®(F) € My_1/2 (Fél)(ll)) by Shimura correspondence, then we
have
L(s,F) = L(s, f) L(s, Faog_4) .

Similar figure seems valid for the case of cusp forms. We quote a following
conjecture from Hayashida-Ibukiyama [7].

Conjecture 1 (cf. [7]). Let k be an integer, and let f € Sop_o(SL(2,7Z)),
g € Sop—4(SL(2,7)). We assume both f and g are normalised Hecke eigen

forms. Then there exits F € S;fl/Z(F(()Q)(él)), such that F'is a Hecke eigen
form and satisfy
L(S7F) = L(87f> L(S - 179)

up to Euler 2-factor, and where L(s, f) and L(s,g) are usual L-functions of
f and g respectively.
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Certain series attached to an even number of
elliptic modular forms

Shin-ichiro Mizumoto
Department of Mathematics,
Tokyo Institute of Technology

1 Results

Let n € Zwo, k := (k1,...,kn) € (Zso)™, m = (mq,...,m,) € (Zso)" and
s € C. We put

Qén) (m7 S) — / ts+|k|fn71dt
0

H/O u?j—2€—4ﬂ'm]‘u]‘t(\/u_j9(iuj) _ 1)du] : (1)

Jj=1

here |k| := >7_, k; and

[e.e]

0(z) = Y e

l=—o00

is the Jacobi theta function. The right-hand side of (1) converges absolutely
and locally uniformly for Re(s) > 7. It is easy to see

Q" (m,o) >0 for g <o €eR.

For w € Z let M, be the space of holomorphic modular forms of weight w for
SLy(Z) and S, be the space of cusp forms in M,,. Let f; and g; be elements
of My, such that f;(z)g;(z) is a cusp form for each j =1,...,n. Let

B = X a0 and gz) =3 b0 2

=0

be the Fourier expansions. The series we treat here is the following:



D(S; f1ye s fu; g1y Gn)
= > (H aj(m;)b ) Qk ( s). (3)

m=(m1,...mn)E(Z>0)" \J=1
The right-hand side of (3) converges absolutely and locally uniformly for
n

Re(s) > —(max (k;) + 1).

2 "1<j<n

Theorem 1.
(i) The series (3) has a meromorphic continuation to the whole s-plane.
(ii) Let (, ) be the Petersson inner product. Then the function

Z Z H (fjagj) .D(S;fi17'"7f’iu;g’il7"'7giu)

r=11<i1<...<i, <n \ i#i1,..-iv
1<j<n

is invariant under the substitution s — n — s ; it has possible simple poles at
s = 0 and s = n with residues —[I7_,(f;, 9;) and [T}, (f;,g;) respectively,
and is holomorphic elsewhere.

In case where every g; is the Eisenstein series we have

Corollary. Suppose f; € S, (j = 1,...,n) with Fourier expansions as in
(2). Forl € Z- put

= Zd” for v e C.
djl

Then the series

S(S;flv"'7fn):

> (ﬁ aj<mj>akj_1<mj>) QY (m, s)

m=(m1,....mn)€(Z0)" \j=1

has a holomorphic continuation to the whole s-plane and satisfies the func-
tional equation

S(S;fl,...7fn):S(H—S;fl,.,.,fn).



2 A key to the proof: an integral of Rankin-
Selberg type

We use the following type of Eisenstein series for the Siegel modular group
[, := Sp,,,(Z) whose properties were studied by Kohnen-Skoruppa [2], Ya-
mazaki [5], and Deitmar-Krieg [1]:

i det(Im(M(2))) \°
= X (det<1m<M<Z>*>>> | @)

Here s € C, Z is a variable on H,,, the Siegel upper half space of degree n,

* k
An,nfl = { <0(1,2n—1) *) € Fn }7

M runs over a complete set of representatives of A, ,_1\I',,; for M = (
with A, B, C, D being n x n blocks ,

AB)
¢ D

M(Z):= (AZ + D)(CZ + D)™*

and M(Z)" is the upper left (n—1) x (n— 1) block of M(Z). We understand
that
det(Im(M{Z)")) =1

if n = 1. The right-hand side of (4) converges absolutely and locally uni-
formly for Re(s) > n. Put

() =741 (5 ) <o)

By [1][5], the Eisenstein series (4) has meromorphic continuation in s to the
whole s-plane; the function £(2s)E((Z) is invariant under the substitution
s — n — s and is holomorphic except for the simple poles at s =0 and s =n
with residues —1/2 and 1/2, respectively.

Theorem 1 follows from the following integral representation:

Theorem 2. For

Fj(2) := fi(2)g;(2)Im(z)"

we have



v=11<i1<...<ip<n \ j#i1,...,iv
D(S;fila'--vfiu;gila'"7giu)'

Remark. Define a symmetric positive definite matrix

P-—(ln tX)(Y 0)(1n o>
z—=\o 1, o vy ')\x 1,/

Then

EM(Z) = ("hPzh)~* for Re(s) >n
2<(25) heZ@%l:)—{O}

3 Supplementary remarks

(i) Let

o0

pi(z) =Y ¢i(1)e*™

=1
be holomorphic primitive cusp forms of weight 1 for I'g(/V;) with odd charac-

ters x; where N; € Z.yand j = 1,...,n. Suppose n > 3. Then by Kurokawa
[3, Theorem 5], the Dirichlet series

i_o: () e, (D72

has meromorphic continuation in the region Re(s) > 0 but has the line
Re(s) = 0 as a natural boundary. (Cf. also [4, Theorem 8].) Thus it is
a nontrivial problem to find a series associated with more than two elliptic
modular forms which has analytic continuation to the whole s-plane.

(i) In case n = 1 we have

D(s; fi; 1) = 26(2s) (A7) ™M T (s + k1 — 1)D(s + k1 — 1, f1, g1)

for Re(s) > (k1 + 1)/2, where

o
. —S
f1,91 : Z a1 m .
m=1

Thus in this case Theorem 1 states nothing but the well-known properties of
the Rankin series D(s, f1,91).



(iii) In case n = 2 we have

D(S; f17f2;91792)

_ 26—2|k|7r2—\k\(27T)—23F(8)F(3 1k =2)0(s+k —DI'(s + k2 — 1)

I'(2s+ |k| —2)

> ar(ma)az(ma)bi(ma)bo(me)my ™ my "
m1,m2€Z~o

)\2
> )\IQSF<8,S+k1—1;28—|—’/{’—2;1—m2 g)

A1,A2€Z>0 ml)\l

for Re(s) > max(ky, ko) + 1, where F' = 9F) is the hypergeometric function.
(iv) The function Q,(Cn) (m, s) has another representation:

n 1—k; n
o ()5 ([)
j=1

Al An€Zs0 \J=1

/0 t2s—l+|k|—n H Kkj_1(4,/7rmj)\jt)dt
j=1

for Re(s) > n/2, where K, is the modified Bessel function of order v.
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PRINCIPAL SERIES WHITTAKER FUNCTIONS ON SYMPLECTIC
GROUPS

FREF fF 5 (Taku Ishii)

§1. Class one Whittaker functions

(1.1) Definitions and notation Let G be a semisimple Lie group with finite center
and g its Lie algebra. Fix a maximal compact subgroup K of G and put ¢ = Lie(K). Let
p be the orthogonal complement of £ in g and # the corresponding Cartan involution.
For a maximal abelian subalgebra a of p and o € a*, put g, = {X € g | [H,X] =
a(H)X for all H € a} and A = A(g,a) the restricted root system. Denoted by A*
the positive system in A and II the set of simple roots. Then we have an Iwasawa
decomposition g = n @ a® € with n = >\, go. Let G = NAK be the Iwasawa
decomposition corresponding to that of g. We denote by W the Weyl group of the root
system A.

Let Py = M AN be the minimal parabolic subgroup of G with M = Zx(A). For
a linear form v € af = a* ®gr C, define a character ¢” on A by ¢”(a) = exp(v(loga))
(a € A). We call the induced representation

T, = L2—Ind1G30(1M ®e" R 1y)

the class one principal series representation of GG. Here p = %ZaeAJr Mmea (Mg =
dim g, ).

Let U(gc) and U(ac) be the universal enveloping algebras of gc and ac, the com-
plexifications of g and a respectively. Set

Ulge)® = {X € U(ge) | Ad(k)X = X for all k € K}.

Let p be the projection U(gc) — U(ac) along the decomposition U(ge) = U(ac) &
(nU(gc) + U(ge)t). Define the automorphism + of U(ac) by v(H) = H + p(H) for
H € ac. For v € ag, define the algebra homomorphism y, : U(gc)® — C by

Xo(2) = v(yop(2))

for 2 € U(gc)™. Note that y, is trivial on U(g)® N U(g)t and the restriction of y,
to the center Z(gc) of U(gc) coincides with the infinitesimal character of the class
one principal series representation m,. Let n be a unitary character of N. Since
n=[nnl®>  .q0a, 7 is determined by the restriction 7, := 7|y, (o € II). The length
70| of 1o is defined as [na]* = >, .., 7(Xa,), where the root vector X, ; is chosen
as B(X,,,0X,;) = —6;; (1 <i,j <m,). Here B(, ) is the Killing form on g. In this
article we assume that 7 is nondegenerate, that is, n, # 0 for all a € II.

Definition 1.1 Under the above notation, a smooth function w = w,, on G is called
class one Whittaker function if



(i) w(ngk) =n(n)w(g), foralln € N, g€ G and k € K,

(i) Zw = x,(Z)w, for all Z € U(gc)¥.
We denote by Wh(v,n) the space of class one Whittaker functions and Wh(v, n)™d
the subspace consisting of moderate growth functions.

Remark. Because of the Iwasawa decomposition, w € Wh(v,n) is determined by its
restriction w|4 to A. We call w|a the radial part of w.

(1.2) M and W-Whittaker functions

Theorem 1.2 The dimension of the space Wh(v,n) is the order of the Weyl group W
and the the dimension of Wh(v,n)™°% is at most one. ~ Moreover the unique (up to
constant) element in Wh(v, n)™°d is given by Jacquet integral:

W(l/,n;g):/a(so_lng)”+pn(n)_1dn.
N

Here s is the longest element in W and g = n(g)a(g)k(g) the Iwasawa decomposition
of g € G.

Hashizume ([3]) gave a basis of Wh(r, ) and express the Jacquet integral as a linear
combination of the basis functions. Let ( , ) be the inner product on ag induced by
the Killing form B(, ). We denote by L the set of linear functions on ac of the form
Y aer Mot With ng € Zx.

For each A € L, we can define the rational function a, on ag as follows. Put
ao(v) = 1 and determine ay for A € L\{0} by

(1.1) (A A) + 200 )aa(v) = 23 en Mol *ar—2a (V)
inductively. Here we assumed that (A, \) + 2(\,v) # 0 for all A € L\{0}.

Definition 1.3 For v € ay and unitary character n of N, define a series M (v,n;a) on
A by

M(v,n;a) = a"** Zak(l/)a’\ (a € A)
AeL

and extend it to the function on G by

M(v,m;9) = n(n(g))M(v,1; a(g))-
Definition 1.4 We denote by ‘ag the set of elements v € ag satisfying the following:
(1) (A A) +2(\, sv) #0 for all A € L\{0} and s € W,
(ii) sv—tv & {d> . cnmac | ma € Z} for all s #t e W.

Theorem 1.5 ([3, Theorem 5.4]) Let v € ‘ag. Then the set {M(sv,n;q) | s € W}
forms a basis of Wh(v,n).

We call W(v,n;g) (resp. M(v,n;g)) W-Whittaker function (resp. M-Whittaker func-
tion). Let us recall the linear relation between W and M-Whittaker functions.
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Proposition 1.6 ([, cf. Ch IV]) Let ¢(v) be the Harish Chandra c-function. Then

) = [ alsy'ny e
I1 2(%> L(va)L (5 (e + 5))

a, o) C(ve + %)F(%(Va + T+ M)

aeAS’
Here Ay ={a e AT | Ja ¢ A}

Definition 1.7 For n € ]V, v € ag and s € W, we define v(s;v,n) as follows. If s = s,
(o € II), the simple reflection,

[7a >2V" F((%

v(s;v,m) = (2 o a)

For s € W and « € II such that I(s,s) = I(s) + 1, then

V(sas;v,m) = 7(s;v,0)7(8a; 57,1).

Here [(s) means the length of s.
Theorem 1.8 ([3, Theorem 7.8]) If v € ‘af,

W(v,mi9) = > v(sos;v,m)c(sosv) M(sv,m; g).
seWw

Problem : Find explicit formulas of W (v, n; g) and M(v,n;g).

Known results (G is real semisimple) :

(1) G is real rank 1 : W (resp. M )-Whittaker functions can be written by modified
K (resp. I)-Bessel functions.

(2) G = SL(n,R) : In case of n = 3, Tahtajan-Vinogradov ([I4]) and Bump ([1])
obtained explicit formulas of W and M-Whittaker functions. For general n, Stade
([T1]) found a recursive integral formula of W-Whittaker function and I ([7]) proved
a similar recursive formula of M-Whittaker function conjectured in [13]. When
n = 4, Stade ([12]) also gave a explicit formula of a,(v) by solving the recurrence
relation (1.1) and his formula included (terminating) generalized hypergeometric

series 4 F3(1) (cf. [7]).

(3) G =5p(2,R),50,(2,9)(q > 3) : As for W-Whittaker function on Sp(2,R), Niwa
([9]) obtained the formula (3.5) in section (3.1). In the similar way to Proskurin’s
evaluation of Jacquet integral for G = Sp(2,C) ([10]), I ([5]) found the integral
expression (3.7). The explicit formula (3.4) of M-Whittaker function is also ob-
tained in [5]. These results can be extended to SO,(2,¢) in [6] (s0(2,3) = sp(2,R),
50(2,4) = su(2,2)).



Extending the work of Niwa, we consider the problem in case of G = Sp,(R) and
SO, in this article.

(1.3) Structure theory for Sp,(R) and SO,,,, We give precise description of the
notation in the above subsections. Let G; and Gs be algebraic groups over Q defined

as
_ _ t Jn _ Jn
Glson,n{gGSLQn g(Jn 9=\ :
and
. o t Jn _ Jn
1
Here J,, = (n x n matrix). Hereafter we use the notation in sections (1.1)

1
and (1.2) with subscript ; for G; := G1(R) = SO,,,, and 5 for G5 := G3(R) = Sp,(R).

< Iwasawa decompositions >
= {diag(aq, ..., an, —ay,,...,—a1) | a; € R},
Ay = {dlag(tl, . —t . —tl) | t; € R},
— {diag(as ... amaz - ) | a > O},
(

n

= {diag(t,, .. tn,tgl, oot [t > 0},

1 *
. Un *
i = ( 0 Jntn51Jn>

< principal series >

v=(v,...,t) €ajc (i=1,2),
01 :pgn) =(n—-1,n-2,...,1,0), pgngn) =(n,n—1,...,2,1).
< Weyl groups > W, =6, x (Z/2Z)"', W,y= 6, x (Z/2Z)".
< unitary characters >
m(u) = exp (27T\/—_1(U1,2 + U3+ Up—1p T un—l,n+1>)a
n2(u) = exp (27T\/—_1(U1,2 + Uz g+ F Uyt un,n+1))u
for u = (ux;) € N;.
< ¢(v) and v;(s;v,m) >

D(A3)r(5%)

n(n—1) 2
ci\v)=m =2 s
1( ) H F(Vi*Vj+1>F(Vi+Vj+1>

1<i<j<n 2 2
n2 . S
o r(% ) Y
CQ(V) - 2% H T l/fi-l H l/i_l/j2+1 V¢-12-Vj+1 )
1<i<n ( 2 ) 1<i<j<n F( 2 >F< 2 )



v —I/i-‘rljj —l/i—l/]'
5[7< 1) H1§i<j§nr( 2 )I( 2 )}
vi—v;+1 vitv;+1
H1§i<j§n F( 2 = )F( +2 - )

_n ﬁ _1lsn .
ca(sosv)Va(SoS; v, m0) = 27 27 2 Hup2) =5 iy vi

—Llsm oy, Vi —vi+v; —V;—V;
'S[W@’M 2 2iz1 ZngiSnF(_?)H1§i<j§nF( JJ)F( 5 ])]
v v;—vi+1 vit+vi+1 :
ngign F(T+1) H1§i<j§nr( 2j+ )F( +2]+ )

€1 (SOSV)’Yl (808; v, 171) = 7(%"'(%/)0

)

8§2. Symplectic orthogonal theta lifts and main theorem

(2.1) Weil representation and theta lift Let k£ be a local field and ) a nontrivial
character of k. For a finite dimensional k-vector space Z equipped with symplectic
form ( , ), put

Sp(Z, k) ={g9 € GL(Z,k) | (219, 229) = (21, 22), Vz1,20 € Z}.

Let Z = Z* 4+ Z~ be a polarization, that is, Z* are maximal isotropic subspace of Z.
Let wy, be the Weil representation of Sp(Z, k) on .#(Z7), the space of Schwartz-Bruhat
functions on Z*. When k is a global field and ¢ a nontrivial character on k\ A, we can
also define Weil representation wy, of :S?D(Z ,A) on S(ZF).

Let k be a global field and X a 2n-dimensional k-vector space of column vectors

J,

with symmetric form ( , ) given by (z,y) = ' ") y. Then Gy(k) = SO, (k)

In

acts on X from the left and preserves (, ). Also let Y be a 2n-dimensional k-vector

In\ ¢
7, ) y. Then

G (k) = Spn(k) acts on Y from the right and preserves (, ). The space Z := X®Y has
a symplectic form (, ) ® (, ) and we have a homomorphism SO, ,,(A) x Sp,(A) —
Sp(Z,A). Let {e},...,en,e_p,...,e_1} be the standard basis of X. Then X =
Span{ey,...,e,} and X~ = Span{e_,,...,e_1} give a polarization of X. Also take
the standard basis of Y by {e1,...,e4,6_n,...,6-1} and put Y™ = Span{ey,...,e,},
Y~ = Span{e_,,...,e_1}. We choose a polarization of Z by Z* = X ® Y* and denote
Yo xi®e € ZY by (x1,...,2,).
For wy and ¢ € . (Z}), define the theta series Qi on Gi(A) x Gy(A) by

space of row vectors with symplectic form (, ) given by (z,y) =2 | _

05 (g1, 92) = > wylgr, g2)8(2).

zeZ,j

Let o be an irreducible cuspidal automorphic representation of Gi(A). For a cusp
form f € o, put

F{(go) = / 0% (91, 92) f(91)dgn.
G1(k)\G1(A)

It is known that FJ? defines a cusp form on Go(A) and the space ©y(0) = (F}b | f e
o,¢ € S (Z))) is called the theta lift of o with respect to 1.



(2.2) Whittaker coefficients To describe Whittaker coefficient, we fix unitary char-
acters ¢, and 1y of Nj(A) and N»(A) as follows (cf. section (1.3)).

1/}1 (U) - 77Z)(u1,2 + U233 + -+ Up—1,n + Un—l,n—i—l);
w2<u> = w(ul,Z + Uz 3 +ooe A+ Un—1,n + un,nJrl)

for uw = (ug,;) € N;(A). We say an irreducible cuspidal representation o; on G;(A) has
a nontrivial V; - Whittaker coefficient, if the integral

Wi(g:) = / F(ngiye (n)dn
N;(k)\N;(A)

does not vanish for some f € o;. Ginzburg, Rallis and Soudry ([2]) proved the follow-
ing:

Proposition 2.1 ([2, Proposition 3.5]) We assume that the irreducible cuspidal rep-
resentation o of Gi(A) has a nontrivial v} - Whittaker coefficient. Then the theta
lift ©4(0) to Go(A) is nontrivial and has a ;"' -Whittaker coefficient. Moreover, the

Wy - Whittaker coefficient of F}z’ € Oy(o) is

(2.) Wiplo) = [ oulong)o(en)Wrton

Here E is the stabilizer of ug = (e1,...,en_1,6n+e_,) € Z7.

If we decompose the right hand side of (2.1) to the local factors, the integral

[ el aolaW )i
ER)\G1(R)

is expected to represent the Whittaker function on Sp,(R). Here W is the Whittaker
function on SO,,,. Then, if we take

$(X) = exp[—m(tr("XX))],
and compute the integral by using the formulas of Weil representation, we can propose
the following:
Theorem 2.2 For a € A, and t € Ay, put

2

ti | ai th1 | Aoy ta 2 2
Q(a,t):exp[—w{(a—%—i-g) + 4 <@%1 + 2 ) + (a—%—i-tnan)}]
Then, for v € 'aj ¢ N'a5 ¢,
Iy v ] n '
T 2 Vl + 1 da’t
2.2) ——— || T( )t W (vit) = / O(a,t) - a Wi(v;a) .
(27T) 2 E 2 (RZO)n E a;

The right hand side of (2.2) represent a Whittaker function, however, to see that it is
just the Whittaker function we want to seek, it seems to need further argument. For

6



example, if we use the similar result of [2] from Sp,, to SO,,+1 n41, Wwe obtain Whittaker
function on SO,4+1 41 from one on Sp,(R) (see (3.11)). Though in this formula, the
parameter of principal series is not general (v,.; = 0). Then in case of n = 2, Niwa
proved this theorem by checking the right hand side (=(3.5)) satisfy the system of
partial differential equation for Spy(R)-Whittaker function by using computer. But in
case of general n, the explicit form of differential equation is not known. So we first
prove the lifting of M-Whittaker functions (which also seems to be interesting result)
and by using Theorem 1.7 we establish the lifting of WW-Whittaker functions.

(2.3) Lifting of M-Whittaker functions We first write down the recurrence relation
(1.1) explicitly.

Proposition 2.3 Let

2m 2my, —
M (v;a) = a"*t" Z C1m(V )(27ra1) . (27ran_1> 1(27ran_1an)2m"

a9 a
m:(mlv---vmn)e(ZZO)n "

be the radial part of M-Whittaker function on SOy,. If v € 'aj g, the coefficients
c1.m(v) are determined by the following recurrence relation:

n n—2
2
[4( g m; — E mMiMir1 — mn_zmn)
n

(Z mi(Vi — Viv1) + mp (V1 + I/n))] cim(V) = Z Clm—e; (V),

i=1

(2.3)

with e, = (0,,1,,0)
Proposition 2.4 Let

11\ 2k1 th— 2k, —

k=(k1,....kn)E(Z>0)" "

be the radial part of M-Whittaker function on Sp,(R). If v € ‘a5, the coefficients
cox(v) are determined by the following recurrence relation:

[4(1121 k2 4 2k2 — nZZ kikigr — an,lkn>
(2.4) ' ‘
+2<Zk — Vi) + 2k, Vnﬂch chk e: (V) + 2¢ax—e, (V).

From the above propositions we can prove the following:

Theorem 2.5 If v € a} ¢ N'a; ¢,

) LG+
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(_1)m1+~~+mn—1 42?:1(”%—/%) H?;ll(_ki—i-l _ "i2+1 )'mi . Cl,m(V)

(kl — ml)' ce (]{Zn,Q — mn,2>!(k’n,1 — Mpy—_1 — mn)'(kn — mn)' '

2

meS(k)

Here we use the notation

< < < o0 < k,_
S(k):{mezgo O_ml_k17 7O_mn2_kn27 }

0< Mp—1, Mp—1 -+ My < kn—l; 0< my, < kn

and (a), =T'(a+n)/T'(a).

By using this Theorems 2.5 and 1.7, we compute the right hand side of (2.2), then we
can reach the Theorem 2.2 after somewhat complicated but elementary calculus.

§3. Examples of explicit formulas

From now on we adopt the notation Wl(n)(u; a) (resp. Wén)(y; t)) for the radial part of
W-Whittaker function on SO,,, (resp. Sp,(R)), etc.

(31) From 80272 to SpQ(R)
Proposition 3.1

(3.1) Ml(z)(y'a) S Z (may/as)*™ (rajay)®™?

= Qa a .
LSy el (U5 D, (5 D

Proposition 3.2 W1(2)(y; a) has the following expressions.

(3.2) Py K vy vy (%ﬂ) Kopiny (27a1as),
2 CL2 2

2 2 2
(2) a3 t 2,2 t 2,92 v alagb va dt db
(3.3) ¢ /(R>O)2 XP| T 2 + > +axl” |+ b2+ ra+a?)) T

with some constant c§2).

From the above two propositions, we have the followings:
Proposition 3.3
2, . 1241041 —Mya, —ml—ﬂ7m1+ﬂ+]_
MY (vit) =42 ) 3F2( w1 w1 1
(34) m1,m2>0 2 2
(7t /ta)>™ (mt3)* ™2
my! mo! (”151’2 + 1)m1(% 1),

Proposition 3.4 WQ(Q)(V; t) has following integral expressions.

9 2 a? t2
cg )t%tg/ exp [—TF{ (—12 + —21> + (—22 + t%a%) H
(R>0)2 aj  t5 as

(3.5) = dayd
Ky <27TE>KM (27@1@2) o a2’
3 a9 2 a1a9




2 a? t2 a? u?
céQ)t%tz/ exp [—71’{ <—12 + —21> + (—22 + t%a%) + —; + ( + a§u2>
(R>0)* ai  t3 as u CLQ

(3:6) u? ayasb v2 daydas du db
u- 2b2>H -b”1< 102 > 1day du db
+ <b2 u u?(1+a3b?)/  ajay uw b’
L (9244 1-%2 ty >
3.7 =0
(3.7) ( z2y? )”41 <:c(1 + x))”f dxdy
1+z+y y(1+y) xy

with some constant cgz).

Remark. As mentioned before, (3.5) is the result of [9] and (3.7) is of [5]. The
equivalence of these two expressions can be checked by way of (3.6) and slight change
of variables.

(3.2) From SO;3 to Sps(R) By virtue of so33 = sl;(R), we can find the integral
expressions of Wl(?’)(l/; a) by the result of Stade ([11]) for W-Whittaker functions on
SL(n,R).

Proposition 3.5 W1(3)(V; a) can be written as follows.

cgg)a%ag / Koo, (27ra2a3\/ 1+ uf2>Ku1+u2 (271'%\ /1 + u%)
(Rx)2  ° ? as

(3.8) Ko, (27&\/(1 +u2)(1+ u2_2)>KVl,V2 <gﬂﬂﬂ)
2 a2 2 a9 Us
( as )V3 dU1dU2
U1U2 U1Uy ’

2 2

a? 2 a t 2 b
cgs)afag/ exp [—7?{—21 + ( + 22> + (—22 + a%t%) + (—; + —;)
(RZO)G t t as b t2

(3.9 * (b2 HQbZ) * i_z * <62 + b 2) C_z * 3262> H
b1bsc >V2 ( a1a2a3b1by )V3 dt dt, dbidb, ds de
)

LAV -
¢ <32(1+b§c2 221+ a3b3)/  tita biby s ¢’

with some constant cg3).



Proposition 3.6 Wég)(y; t) is of the form

(3)t3t 5t3 / Kot <27ra2a3\/ 1+ ul_2>Ku1+u2 (2%—\/ 1+u >
(Rx0)® 2 2 as

.KV1+V2 <27Tﬂ\/(]_ —I— u%)(]_ —I— u2_2)>KV17V2 (271-%%)
(3.10) 2 az 2 as Us
’ 2 2 2 2

G 3+ (G B+ (e
cexp|—m3 |5 + = -+ = a
P a2 ) T\ ) T\ T

< as >”3 duldUQ daldagdag,

U U2 U U2 ai1a20as3

with some constant cg?’).

Remark. We also have a formula for M2(3)(1/; t) by using the formula in [12], however,
our result is not satisfactory form now.

(3.3) Conjecture for general n [2, Proposition 2.7] also computed Whittaker co-
efficient of theta lift from Sp,, to SO, 41,+1. In view of the result, it seems to hold

(n+1)

a " WY (L v, 0):a)

. —c [ Blat)- W, AR

n . tz )
20 i=1
where
2 2 2 2 2 2
~ a t a t_ a ty,
0(a,t) = exp[—ﬁ{—% + (—12 + —§>+ et ( L —§)+< + an+1t2>}]
ty ay 15 a4, 1y n+1

It may be impossible to extend (vy,...,v,,0) — (v1,...,V,41) by adding some terms
containing v, 41 to the integrand, however, we can propose the following conjecture
from the results for n = 2,3 ((3.3), (3.9)).

Conjecture 3.7 Let b = diag(by, . .., b1, bty -, b7Y). Then W™ (11, vpsn); b)
has the following expressions.

e /<R L0 @)- W (i)
>0)°"

(3.12)

Y

< b1 s anal R 7 >Vn+1 u dtz dai
(tl tn)Z(l + biﬂa%) 1 tl a;

n—1 2 2
p(n D di1 i1
RN e
2 2
(p—1 an —1
(3.13) K, (27rbnbn+1\/(1 + )(1+5-) (1 + agbi+1))

n+1
_ ) n a +bn 2 - da,i
gl VV1 )<<V17...,V>; )(M—Qb;l> Ha.,
n“n+1 -1 7

with some constant c.
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THETA CORRESPONDENCE AND REPRESENTATION THEORY

TR A AR PEll = (KYO NISHIYAMA)
FACULTY OF IHS, KYOTO UNIVERSITY
SAKYO, KYOTO 606-8501, JAPAN

ABSTRACT. After reviewing the relation between the theta integral (= theta lifting) and
Howe correspondence, we give an example of the preservation of the associated cycles by
the theta lifting (joint work with C.-B. Zhu).

Namely, let (G,G’) be a type I dual pair strictly in the stable range (we assume that
G’ is the smaller member), and 7’ a unitary highest weight module of G'. Then the
associated cycle of the theta lift 7 = 6(7’) of 7’ can be given as AC(A(x")) = 8(AC(w")),
where the theta lifting of associated cycle is naturally defined using the lifting of nilpotent
orbits. We also give a naive introduction to the basic property of associated cycles and
the lifting of nilpotent orbits.

1. THETA INTEGRAL

The content of this section is mainly quoted from [10, [11] and [4].

Let F' be a number field and A a ring of adeles of F'. For simplicity, we consider one
of type I dual pairs defined over F' in the following. It is constructed as follows. Take a
vector space

V' /F with non-degenerate symmetric bilinear form (,) = (, )y

V' /F with non-degenerate skew-symmetric bilinear form (,)" = (; )y

Then W =V ®p V' inherits a skew-symmetric form defined by (, )y = (, )y ®F (, )yr. We
put

G=0(V) orthogonal group
G’ = Sp(V')  symplectic group

They are naturally subgroups of Sp(W) commuting with each other, which form a type
I dual pair (G,G") in Sp(W). We denote by G(A),G'(A) or Sp(W),, the global adelic
groups. For each place v of F, let F, be the completion of F' at v, and G, or G’ denotes
the corresponding groups over the local field F,.

Sp(W)a has a non-trivial double cover Mp(WW), called the metaplectic group. This
group has a distinguished representation called the Weil representation. We do not give
an exact construction of the representation but use an explicit realization. For this, we
refer the readers to [20], [4], [3], [L7], et al.

Let W = X @Y be a complete polarization, and take a character y of A which is
trivial on F. Then the Weil representation w = w, of Mp(WW), is realized on the Hilbert
space L?(X(A)). Tt is unitary, and the space of smooth vectors coincides with the space
of Schwartz-Bruhat functions § = S(X(A)) on X(A).

Proceedings of RIMS Workshop on “Automorphic Forms and Representations of Algebraic Groups
over Local Fields”, January 20 — January 24, 2003.
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Let 6 be a tempered distribution on S defined by

0e)= > @& (p€S), (1.1)

§EX(F)

which converges absolutely. Then 6 is Sp(W)p-invariant distribution, i.e.,

Owy)e) =0(p)  (vy€Sp(W)p, p €S).

Note that Sp(W)g is embedded into Mp(WW), as a discrete subgroup. This property

characterizes 6 up to constant multiple (4]). Let G(A) denote the inverse image of
G(A) of the covering map Mp(W), — Sp(W),. The same notation applies to arbitrary

subgroup of Sp(W),. For (¢g,h) € G(A) x G'(A), we put
Oo(g.h) =0(w(g-h)e)  (p€S). (1.2)

Then, appropriate choice of ¢ and G, G’ will give various types of classical theta functions.
Assume that 7’ is an automorphic representation realized on a Hilbert space

Ho C LA(G(F)\G'(A)).
For f € H> = (smooth vectors), we define the theta integral by

o) = [ e (13)
G'(F)\G'(A)

If ' is a cuspidal representation, then the integral converges and defines a slowly increasing
function on G(F)\G(A). In the following (in this section), we assume 7’ to be cuspidal.
Formally 6/ gives an automorphic form on G(F)\G(A) and one may expect that

{07 | f e H2 v € S(X(A))}

gives an automorphic representation 7 of é(A) after some completion. Thus we want to
see when the integral

0405 = [ 000 dy (1.4)
G(F)\G(A)

converges (under some assumption), and gives a non-zero value for some choice of {f;}
and {y;}.

Theorem 1.1 (Rallis’” inner product formula). Assume dimV > 2dim V' + 2. Then the
above inner product (L4) converges absolutely. Moreover, we have

(0 012y = /N (w(R)pr, o) (7' (1) fr. fo)dh

G'(A)
= H [, <Wv(h)901va902v><77-;(h)f1v7f2v>dh
vep(F) Y &' ()
Here, P(F) denotes the set of all places of F.
Proof. For proof, see [10, Theorem 2.1]. Essentially, the following two ingredients prove
the theorem; (i) Howe’s technique of doubling variables; (ii) Siegel-Weil formula, which

claims that f-integral coincides with an Eisenstein series. O
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Thus we should consider the integral

/67(F)< w(R)P10, P20) (T (>f1v7f2v>

at various places v € P(F'). For finite places at which F' is not ramified, it is given by
special values of L-functions. In the following sections, we will concentrate on real places.

2. THETA CORRESPONDENCE OVER REALS

From now on, we assume the ground field is R, thus V, V'’ are now considered as vec-
tor spaces over R with symmetric (respectively skew-symmetric) non-degenerate bilinear
form. We also write G = O(V) and G’ = Sp(V'), which are real Lie groups. The Weil
representation w = w, is realized on the space of L*-functions L?(X) on a maximal totally
isotropic space X of W.

Let us consider the integral

| ene @ pdn (o€ SX), £ €M) 2.1)

for a genuine irreducible unitary representation 7’ of G’ on a Hilbert space H.. A rep-

resentation of G’ is called genuine if it is not factor through to the representation of
G', i.e., if it is non-trivial on the kernel of the covering map. Note that «’ is not nec-
essarily automorphic nor cuspidal now, and everything is considered over R. If we put
O, =p;® fi € S®HKHY, the above formula becomes

(D, Do) = /l((w @ ) (h) Dy, By)dh. (2.2)

Since w and 7" are both genuine, w ® ©’ factors through to a representation of G’, and we
do not need a cover anymore.

It may be useful to consider this integral for a compact group (or a compact dual pair)
as a toy model. Thus, only in this short paragraph, let us pretend as if G’ was a compact
group and w was a representation of G'. Then w decomposes discretely as

W ~ Z@a\/HomG/(f,w) ®E, hence
wen NZ __Home (§,w) @ (§ @ ).

Then an integral [, ((w ® @')(h)vy,v2)dh survives only if £ ~ (7')* for some ¢ € 1€
and the collection of (®1, ®y),» will give an inner product on the space of multiplicities
Home ((7')*,w). In some sense, this is carried over to our present situation.

Now let us return to our original settings in this section. For the convergence of the
integral, the following theorem holds.

Theorem 2.1 (Li [§], [T, Theorem 2.1]). Suppose we are in one of the following two
situations.
(1) The pair (G,G") is in the stable range, i.e.,
dim(mazximal totally isotropic space in V) > dim V. (2.3)
(2) 7' is in the discrete series and dim'V > dim V".
3



Then the above integral 2.11) converges absolutely for any choice of {p;} C S and {f;} C

Now assume the above (1) or (2) from now on.
Put R = (kernel of (, )./), and make a completion of (S®H?7)/R by the inner product
( 5 )7r"
H = (completion of (S ® H)/R) (2.4)

Since G acts on S ® H29 which leaves R stable, the resulting Hilbert space JH carries a
unitary representation m of G (but still it may be zero). The following theorem is proved
by Li for general type I dual pairs ([9, Proposition 2.4]), and independently by Moeglin
for the pair (O(2p,2q), Sp(2n,R)).

Theorem 2.2 (Moeglin, Li). (1) If 3 is not zero, then il carries a genwine unitary
representation (m,3H) of G, which is the theta lift of (7')* in the sense of Howe ([0]; see
) ;7= 0((x")").

(2) If (G,G'") is in the stable range, H is non-zero for any unitary irreducible represen-

tation 7' of é, which is genuine.
(3) If 7' is in the discrete series which is “sufficiently reqular”, then 3 is non-zero and
m = Aq(N) ; a representation with non-zero cohomology defined by Vogan and Zuckerman

([19]).

This theorem tells us that the representation (7, ) of G so-obtained is in correspon-
dence with the dual of (7', H) in the sense of Howe (one may call it Howe correspondence).
In this sense, the notion of theta lifting and Howe correspondence are almost the same.

In the next section, we briefly review the definition and basic properties of Howe cor-
respondence.

3. HOWE CORRESPONDENCE

Let w be the Weil representation of Mp(W), and we choose a complete polarization
W =XaY. Let Q =Hg be the space of K-finite vectors of w, where K is a maximal
compact subgroup of Mp(W). Then 2 is a (&, K)-module, where & is the complexified
Lie algebra of Mp(W), and €2 is called the Harish-Chandra module of w.

In this section, we only consider the Harish-Chandra module €2, and by abuse of no-
tation, we often denote the action of (&, K) by the same letter w, or simply write it by
module notation. It is well known that {2 can be identified with the space of polynomials
on X¢ = X ®r C. In this realization, K is identified with the determinantal double
cover of the unitary group U(X¢), and the action of K is given by the left translation of
polynomials times its determinant, i.e.,

w(k)f(z) = /det(k)f(k ') (ke K, f(z) € C[Xc],z € X¢) (3.1)

Let & = 8 @ B be the complexified Cartan decomposition along the Lie algebra of the
maximal compact subgroup. Then, the action of R is given by the differential of w(K),
and the action of 8 is given by the multiplication of polynomials of degree two (if it is a
root vector of a positive root), or the differentiation by a constant coefficient differential
operator of degree two (if it is a root vector of a negative root). For more detailed
realization, we refer to [5] (or [12], for example).
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Take an irreducible Harish-Chandra module 7" of 57, ie,misa (¢, K’ )-module, where
g’ denotes the complexified Lie algebra of G’ and K is a maximal compact subgroup of
G’ (similarly we will denote by g the complexified Lie algebra of G and by K a maximal
compact subgroup of G). Put

H = Hom Q,7") (morphisms of Harish-Chandra (g, K')-modules),  (3.2)

(.5

and consider

Q/N; N = ﬂ Ker ¢.
peH

Then there exists a quasi-simple (g, K)-module Q(7’) of finite length such that
Q/N ~Q(n') @«
as (g ¢, K x If(v’)—modules. Q(n') is called Howe’s maximal quotient for 7'

Theorem 3.1 (Howe). If Q(7’) is not zero, it has a unique irreducible quotient, which is
denoted by O(7') and called the theta lift of 7.

In fact, the correspondence 7’ < m = @(7') is bijective between the genuine irreducible
representations which appear in w as quotients. Note that 7 and 7’ are in correspondence
if and only if there exists a non-trivial (g ® g, KxK' )-module morphism 2 — 7 ®7'. As
a formal convention, we put §(7') = 0 if Q(7’) = 0, i.e., 7’ does not appear as a quotient
of w.

Lemma 3.2. Let us denote by Q(n')* the K-finite dual of Q(x'). Then we have
Q(r')* ~ Hom(g,ﬁ,)(ﬂ,w’)f(_ﬁmte =Hp.
Proof. Take v* € Q(n')*. Then
Q20 /N ~ Q) @ r L2

gives an element of Hz.
Conversely, any f € Hj factors through Q/N by the definition of N. Thus we get

Q") @ " ~ Q/N I , which is (g’ ,I?’)—equivariant. Since 7’ is irreducible, f :
v @7 — 7' gives a scalar v}(v). This gives the inverse map. d

Theorem 3.3 (N-Zhu [15]). Assume that (G, G") is an irreducible type I dual pair strictly

in the stable range. If ' is a unitary highest weight module for G' (so that G'/K' must
be a Hermitian symmetric space), then Q(n’) is irreducible, hence Q(n') = 0(x') gives the
theta lift.

Remark 3.4. We say that the pair (G, G") is strictly in the stable range if (G, G’) is in the
following list.

This condition is a little bit stronger than the stable range condition (due to J.-S. Li)
given above. Note that it is ambiguously called “stable range” in [I5]. Though the
theorem itself is valid for all the above three pairs, we are only treating Case R in this
note.



TABLE 1. The dual pairs strictly in the stable range

the pair (G,G") strictly stable range condition

Case R:  (O(p,q),Sp(2n,R))  2n < min(p, q)
Case C:  (U(p,q),U(m,n)) m +n < min(p, q)
Case H:  (Sp(p,q),0"(2n)) n < min(p, q)

To give an idea of the proof of this theorem, let us briefly indicate how to compute
K-types of Q(7’) (which is proved to be 0(7') afterwards).

Let us remind that V' is an indefinite quadratic space over R, and G = O(V). Let
V =V* @&V~ be a decomposition for which

{V+ is positive definite p =dim V™, (3.3)

V'~ is negative definite ¢ =dimV .

We denote K* = O(V¥), so that K = KT x K~ gives a maximal compact subgroup
of G. Recall the complete polarization V' = X’ @ Y’ of the symplectic space V'. Then
according to the decomposition, we can take a maximal totally isotropic space X as

X=VeY =V"eY)e(V @Y. (3.4)
Therefore, the Weil representation w is realized on the L2-space
PX)=L*VTeY) L* (V- ®Y').

We note that L?(V*®Y") carries the Weil representation for compact dual pairs (K*, G")
= (O(V*),Sp(V")), whose decomposition is well known by the work of Kashiwara and
Vergne [7]. Up to twisting by a genuine character of the double cover of O(V*), we have

{L?(w DY) = Y, cown o @ Lt (),

3.5
(V™ @Y) = Yoy 08 © L (02), 33)

where L (o) (respectively L™ (03)) is a unitary highest (respectively lowest) weight mod-

ule of G = Sp(V'), which is genuine; and 0 = yx; ® o0; is a genuine irreducible finite
dimensional representation of the double cover 5(Vi) obtained from the irreducible rep-
resentation o; € O(V*)” twisted by a certain genuine character y;. Note, however, the
double covers G’ differ according to V' if the parities of p and ¢ are different. The reason
is that the cover is taken in the different metaplectic groups Mp(V* @ V’). Similarly,
G' € Mp(W) may be different from G/ C Mp(V* @ V’). But it is too subtle to denote
the dependence, so we will omit it.

Under the condition that the pair is strictly in the stable range, L*(oq) is a holomorphic
discrete series, and L~ (03) is an anti-holomorphic one. This will make our arguments
particularly simple.

Using ([B.3), we get
Homg; (w, ')z = Homg (L* (VT @ Y) @ L* (V- ®@Y'), 7' )z
=Y Homg(LM(01) ® L™ (02), ') @ (0} @ 03?)".

01,02
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Since 7" is a unitary highest weight module, the multiplicity
Homg (L*(01) ® L™ (03), ") =~ Homg; (L™ (01), L™ (02)" @ 7')

is of finite dimension. Moreover, it can be described in terms of finite dimensional repre-
sentations. Namely, if

71 is the minimal K’-type of L* (o), and
75 is the minimal K’-type of L~ (o9)*,

then the above multiplicity equals to

Homz; (11,7 ®@ (7'

7))

Thus, by Lemma B.2 finally we obtain

Q)| ~ Z Hom (11,7 @ (7| )" ® (0} ® 03?). (3.6)
c1EO(VH)N a2€O0(V )N

Since 6(7’) is the unique irreducible quotient of Q(7), the multiplicity of K-types in o(n")
cannot exceed dim Homz (71,7 ® (7'|))*. However, if we choose appropriate K-types

inS® H?ﬁ,)* and its K’-finite vectors, the theta integral (2.2]) converges for such vectors
and gives a non-degenerate inner product. This means that the above multiplicity should
survive after taking the quotient by R = Ker( , )y« (cf. (24))). This means that the
multiplicity of K-types in 6(7') and Q(7') is the same, which proves 8(z') = Q(7').

We summarize the above arguments into

Theorem 3.5 (N-Zhu). Let 7’ be a genuine unitary highest weight module ofa and

7w = 6(n') its theta lift. Then the K-type decomposition of 7 is given by

/
W‘Eﬁ E Homz (71,7 ® (7
G1E0(VH)N ,02€0(V—)A

7)) @ (01" ®o3?).

The multiplicities in the above decomposition formula is efficiently computable. See
[12] for example.

4. AsSOCIATED CYCLE

Let (m,X) be a Harish-Chandra (g, K') module, where g is the complexified Lie algebra
of G and K is a maximal compact subgroup. For simplicity, we assume that X is quasi-
simple, i.e., the center 3(g) of the enveloping algebra U(g) acts on X as scalars.

Take a finite dimensional generating space Xy C X, which is K-stable. Let {U,(g)}>,
be the standard filtration of the enveloping algebra U(g). We define a filtration of X as
X, = U,(9)Xo, which is K-stable. Moreover, it satisfies U,,(g)X,, = X, If a filtration
satisfies this condition for sufficiently large n and arbitrary m > 0, it is called good. Thus
{X,}22, is a K-stable good filtration of X. Let

oX= 3 %/%  (X,=0) (4.1)

be the associated graded module of gr U(g) = S(g) (the symmetric algebra of g).
7



In general, let M be a finitely generated module over a Noetherian ring A. (In our
present case, we take A = S(g) and M = grX.) Let {P;}!_, be the set of all the minimal
prime ideals containing the annihilator ideal Ann M = {a € A | aM = 0}. Clearly,

Supp M := Spec(Ann M) = Ul’—1 Spec(A/P) (4.2)

gives an irreducible decomposition of Supp M. In addition to this, we associate a multi-
plicity m; = m(M, P;) with each irreducible component Spec(A/P;), where m; is defined
as the length of Ap-module Mp,. Here Ap, or Mp, denotes the localization at P;. Note
that Mp is an Artinian Ap-module, so that the multiplicity is a positive integer. The
associated cycle AC(M) of M is defined to be a formal sum

AC(M) =" m;Spec(4/P). (4.3)

If M is a coherent sheaf over Spec A corresponding to M, then the support of M is Supp M
above, and the usual notion of characteristic cycle Ch(M) coincides with AC(M).

Let us return to the S(g)-module grX. Let g = € ® p be a Cartan decomposition,
and we identify S(g) = Clg| via Killing form, so that m-Spec S(g) ~ g, where m-Spec A
denotes the set of maximum spectrum of A.

Theorem 4.1 (Vogan [18]). The associated cycle AC(gr X) does not depend on the choice
of the generating space Xo. We denote it by AC(X). Then AC(X) is a finite union of the
closure of Kc-nilpotent orbits in p with multiplicity.

I
AC(X) = Zmi -[O4] (O; = Kc-nilpotent orbit in p) (4.4)
i=1

We call Supp(gr X) = U;O; the associated variety of X, and denote it by AV(X).

Proof. We skip the proof of independency of AC(X) from the choice of the Kc-stable
generating space.

Since the filtration {X,}5°, is K-stable, the action of ¢ = Lie(K )¢ kills gr X. Thus, in
fact, gr X is an S(g/€)-module. This means the support of gr X is contained in p ~ (g/€)*.
Moreover, there is an action of K¢ on Supp(grX) induced by Kc-module structure of
gr X, hence AV(X) is a union of Kc-orbits.

Since X is assumed to be quasi-simple, gr 3(g) = S(g)¢ acts on gr X trivially. Thus the
invariants of positive degree S (g)f kills gr X. By the result of Kostant, it is known that
S (g)f generates a prime ideal, which is an annihilator ideal of the nilpotent variety. Thus
Supp(gr X) = AV(X) is contained in the nilpotent variety. O

We give some examples of associated cycles here.

Example 4.2. If 7 is a finite dimensional representation of G, its associated cycle is
supported on the point {0}. The multiplicity is given by the dimension dim 7.

Example 4.3 (Yamashita, N-Ochiai-Taniguchi). We will give the associated cycles of
unitary highest /lowest weight modules. For details, we refer the readers to [13].
First we describe certain nilpotent orbits. Let (G, G’) = (O(p, q), Sp(2n,R)) be our type
I dual pair. A choice of a maximal compact subgroup K’ C G’ determines a complexified
Cartan decomposition g’ = ¢ @ p’. Since G’ = Sp(V’) is a Hermitian symmetric type,
there is a K¢-stable decomposition p’ = p’, @ p’. One can identify p/, = Sym,, (C) (the
8



space of symmetric matrices of order n), where n = %dim V' is the real rank of G’. The
action of K. ~ GL,(C) is the usual one; gX% (¢ € GL,(C), X € Sym,(C)). Then p/, is
contained in the nilpotent variety, and the nilpotent Kg-orbits in p’, is classified by the
rank of symmetric matrices. We denote the nilpotent orbit in p’, of rank £ by 0. In
particular, Oy = {0} is the trivial orbit, and O,, = {A € Sym,(C) | det A # 0} is dense
open in p’, .

Let us recall the decomposition (3.5). Thus unitary highest weight modules L™ (o) are
parametrized by irreducible finite dimensional representations o € O(V )" for various
positive definite quadratic space V. Here (only in this example), we do not assume any
condition between the dimensions of V* and V’. Therefore, L™ (o) need not be in holo-
morphic discrete series, but it can be an arbitrary unitary highest weight representation
including singular unitary highest weight modules.

The associated cycle of LT (o) (0 € O(V*)") is given by

AC(L*(0)) = {dimg' @ _ fp=dimbTn (4.5)

dim o= . [0,] ifp=dimV* >n

Here O(p — n) is embedded into O(p) diagonally, and o©»~™ denotes O(p — n)-invariants
in 0. Note that O, = p/,..

By a result of Yamashita ([21]), the multiplicity of AC(L*(0)) is also interpreted as the
dimension of the space of generalized Whittaker vectors. This is one of the motivation to
calculate associated cycles.

5. THETA LIFT OF ASSOCIATED CYCLES

First we recall the notion of the lifting of nilpotent orbits for symmetric pairs [14]:

G’ = Sp(2n,R) — G = O(p, q),
NHp)>O0 — O cC N(p),

where for a subset s C g we denote the set of nilpotent elements in s by NV (s). We always
assume that the pair (G, G’) is strictly in the stable range, which amounts to assume that
2n < min(p, q).

Now W = RP? @ R?*" has a complex structure such that the imaginary part of the
standard Hermitian form gives our symplectic form. With this complex structure, we
consider W as a complex vector space:

W = My (C) = {(g) | A€ M,,(C).Be Mq,n(C)} — My (C) @ My, (C).

Then the action of K¢ = O(p,C) x O(q,C) and K = GL,(C) on W can be given as

(h]ﬁ;ﬂ) ! (g) €W, (k,h) € O(p,C) x O(q,C), g € GL4(C).

9



We fix a Cartan decomposition g =€@ p (resp. g =€ dp’) as

 o(p+q.C) = Alt,(C)| 0 . 0 | M(C) e
§ZOTeE =T [an©) T\, o )T

, B MH(C)‘ 0 0 ‘Symn((C) L
9—5]3(2”7@)_( 0 —tMn(C)>@<Symn(C) 0 )—{%@p.

Thus, we can identify p = M, ,(C) and p’ = p’, ® p" = Sym,(C) @ Sym,,(C). To define
the lifting, we consider the following double fibration map

p - MP,‘I Symn @ Symn = p/

where the moment maps ¢ and v are explicitly given by
(A, B) € Mpyn & Mgy =W,
0(A,B) =AB e M,,=p,
(A, B) = (‘AA, 'BB) € Sym,, & Sym,, = p’.
These maps are equivariant quotient maps onto their images. For example, ¢ is a quotient
map by GL,(C) onto its image (rank < n matrices in M, ,(C)), and it is K¢-equivariant.
Note that ¢ is surjective by our assumption that the pair is strictly in the stable range.

The following theorem is established in [14]. It is also obtained by Ohta [16] and
Daszkiewicz-Kraskiewicz-Przebinda [I] independently.

Theorem 5.1. Take a nilpotent K-orbit O" in p’. The push-down of the inverse image
o(~HO)) of the closure of O is equal to the closure of a nilpotent Kc-orbit O. This
gives a one-to-one correspondence from the set of nilpotent K¢-orbits in p' to the set of
nilpotent Kc-orbits in p.

We write this correspondence as O = 0(0’), and call it the theta lift of O'. For
associated cycles we can extend the theta lifting by

Q(Zi m;[0]]) = Z m;[0(O;)]. (5.1)
We can now state our main theorem.

Theorem 5.2 (N-Zhu). Let (G,G") be a reductive dual pair of type 1. We assume that the
pair is strictly in the stable range with G’ the smaller member, and that G’ is of Hermitian

type (see Table[l in §3)). Let ' be a genuine unitary highest weight representation Of/G\J
which appears in the Howe correspondence of a compact dual pair. Then the associated
cycle is preserved by the theta lifting.

O(AC(T)) = AC(O(r")) (5.2)
10



More precisely, if the associated cycle of ' is given by AC(n") = m[O'], then AC(O(r")) =
ma[0(O")] with the same multiplicity.

Some remarks are in order.

First, for the pairs (O(p, q), Sp(2n,R)) and (U(p, q), U(m,n)), all the unitary highest
weight module of G’ appears in the Howe correspondence for some compact dual pairs.
This is proved in [7]. However, for the pair (Sp(p, q), O*(2n)), there are small exception.
See [2].

Second, AC(7’) is well-understood; AV(7’) is irreducible, and the multiplicity m, can
be given by the dimension of certain subspace of representations of compact groups. See
Example [4.3]

Third, if 7’ is a singular unitary highest weight representation, the formula of AC(7’) is
also interpreted as the preservation of the associated cycle under the theta lifting. In fact,
7' is the theta lift of a finite dimensional representation in the stable range. However, if
7' is not singular, we can see that the associated cycle is no longer preserved by the theta
lifting. Thus the assumption of the stable range condition is necessary.

For the proof of this theorem, we refer to [15].
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Principal series Whittaker functions on SL(3,R)
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This is an extract from a preprint with the same title. The full proofs are contained
in that. Here we write only the major results. The numbering of the statement are the
same as the original full paper. Some statements in the original are skipped.

Introduction

The study of Whittaker models of algebraic groups over local fields has already some
history. The Jacquet integral is named after the investigation of H.Jacquet [7]. Multi-
plicity free theorem by J.Shalika for quasi-split groups, was later enhanced for the case
of the real field by N.Wallach. For redutive groups over the real field, this theme was
investigated by M.Hashizume [5], B.Kostant, D. Vogan, H.Matsumoto, and the joint
work of R.Goodman and N.Wallach [4].

More specifically GL(n,R), explicit expressions for class 1 Whittaker functions are
obtained, firstly for n = 3 by D.Bump [2]. The main contributor for the case of general
n seems to be E.Stade. Other related results will be find in the references of the papers
of him ([9],[10]).

Let us explain the outline of this paper. The purpose of the master thesis [1] refered
above is to investigate the Whittaker functions belonging to the non-spherical principal
series representations of SL(3,R). The minimal K-type of such representations is 3-
dimensional. So we have to consider vector-valued functions. The main results are,
firstly, to obtain the holonomic system of the A-radial part of such Whittaker functions
with minimal K-type explicitly (§4), and secondly to have 6 formal solutions (§5,
Theorem (5.5)), which are considered as examples of confluent hypergeometric series
of two variables. We also have integral expressions of these 6 solutions(§5, Theorem
(5.6)). In the subsequent section, the Jacquet integral (so to say, the primary Whittaker
function) is written as a sum of these 6 secondary Whittaker functions (§6-8).

1 Preliminaries. Basic terminology

1.1 Whittaker model

Given an irreducible admissible representation (w, H) of G = SL(3,R), we consider
its model or realization in the space of Whittaker functions. This means, for a non-



degenerate unitary character ¢ of a maximal unipotent subgroup N = {

o O =
O = ¥

G} of G defined by

1 12 213
'Lb( 1 2923 ) = exp{27r\/ —1(011312 + 621’23)}
1

with ¢, co € R being non-zero, we consider a smooth induction COO—Ind%(z/)) to G, and
the space of intertwining operators of smooth G-modules

Homg (H e, C-Ind$ (1))

with H, the subspace consisting of C'"*°-vectors in H. Or more algebraically speaking,
we might consider the corresponding space in the context of (g, K)-modules (with

g = Lie(G), K = SO(3)):

Homg ) (Hoo, C*°-Ind§ (1))).

1.2 Principal series representations

Let P, be a minimal parabolic subgroup of G given by the upper triangular matri-
ces in GG, and Py = MAN be a Langlands decomposition of Py, with M = K N
{diagonals in G}, A = expa, with

a= {diag(t17t27t3)‘ti € R, tl + t2 —+ t3 = O}

In order to define a principal series representation with respect to the minimal
parabolic subgroup F, of GG, we firstly fix a character ¢ of the finite abelian group
M of type (2,2) and a linear form v € a* ®g C = Homg(a,C). For such data, we
can define a representation o ® e” of M A, and extend this to Fy by the identification
Py/N = MA. Then we set

Tow = L*-Indf (0 ® e/ ® 1y).
Here v(diag(ty,te,t3)) = Zle vit; with v; € C and p is the half-sum of positive roots
of (g,a) for Py, given as follows. For i < j (1 <1i,5 < 3), we put 1;;(a) = a;/a; for
a = diag(a1,as, a3) (a1aga3 = 1). Then we have a* = [[,_; ai/a; = ai/aj = aja3 by
definition. Hence a” = a?as.

Here the characters o; of M are identified as follows. The group M consisting of 4

elements is a finite abelian group of (2,2) type, and its elements except for the unity
is given by the matrices

1 0 0 ~10 0 ~1 0 0
mi=10 -1 0|,m=[0 1 0] m=(0 -10
0 0 -1 0 0 —1 0 0 1

Since M is commutative, all the irreducible unitary representations of it is 1-
dimensional. For any o € M, we have 02 = 1. Therefore the set M consisting of
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4 characters {o; : j = 0,1,2,3}, where each o}, except for the trivial character oy, is
specified by the following table of values at the elements m;.

my | o | M3
o1 1) -1 -1
09 -1 1 -1
o3| -1] -1 1

Proposition (1.1) (i) If o is the trivial character of M, the representation ., is
spherical or class 1, i.e., it has a (unique) K-invariant vector in the representation
space H, .

(ii) If o is not trivial, then the minimal K-type of the restriction .,k to K is a 3-
dimensional representation of K = SO(3), which is isomorphic to the unique standard
one (12, Vo). The multiplicity of this minimal K -type is one:

dimc Homg (72, Hy ) = 1,
namely there is a unique non-zero K-homomorphism

L (TQ, ‘/2) i (WU,V\Ka HO'V)

)

up to constant multiple.

2 Representations of K = SO(3)

2.1 The spinor covering

To describe the finite dimensional irreducible representations of SO(3), the simplest
way seems to utilize the double covering s : SU(2) = Spin(3) — SO(3), which is
realized as follows.

The Hamilton quaternion algebra H is realized in My(C) by

H= {(_“5 2) € M,(C)la,b € C}.
Then SU(2) is the subgroup of the multiplicative group consisting of quaternions with
reduced norm 1, i.e.,

SU(2) = {z € H|detz = 1}.

Let P = {z € H|trz = 0} be the 3-dimensional real Euclidean space consisting of pure
quaternions. Then for each x € SU(2), the map

peP—z-p-ateP

preserve the Euclid norm p — detp and the orientation, hence we have a homomor-
phism
s:8U(2) — SO(P,det) = SO(3),

which is surjective, since the range is a connected group. The kernel of this homomor-
phism is given by {+1,}.



By the derivation of s ds : su(2) — s0(3), the standard generators:

= (YT ) e (4 D)o ()

are mapped to 2K, 2K5,2K3 with

00 O 0 01 0 -1 0
Ki={00 —-1|],Ke=10 0O0],K3=1[1 0 0] €€,
01 O -1 0 0 0 0 0

respectively. Here £ is the Lie algebra of K.

2.2  Representations of SU(2)

The set of equivalence classes of the finite dimensional continuous representations of
SU(2) is exhaused by the symmetric tensor products 7, (I = 0,1,...,) of the standard
representation. These are realized as follows.

Let V; be the subspace consisting of homogeneous polynomials of two variables x, y

in the polynomial ring Clz,y]. For g € SU(2) with g7! = (_ab Z)’ and f(z,y) € Vi

we set -
n(9)f(x,y) = flax + by, —bx + ay).
Passing to the Lie algebra Lie(SU(2)) = su(2), the derivation of 7;, denoted by the same

symbol, is described as follows by using the standard basis {v, = 2*y'=* (0 < k < 1)}

and the standard generators

T S A L T ()

Namely we have
Tl(ul)’Uk =V —1(l — 2]€)Uk, ’7'[(X+)Uk = (l — k:)ka, TI(X_)Uk =—k- Vk—1-

Here we put X = 1 (us +v/—1us), X_ = 1(us — v—T1us).

The condition that 7; defines a representation of SO(3) by passing to the quotient
with respect s : SU(2) — SO(3) is that 7(—15) = (=1)! = +1, i.e., [ is even. Therefore
the dimension of V}, { + 1 is odd in this case.

The representation 75 of SU(2) is equivalent to the spinor homomorphism. Hence
passing to the quotient, 75 is equivalent to the tautological representation SO(3) —

GL(3,C).

2.3 Irreducible components of 7, ® 74 and 7 ® Ad,,

For our later use, we want to specify the standard basis of the unique irreducible
constituent 7 in the tensor product m ® 74.



Lemma (2.1) Let {v; (i =0,1,2)} and {w; (0 < j < 4)} be the standard basis of
(12, Vo) and (14, Vy), respectively. Then the elements

vy, = vy @ we — 2v; @ wy + vy ® Wy,
Ui = v0®w3—2v1®w2+v2®w1,
vy = Uy ®wy — 201 @ w3 + Vg ® Wy

define a set of standard basis in T C To ® T4, which is unique up to a common scalar
multiple.

2.4 The K-module isomorphism betwenn pc and V)

We denote by pc the complexification of the orthogonal complement p of € with respect
to the Killing form, on which the group K acts via the adjont action Ad,. We denote
by E;; the matrix unit with 1 at (7, j)-th entry and 0 at other entries. Then E;; and
E;; + Ej; are considered as elements in p. We set H,;; = E;; — E,; for ¢ # j.

Lemma (2.2) Via the unique isomorphism Vi and pc as K-modules we have the
identification
wy = —2{Ha —/—1(Ey+ E)},
V=U{(Ew + Exn) — V=1(E13 + E31)},
%(le + Hi3),
wy = V=1{(F12+ Ean) +vV—1(Ews + Es)},
wy = —2{Hy+/—1(Ex3+ Ex)}.

E
1

3 Principal series (g, K)-modules

3.1 The case of the class one principal series
3.1.1 The Capelli elements

A set of generators for the center Z(g) of the universal enveloping algebra U(g) of
g = sl3 is obtained as Capelli elements, because sl3 is of type As.
Let

1 3

Ej; = E;; — §(Z Eua), Ej; = Eij (i # ).

a=1
Then E;; € g. Define a matrix C of size 3 with entries in g by
Ey Ey Eig
C=|Ey Ey Ey|—dag(-1,0,1).
By By Eg
Then for
A= (Aijh<ij<s = - 13— C € Ms(g[z]) C M3(U(g)[7]),

we define its vertical determinant by

det | (A) = Z sgn(0) A1) A20(2) Aso(3)-

ceG3



Then it is written in the form a3 + Cpyxr — Cps € U(g)[x] with some elements Cpy and
Cps in Z(g).

Proposition (3.1) The set {Cpy, Cps} is a system of independent generators of Z(g).
Here are explicit formulae of Cpy and Cps:

Cpy = (B —1)Ey + Ey(Ess + 1) + (£ — 1)(Eg +1)
—Ey3E3y — ErzEs — Erg b,

Cps = (B, —1)ElW(Ely + 1) + Ev9Eo3Esy + Ey3Es Eso
— (B4 — 1)Ey3Esy — Ey3ENy By — B9 Eoy (B3 + 1),

Eigenvalues of Cpy, Cps

We compute the value Cpyfo(e) and Cpsfo(e). Let Sp(a,b,c) = ab + be + ca and
S3(a,b,c) = abe be the elementary symmetric functions of three variables of degree 2
and 3, respectively. Then we have the following.

Proposition (3.2) The infinitesimal character of Ty, is given by

1 1 1
Cpafo = 52(5(2V1 - V2)7 5(27/2 - Vl)a g(% + Vz))fo

and
1 1 1
Cpsfo = 53(§(QV1 — 1), §(2V2 — 1), g(m + 1)) fo-

3.2 (g, K)-module structure of non-spherical principal series
at the minimal K-type

3.2.1 Construction of K-equivariant differential operators

Lemma (3.3) Let {f; (1 = 0,1,2)} be the set of the standard basis of the minimal
K-type 7 C 7m,, of a non-spherical principal series representation m,, = w. Define
another three C*-elements {¢; (i =0,1,2)} by the formulae:

vy = %W(QEH — B9 — Es3) fo
—2\/—_17T(E12 -+ E21 - \/—_1<E13 + E31))f1
—21(E1n + Eo1 — /—1(Ea3 + E39)) fa,
o1 = V=1n(Ewg+ Exn +V—1(Ei3+ En))fo
—3m(2E11 — Eay — E33) fi
+vV—=17(E1p + Eo1 — V—=1(E13 + E31)) f,
gy = —2m(Fa — E33+ \/—_1(E23 + E32)) fo
—2v/=17(E19 + Ea1) + V—1(E13 + E31)) fi
—|—§7T(2E11 — E22 - E33)f2'

Then (g, ¢1, ¢2) is a constant multiple of (fy, f1, f2).



3.2.2 Computation of eigenvalues

The previous lemma tells that there exist a scalar A(o, ) depending on ¢ and v such
that ¢; = Ao, v)f; (i =0,1,2). We determine this eigenvalue A(o, v) by using explicit
models of the principal series 7, .

To do this, we have to find functions in

L*Ind};(0;) = L3, (K) = {f € L*(K)|f(mk) = o(m) f(k) for all m € M,k € K}

corresponding to the standard basis in the minimal K-type for each 1.
In the larger space L*(K), the o-isotypic component is generated by the 9 matrix
elements s;;(k) (1 <1,j < 3) of the tautological representation

ke K— S(k) = (Sab<k))1§a,b§3 € SO(S)

It is directly confirmed that s (k) (b = 0,1,2) belong to the subspace L3, (K) for
each 1.

Diagonalizing the action of uy, we find that s;; corresponds to v; for each 7. And
finally we find that the standard basis is given by

Vo = V —1(82‘2 —V —181'3), V1 = Si1, and Vo = V _1(52'2 + v —1Si3).
We need the values of these standard functions f,(k) = v, (a = 0,1,2) at the identity
e € K.

Lemma (3.4) The values of the standard functions at e € K is given as follows.
L If o = a1, (fole), file), fo(e)) = (0,1,0).
2. If 0 =03, (fole), file), fole)) = (V=1,0,v/~1).
3. If o =03, (fole), fi(e), fale)) = (1,0, -1).

Now we can proceed to the compuation of the value A(o;, V).

Lemma (3.5)
4 4 4
)\(0’1, V) = —§(2V1 — VQ), /\(O’Q, V) = g(Vl — 2V2), )\(0'3, l/) = g(Vl + ]/2).

Summing up the lemmata in this section, we have the following.

Proposition (3.6) Let {f; (i =0,1,2)} be the set of the standard basis of the minimal
K-type 7 C 7,5, of a non-spherical principal series representation m,, = w. Define
another three C*-elements {¢; (i = 0,1,2)} by the formulae:

o = sm(Hy+ His)fo
—2v/=17(Eyg + Eoy — V=1(E13 + E31)) fi
—27(Haz — /—=1(2E23 + 3u1) fo,

o1 = V=1n(Ey2+ Exn +V—1(E13+ E31)) fo
—§7T(H12 + Hi3) fi
+V/—17(Ey + Eay — V—1(E13 + E3)) fo,

@2 = —2m(Hos +V—1(2E2 + sw1) fo
—2\/—_17T(E12 + E21) + \/—_1<E13 + E31))f1
+3n(Hi2 4 His) fo.

7



Then we have
(900, P1, 902) = )\(Uz‘, V)(f07 f1>f2)

with eigenvalue \(oy,v) given by

4 4 4
)\(Ul,V) = —§(2V1 — VQ), )\(JQ,V) = g(l/l — 2V2), )\(03,1/) == 5(1/1 + 1/2).

In the next section, we consider the Whittaker realization of the equation of the
above proposition. Then we need the following Iwasawa decomposition of standard
elements of g.

Lemma (3.7) We have the following decompostion of standard generators of g with
respect to the Iwasawa decomposition g =n+a+ €. For H;; € a we have

Hy; =0+ Hy +0.
Since E;; + Ej; = 2E;; — (E;; — Ej;), we have

Eis+FEy =2E19+0+ K3, Ei3+E3 =2FE13+0+(—Ksy), FEo+FEyy =2E53+0+K;.

4  The holonomic system for the A-radial part of
the principal series Whittaker functions

4.1 The case of the class one principal series

Let I be a non-zero Whittaker functional from the class one principal series 7,
to C>°-Ind§(¢¥)). Let F be the restriction of the image I(fy) of the K-fixed vector
fo to A. We write here the holonomic system for F' with respect to the variables

Y1 = 7712(@) = a1/G2, Yo = ?723(66) = @2/613 = al/a%

Proposition (4.1) Put F(y1,y2) = y1y2G(y1,y2) (note a® = y1y2). Then G(yi1,y2)
satisfies the partial differential eqautions:

1
AyG = g(uf +vi — )G
and

1
{01(01 — 92)0y + A2 chys0) — AT iyt 0, )G = —ﬁ(21/1 — 1) (2ve — 1) (11 + 10)G.

Here 0; is the Euler operator yiaa—y_ fori=1,2. and we write
Ny = (0 + 05 — 0105) — 47 (cly; + 3y3)-

Remark From these equations for the monodromy exponents oy, as at the origin y; =
0, yo = 0, we have an equality of sets of complex numbers:

1 1 1
{Oél, - + a9, —062} = {§(2V1 — VQ), §(2V2 — Vl), —§<V1 -+ V2>}.



4.2 The holonomic system for the A-radial part of non-spherical
Whittaker functions

Let I be a non-zero Whittaker functional from the principal series 7, ,. For the set
{fil(i =0,1,2)} of standard functions, we put F; = I(f;).

Theorem (4.4) Let F(a) = (Fo(a), Fi(a), F2(a)) = (y192)" (Go(y), G1(y), Ga(y)) be
the vector of the A-radial part of the standard Whittaker functions with minimal K -type
of the principal series representation m,, with non-trivial o = o;. Then it satisfies the
following partial differential equations:

(i):

o dreiyr O — 202 — 4wy Go(y) Go(y)
—27T61y1 —2(91 —27T61y1 G1 (’y) = 5/\1 Gl(y) s
81 — 282 —+ 47T62y2 47T01y1 81 G2 (y) Gg(y)
(ii):
Go(y) Go(y) Gi(y) L (Go)
Ay 13- | Gi(y) | —2meays 0 +2meryr | 3(Goly) + Ga(y) | = 3t Gi(y)
Ga(y) —Gs(y) G1(y) Ga(y)

Moreover the eigenvalues \; and p depending on the representation m,, are given by

Mo=—320 —1) (0=o0)
Ay =3(nn —2w) (0=02) and =it vy — .
A3 = 5(v1 +10) (0 =o03)

Remark We can write the differential equations (i) and (ii) of the above Theorem as
with D; (1 = 1,2) 3 by 3 matrix-valued differential operators. Then we have

D,-Dy —D,-D; =0.

4.3 The equations via the tautological basis

Let k € K — S(k) = (s45(k))1<i j<3 be the tautological representation of K = SO(3).
Let I € Homg g (7,,,, Ind5 (1)) be a Whittaker functional and define function Tj; on
A by

I(sij)ia = niyTi(y) (1 <4,5,<3).

Go 0 v—-1 1 T;
Gi|=1|1 0 0 T;

Go 0 v-1 -1 T;

Then



Then for each i, the equation (i) of the above theorem is transformed to

-0 =27/ —leyy 0 T; 1 T;
—2mv/—1eip 01 — Oy =21/ —1cays Tio | = §>\i Tio |,
0 =27/ —1eays 0o T; T;
and the equation (ii) to
0 27'('\/ —101y1 0 T; 1 T;
Ay - 13+ | —27v -1y 0 21/ —1coys To | = 5’“ T;
0 =21/ — 1oy 0 T; T;

5 Power series solutions at the origin

We determine 6 linearly independent formal power series at the origin (y1,vy2) = (0,0)
for generic parameter v in this section. These formal solutions converges because the
singularity at the origin is a regular singularity. These solutions do not have exponential
decay at infinity, different from the unique ‘good’ solution given by Jacquet integral.
We refer to these solutions as secondary Whittaker functions sometimes.

5.1 The case of the class one principal series

This case is more or less discussed in the paper of Bump [2], up to some difference of
notations. We omit its explicit formula.

An integral expression of this power series solution was found by Stade ([9, Lemma
3.10], [I1, Theorem 2|) as an analogue of an integral formula for Jacquet integral by
Vinogradov and Takhadzhyan [12]. The same as non-spherical case discussed later, we
let {e1, €2, e3} be a permutation of the three complex numbers {—3 (21 — 1), —3 (215 —
V1), %(V1 + 1)} = {i/\l, %)\2, i)\3}

Theorem (5.2) For Re(ey —ep) > 2,

e-

D(y1, o) = D(259 + DI(252 + DI(25% + 1) (reryn) 7 (meaya) ™3 (mer) (mep) =

1 3 du
. [e —e 2 1 1 Ie —e 2 1 —z€3 )
9/ —1 ul=1 %( Tayiy 1L+ /U) %( TCoYaV 1 + u) U _u

5.2 The case of the non-spherical principal series

In this case also, the holonomic system obtained in Theorem (4.4) has regular singu-
larities at the origin (y1,y2) = (0,0) with rank 6, i.e., the order of the Weyl group
of SL(3,R), for generic values of parameter v. We determine the characteristic in-
dices and the convergent formal power series solutions at y = 0. Here to abridge the
notation, we write the set of variables (y1,y2) as y collectively.

By inspection we find that it is convenient to introduce scalar functions ®;(y1, y2) (i =
0,1,2) by

0 1 1
F(y) = 192G () = 11y2{Po(y) [ 1] +Pu(y) (O] +D2(y) [ O |}
0 1 —1

10



5.3 The holonomic system for &;(y)

Now we can rewrite the holonomic system for G; to that for ®;.
Proposition (5.3) The holonomic system in Theorem (4.4) is equivalent to the fol-
lowing system for ®; = ®;(y1,y2) (i =0,1,2).
(1) (1) [81 -+ 1)\ ](I)O + (27’(’(313/1)(1)1 O
( 1) [ l/\]q)l + (27’(’613/1)(1)0 + (27TC23/2>(I)2 = O,
(ili) [02 — A ]q) (2meay2) Py = 0,

) ( )1 =0,

i) + (2me1yr)Po — (27T02y2)‘1>2 =0,

) - (27T02fy2)q>1

(2) (0 [Ag
(i) [Ag
(iil) [As

=
=)

+ (2711

55

wl»—t wl»—l wl»—‘

5.4 The characteristic indices at the origin (y1,42) = (0,0) and
the recurrence formulae.

Let
r(y) =y "y Z Chiny o (TC1Y1)™ (TC2y2)"™, (k= 0,1,2)

n1,m2>0

be a system of formal power series solutions at the origin y = 0.

Now we can determine the 6 pairs (—ey, e2) of characteristic indices at the origin,
and the corresponding initial values conditions for F' or ®;. the system at the origin and
to determine the first coefficients Moreover we have the recurrence relations between
the coefficients.

Lemma (5.4) When o = o; fori =1, 2 or 3, we have the following:

(1) The characteristic indices take the siz values:

(—ene0) = (=2An 1) (1<k#£1<3).

(2) For each case, the set of first coefficients, or the initial values at the origin are
given as follows:

() If (—er,ea) = (=3Ai M) (kK #19),

e}

(U1'y 2 G)(0,0) = | L[, e, (y1'y2 “®0)(0,0) = 1, and (y'y, “*®;)(0,0) =

=}

0 for other j.
(11) ]f (—61, 62) = (—%)\k, zll)\l) (k‘ 7é Z,l 7’é i, k 7& l),

1
(7'ys “G)(0,0) = [ 0], d.e., (y7'ys 2 ®1)(0,0) = 1, and (yy'y, “®;)(0,0) =
1

0 for other j.

11



(111) If (_61762) - <_%)‘k7 zl;/\l) (k # i)?
1
(yi'y, 2G)(0,0) = | O |, d.e, (y7'ys ?P2)(0,0) = 1, and (y1'y; *P;)(0,0) =
—1
0 for other j.

(3) We have the following recurrence relations for the coefficients:
(1) (nl — € + leAi)CO;nl,ng + 261;n1—1,n2 = Oa
(i) (n1 —ne—eg —ex — iAi)CLm,nQ + 2C0n1—1,n0 T 2C2m1 mo—1 = 0;

(111) (n2 + €9 — i)‘i)c2;n1,n2 — 2cl;n1,n271 =0.

5.5 Power series solutions at the origin

Now we can show the following formulae for the power series solutions.
Theorem (5.5) Assume that $(A, — X)) € Z. Then we have the following.

(I) When o = o1 we have the following siz independent solutions.

_A Ao

LI 10 410 2
HOp', @y @y ) =y * !

O e (regy)™ (o)™
it O3 Do G525 Dy s (552 4 3),, (555 4 1),
_ Z (22552 + $)matma+t . (meryy) ™+ (meays)*
m1,ma>0 (% + %)mﬁ-l(% + %)mz mﬂ”@(% + %)ml+l(Ang3 + D,
- Z (22552 + $)mama+t , (meyr)® ™ (meays)* et
m1,ma>0 (% + %)ml-&-l(% + %)m2+1 mﬂmz!(% + %>m1+1(% + D,
A2 A

t/xLIIT =1,I1T =1JIIT\  —<% =
((I)o O, Dy )—311 Ya

Z (% + 1)y 4mo . (meryr )2 (megys) ™
ma,ma>0 (% + 1)m1(% + 1)m2 Wll!WL?!(>\lg)\2 + %)mﬁrl(% + %)mz
_ Z (% + 1)y 4mo ' (meryn)? ™ (meays)®™?
e T D (5 1 T, o D (o5 5 B |
B Z (% + D)y s ' (meryn)? ™ (weayn) ™2t
(% + 1)M1(% + Dy ml!mZ!(% + %)ml(/\ggh + %)mzﬂ

m1,m2>0

— Z (M52 + Pmutma+t _ (meryr)® ™t (megyz)® et
mi,ma>0 (% + %)mﬁ-l(% + %)mz—i—l ml!m?l()\sg)q + 1>m1(>‘1g)\3 + %)mQ—H
Z (Alé—” + %)m1+m2+1 . (me1yn)™ (weays) ™
ity (5224 Dy (2 - D gl (352 4 1), (5% + Do
Z (522 + 3 )my 4o , (meryr)®™ (meays)* ™
it O Do B2 Dy malmal (52 11),, (524 5,
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1,11 1,1V
[

7 9

and other three solutions ®
and A3 in the expression for @3

and @;’w are given by exchanging the role of Ao
T oM and 1Y, respectively.

(II) When o = o4, exchange Ay and Ay in the part (1).
(III) When o = o3, exchange Ay and A3 in the part (I).

5.6 Integral representations of the secondary Whittaker func-
tions

In this subsection, we rewrite the power series solutions of the previous subsection by
integral expressions.

Theorem (5.6) (I) When o = o, we have

N[

A3, 1 _ A3
t@(l)’[: (I)}J»CI’%’I) = (meyn) 83+2(7TC2?J2) St

(2my/=T) D (222 DR 4 D222 4 1) (mey) ¥ (mep) ™ F
/ I)‘2g>‘1_1(27rclyl\/m)I/\QgAl_l(Qﬂ'CzyQ\/l—{——u)u_136>‘3+111d—uu
ul=1 2 2
(=1) /u—l I%%(%TCL%m)]%fé@wcwﬂ/ﬂ——u) u—%’\S—i(l +u)§d§
(1) /|u|—1 Do 1 (2mery: \/m)m%‘m%@mmm) u—;%Aa—i%“
for Re(%) >3,
(@ @ By = (rean) ¥ (reap) ¥
V=) TP 4 PR 4 HT(E + 1) (mer) ¥ (men) 7
(rern) [ Dcos (e T 1) s ey Ty -4

(—1)/ [W01y1\/1 + 1/ ulry (2meryin/ 1+ 1/u) + (% + %)
Ju|=1 8

u

d
Dag—x, (2me1yi/ 1+ 1/u) [ng—ny (2mcoya V1 + 1) yterets &
8 8

(~D)(reas) [

Jul=1

for Re(22522) > 1,

A3 1 A31
WOV, @Y, @) = (meryn) 32 (meays) 5 2

) A1

(2my/mT) T2 4 TR 4 D52 4 1) (mey) ¥ (mey)

d
(—1)/ Inio 1 21y 1+ 1/u) a2 1 (27C2y2 V1 + 1) uisrert 28
|’u,|=1 8 2 8 2 u
d
/ Dnse 1 (2meryi v/ 1+ 1/u)Inx, 1 (27C2y2V 1 + ) w1 4 U)%_u
\u\:l 8 2 8 2 u
d
Iy 1 reyi/ 1+ 1 u)la—x 1 (27coyaV1 + ) u_l%’\i‘_%—u
|u|:1 8 2 8 2 u
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for Re(21522) > 2,

To have the integral expression for (IDZLH, P

of \a and A3 in the expression for @3’1, CD;’

1,1V LVI
0 and ;7 7, we have to exchange the role
I o0 elV tivel

and ®;7", respectively.

(IT) When o = 04, exchange Ay and Ay in (I).
(III) When o = o3, exchange A and A3 in (I).

6 Evaluation of Jacquet integrals

We give explicit descriptions of Jacquet integrals for non-spherical principal series
Whittaker functions here. These are similar to the class one case ([12]).

6.1 Jacquet integrals

Let us denote by g = n(g)a(g)k(g) the Iwasawa decomposition of g € G. We define
Jacquet integral J;; for o, € M (1 <14,5 <3) as

Ji(g) = /N b(n)a(sg "ng)sy (k(sg 'ng))dn

for 1 < 7 < 3. Here
-1
Sp — -1
-1

the longest element in the Weyl group of SL(3,R) and s;;(k) is the element of the
tautological representation of K (cf. [4, (7.1)]).
Since

vo = V—1(si2 — V—1s;3), v1 = si1, v2 = V—1(si2 + V—1s;3)

(§3.2.2) and
Py = G, 20, = Gy + Gy, 20, = Gy — Gy,

(85.2) the vector of integrals *(J;1, v —1J;9, Ji3) has the same K-type as (®g, ®1, Ps).

For an element a € A, we use the coordinates (y1,y2) = (a1/as,aia3). In the Iwasawa
decomposition of the element s, 'na its A-part a(s;'na) is given by

o= (32 5)

Ay =yiys +yind + (ning —ng)?, Ag = yiys + yini + n;.

with

Under the symbol above

2v1—1v2)/3 v1+12)/3
Jii(y) = y§ 1-v2)/ “yé 1+v2) /341

i Agyrl'l71)/2A§7”271)/2kij exp(—27n/ —1(eing + cgng)) dnydnydns.
R

Here (kij)lgi,j§3 = ]{/’(861”@).
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6.2 Integral representations of Jacquet integrals

To write down our results, we use the following notation.
Notation.

A2

K(a, 8,7,6:y) == 43 (x]er ) ¥ (wlea]) ™ (o) (wlea ) ¥ (xcalyn) ™%

> dv
/ Kagn  @27fer|yiy/ 1+ 1/0)Kagony (27 [calyav1 + 0) v_ﬁ)‘ﬁ”(l +0)° —
0 8 8

v

with K, (z) the K-Bessel function.

6.2.1 The case of the class one principal series

In the case of class one, the Jacquet integral Jy(y) is
Theorem (6.2) ([12]) For Re(Ay — A1) > 0, Re(A3 — A2) >0

1
PO+ D555 + )T (5% 4 9)

6.2.2 The case of the non-spherical principal series

Theorem (6.3) For Re(Ay — A1) > 0, Re(A3 — A\2) > 0, the Jacquet integrals J;; can
be written as follows.

J 1 1 1 16K (-3 -1 1 ¢
iﬁ%_mmmmwmmmww2,_ﬁ;@igjm
- Ao—A1 A3—A2 1 A3—A\1 27 27 472
J13(y) F< 8 + 1)F< 8 + 2)F( 8 +1) _K(%’%a_ivo;y)
JQl(y) 1 - —151[((0»0,—%,(),,@)
J22(y) = Ao— )\ Az —\ A3—\ 1\ _K(Oa()a%?_ 73/> )
Ja(y)) TS HUDESE A DRGSR 42) \ T,k (0,0,4,0:y)
J 1 1 1 1 -K(3,3,%,0;
N D e ey el (o B0, N
(; 1 A3—A2 A3—AL 1 1 1 i
F Ao—A1 + I)F(A Ao +1)F(A3 A1 +1) K B i’_27__4’ 2
J33(y) 8 2 8 8 €1€2 ( 20 2 4707y)

Heree; (i=1,2) means 1 if ¢; >0 and —1 if ¢; < 0.

7 Integral expression of Mellin-Barnes type

As in [9], we consider the Mellin-Barnes integral expression for Ji;(y) to find linear
relations between Jacquet integrals J;; and power series solutions ®;*. We discuss only
the non-spherical case.

Lemma (7.1) For p,q € C,

5 dv
(mlex]yn)? (mlealya)? / Ko(2n|cr|yiv/1 + 1/0)Kp(27|calya VT + 0) 07 (1 + v)° —
p1+v—1oco P2+FOO

Sla32)(77|Cl|y1)_81(7T|C2|y2)_52d81d82,
27Tv p1—v/To0 J py—y/=Too
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with

Vo(sr, ) = DCEEET (g D (22 D (g P (gD ()
olS1,52) = s1+s2
[(atsztrta )

Here the lines of integration are taken as to the right of all poles of the integrand.

Proposition (7.2) Let

M(a17a2aa3;bl7b2,bg,c y
p1+v/—1oo pp2+y/—1oo
B (277\/— 2 I =" 31752)(7T|Cl|yl)_51(7T|02|y2)_82d81d52,
P1— 00 J p2— o]
with
F(31+a17)\1)F(sﬁrazf)\z)F(s1+a3*)\3)r(s1+b21+)\1)P(S1+b22+)\2)r(51+b3+)\3)

2 2 2 2
F( 51+;2+c)

V(Sl, 82) =

Here the lines of integration are taken as to the right of all poles of the integrand. Then

J 3 A €16oM(0,1,1;1,0,0;1;
Jllgyg = mi(rle) € (rlea) 19 = (M 1,0,051,0 og>
12\Y _4F(A2—A1+1)F(A3 A2+_)F(A3 /\1_{_1)' €9 (7 y Uy Ly Uy Uy 7y>
J13(y) 8 g T2 8 —M(1,0,0;0,1,1;1;y)
J. 3 23 _ —1eM(1,0,1;0,1,0;1;
N rhla)® ) o Mo
22\Y _41—‘(>‘2_)‘1—|—1)F(>‘3 )‘2+1)F(>‘3 )‘1+l). » L, U0, LLUSUSY
Jo3(y) 8 8 8 2 V—1e3M(0,1,0;1,0,1;1;y)
J31(y) g 2 - —~M(1,1,0;0,0,1;1;y)
3 (wen) ¥ (xleal) T e SRR
Jaa(y) | = P VIS EY T2 ) ISy | v—1e1M(0,0,1;0,0,1;0;y)
Ju(y)) AT HITETEHDIET A1 20 (0,0,151,1,0515y)
Proof. 1t is obvious from Lemma (7.1). O

Remark. In view of this proposition, we can see the following symmetry for .J;; with
respect to the parameter (A1, Ay, A3). This is natural but is not immediately seen from
the formulae for .J;; (Theorem 6.3). We denote

; _ w3 (rler ) ¥ (eleal) = 41 T | |
K, A ds) = (F(Mg/\l +p)T (2522 + ;)T (R52 + Tz)) Valy), Jaly), Js(y)

with (p;, ¢, ) = (1,5,1) i =1), (1,1,2) (1 =2), (3,1,1) (: = 3). Then

[ D) PREE

j2()\17)\27)\3> = (—\/ —1)€2j1()\2; A1, )\3); j3(/\17)\27/\3) = —€1€2j1(>\37 A2, >\1)-

8 Relation between Jacquet integrals and power se-
ries solutions.

We omit the case of the class one principal series here, which is discussed by other
people. In the same way of [9] for class one case, we move the lines of Mellin-Barnes
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integral expression in Proposition (7.2) to the left and sum up the residues at the poles.
Then we obtain the following.

Theorem (8.2)
w3 (mled]) # (rleal) ™ Fyrge

(>\2 A1 +1)F<>\38)\2+§>F(A3 )\1_'_1>
[ereamled) ¥ (rlea) ¥ (222 4+ 2t 4 hr(ase ><<I>éf,<bif,q>“>
tera(mler])F (mleal) ¥ DA + D252 1 (s

—es(mler])” % (mleal) FT(2252 4 DDA 4 (R

A
—52(7T|C1|)_73(7T|02|)TF(%8A1+_)P(M+ L)p(Aazhe

.
)
2 M
(i) el PO + (S 4 P (@}, ok, Y
dagh - (e (ot o}V @)

"(J1(y), Ji2(y), J1s(y)) =

t(q)l II] IIII7CD;,III)

t( IIV CI)IIV (I)IIV)

>

~

(
(=2

A A _
—(mler) ™ (wlea) T T (222 + )T

%(ﬂcl\) (W\Czl)”ylm

4F<A2 = +1) (532 + DO(R5A + )

Jer(mler)™F (rlea) T2 4 DP(Rgda 4 HP(dagh) (o2, 02! 937)
)t(q)QII (I)2II (I)2II)
(q)QIII CI)2[II (1)2111)
(P
)
)

t(J21(?J)7 Jo2(y), Jos(y)) =

)
tei(wlea)~ % (7T|C2|)4F(A2gk3+ r (AQ N
—(mler]) " (mlea]) BT (A2 4 1yD(R2ha 4 Lyp(Ais )
~(rler])™# (wleal) ¥ (222 4 DDA 4 (g e
—es(mler]) T (wles ) FT(252 4 1YD(2ede 4 Pz

( ) 3)
—ea(mlen ) (nleal) F D (522 4 Hr(Rg2 + )F(*?’ =

>
o~

2[V CI)2 A% @2 IV)

3

t((I)2V @2\/ @2 V)
t( 2VI 2VI ¢2,V1)
)y £ 2 )

A
—73 (o)) ¥ (wleal) =T g
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Fractional Weights and non-congruence subgroups

Richard Hill
March 23, 2003

Abstract

This note reviews the connection between the existence of fractional weight au-
tomorphic forms on real Lie groups, and the existence of non-congruence subgroups.
It is intended to explain the simple results which are rarely even stated, and to avoid
the complicated question of precisely where and why the congruence subgroup prop-
erty fails. As a consequence, a new method is presented, for obtaining congruences
between Eisenstein series and cusp forms in half-integral weight.

Let G be a (real) connected Lie group with a connected cyclic cover
1 -y, — G—G—1.

Here p1,, denotes the group of n-th roots of unity in C. Suppose we have an arithmetic
subgroup I' C G. We shall discuss the following questions:

does T lift to a subgroup of G?
does I" have a subgroup of finite index which lifts to G?

Example. Suppose the group G is SLy(R). The fundamental group of G is Z, and so
for every n € N there is a unique connected n-fold cover. For simplicity we shall assume
that the arithmetic subgroup I' is torsion-free.

A. If T has cusps then I' is a free group. Therefore I' lifts to every cover of G.

B. If I is cocompact then Peterson showed (see [7]) that I' lifts to the n-fold cover if
and only if n is a factor of the Euler characteristic x(I'). In particular for every n
there is a I which lifts.

Very roughly speaking, Peterson’s theorem is proved as follows. One finds a generator
o € H?*(G,Z) corresponding to the universal cover of G. A subgroup I lifts to the n-fold
cover if and only if the image of o in H*(T',Z) = Z is a multiple of n. The image of o
in H?(G,R) is represented by an invariant 2-form on the upper half-plane. This 2-form
turns out to be the Euler form. To find the image of o in H*(T',Z) = Z one integrates
the 2-form over a fundamental domain for I'. Hence by the Gauss-Bonnet theorem the
image of o in H*(T',Z) is x(T'). This implies the result.



1 Fractional weight multiplier systems

Let C! denote the groups of complex numbers with absolute value 1. Suppose w : GxG —
Iy is & 2-cocycle representing the group extension G. By a weight w multiplier system on
I', we shall mean a function y : I' — C! such that

X(1172) = w(yn, 2)x (71)x (72)-

In other words the image of w in Z*(T,CY) is the coboundary dy. If an arithmetic
subgroup I' lifts to G then such a y exists on I'. We shall now prove a converse to this:

Proposition 1 If there is a weight w multiplier system on an arithmetic subgroup I' C G
then there is an arithmetic subgroup I'y C I' which lifts to G.

Proof. Suppose first that rkg(G) > 2. In this case it is known (see [I1]) that the
commutator subgroup I has finite index in I'. From the exact sequence

l—=pu, -C* 5 CH—1
we obtain a long exact sequence containing:
HY(T,CY) — HA(T, ) — H(T, C).

The image of w in H*(T',C!) is trivial, so w is the image of an element ¢ € H'(T,C").
However ¢ : I' — C! is just a character. Let T’y = ker(p). It follows that the restriction
of w to I'y is trivial, so 'y lifts to G. Since Iy D I, it follows that I'y is an arithmetic
subgroup of G.

The above argument fails when rkgG = 1 since ['/T” is often infinite in this case.
However since I is finitely generated, I'/T"” is a finitely generated abelian group, and so is
of the form F' @ Z", where F is a finite abelian group. We extend our sequence one step
to the left to give:

HY(T,CYH 22 HY(I,CY) — H* (T, un) — H*(I',CY).
This gives:

0— HYT',CY/n — H*(T, u,) — H*(T,Ch).
Note that we have

HY(T,C")/n =Hom(F ® Z",C")/n = Hom(F,C")/n.

This implies

0 — Hom(F,C")/n — H*(T, u,) — H*(T,C").
We may therefore choose ¢ : F @ Z" — C! to be trivial on Z". Hence ker(y) again has
finite index in I' and the result follows as before. a

2 A trivial case

Suppose for a moment that the covering group G is a linear group. In this case there
is always some arithmetic subgroup I'y of G which lifts to G. To see this, choose any
arithmetic subgroup I' of G and let I' be the preimage of T' in G. Each element of the
kernel p, is in [. For each of these elements apart from the identity, we can choose a
congruence subgroup of I' not containing that element. Hence the intersection I'y of all
these congruence subgroups is a congruence subgroup with trivial intersection with pu,.
Thus Ty is a lift to G of a congruence subgroup of T'.
2



3 A reformulation

In view of the above remark, it makes sense to assume that the group G is an (alge-
braically) simply connected linear group and that the covering group G is non-linear. We
shall make this restriction from now on.

In order to fix notation, we shall recall the definition of an arithmetic subgroup of the
Lie group G. Suppose k is a totally real field with real places v, ..., v, and let §/k be an
algebraic group such that

(i) G(ky,) is isomorphic to G, and
(i1) G(k,,) is compact for : =2, ..., 7.

We shall write G(9) for the projection of () onto G. By an arithmetic subgroup of G
we mean a subgroup of G commensurable with some G(9). As usual we let ko, = k®gR.

Proposition 2 Let G/R and G/k be as above.
(i) Every topological cover G(koo) of S(keo) is of the form
G ®G(k,) ® ... ® G(ky,),
for some unique cover G — G.

(i) An arithmetic subgroup T lifts from G(ks) to G(kso) if and only if its projection in
G lifts to G.

Proof. Part (ii) is immediate from (i). To prove (i), we must show that for ¢ > 1, the
compact group G(k,,) is (topologically) simply connected. Note that G(k,,) is a compact
real form of G(C) = G(C), and is hence a maximal compact subgroup of G(C). By the
Iwasawa decomposition of G(C), we know that G(C) is homotopic to G(k,,). However as
G/R is (algebraically) simply connected, we know that G(C) is simply connected. O

4 Metaplectic covers

Let G be a linear algebraic group over an algebraic number field k. We shall write A for
the adele ring of k. Let A be a finite Abelian group. By a metaplectic extension of G by
A, we shall mean a topological central extension:

1 - A — GA) — A — 1
\ T )
§(k)
which splits on the subgroup G(k) of k-rational points of §. Suppose we have such
an extension and let G(ks) be the pre-image of G(ku) in G(A). We therefore have an
extension of Lie groups: .
1— A— G(ks) — G(kso) — 1.

We shall show that this extension splits on a congruence subgroup of G(kw).
3



To see this we let Ay denote the ring of finite adeles of k. As the map pr: G(A;) —
G(Ay) is a topological covering, there is a neighbourhood U; of the identity in G(Ay) such
that pr~!(U;) is a disjoint union of homeomorphic copies of U;. We may therefore choose
a continuous section 7 : U; — Ul, where [71 is the copy of U; which contains the identity
clement of G(As). Now define for a, f € Uy, o(a, ) = 7(a)7(8)7(aB8)~!. Clearly o is
continuous on U; x Uy and has values in A. Furthermore o(1,1) is the identity element
of A. Hence there is a neighbourhood U of the identity in G(Ay) such that o is trivial
on Uy x Uy. Now choose Us C U, to be a compact open subgroup of G(Af). On U; the
section 7 satisfies 7(aff) = 7(a)7() and so the extension splits on Us. Restricting the
metaplectic extension we obtain:

1 - A — Gke)or(Us) — Glku)®Us — 1.

(Remark: it is widely believed that the local factors of metaplectic groups always com-
mute. This belief is false; some counterexamples are described in [§].) As Us commutes
with G(ks), it follows that the action of 7(Us) by conjugation on G(k) is trivial in a
neighbourhood of the identity of §(k). Therefore 7(Us) acts by permuting the connected
components of g(koo) It follows that there is a subgroup Uy of finite index in Us, such

that 7(Us) commutes with G(ko). We therefore have
1 - A > §lho)er(U) — Glke)®Us — 1.

Now consider the congruence subgroup:
I =S(k)N (9(/%) ® U4).
As the metaplectic extension splits on G(k), we have by restriction:

1 - A — Glko)@r(U) — Gko)®Us — 1

AN T
r

Factoring out by Uy and 7(Uy) in the above diagram, we obtain as required:

1 - A — Gks) — Glks) — 1

Nod
r

5 The congruence subgroup property

Let G/k be an absolutely simple and (algebraically) simply connected algebraic group over
an algebraic number field k. We shall abbreviate ko, = k ®g R. Assume also that §(k)
is not topologically simply connected. The group G will be said to satisfy the congruence
subgroup property if every arithmetic subgroup of §(k) is a congruence subgroup.
The question of whether congruence subgroups exist or not has been reformulated by
Serre as follows. By the strong approximation theorem, we have
G(Ay) = lim G(k)/T.

«—(Tcongruence)

4



Now define

~

9<Af) N <—(Fa}g£lmetic) G(k)/r

There is a surjective map g(Af) — G(Ay). The kernel C(9) of this map is called the
congruence kernel. The congruence kernel is trivial if and only if all arithmetic subgroups
are congruence subgroups. Serre has conjectured ([15]), that C(§) is a finite subgroup of
the centre of G(A;) if and only if rkg(G(ks)) > 2. Serre’s conjecture in known for most
groups of real rank > 2. In particular the conjecture is known for all isotropic groups
apart from groups of type ?Eg ;.

If Serre’s conjecture holds for G of real rank > 2, then our assumption that G(k.) is
not simply connected implies that

C(9) = Hom(§(k)'/S(k)', C),

where G(k)" is the commutator subgroup of G(k) and G(k)’ is its closure with respect
to the subspace topology on §(k) induced from G(Ay). In particular, if §(k) is perfect
then C(9) is trivial. Furthermore the triviality of C'(G) would follow from a conjecture of
Platonov and Margulis (see [I4]). This Conjecture is known in most cases. More precisely
we have:

Theorem 1 (Congruence Subgroup Property) Suppose G/k is absolutely simple and
(algebraically) simply connected, but G(ks) is not topologically simply connected. Sup-
pose also that ", tk,§ > 2. If either G/k is isotropic but not of type *Eg1, or §/k is
anisotropic but not of type, Eg or >5Dy, and not an outer form of type 2 A,, then G satisfies
the congruence subgroup property

v]oo

The results and conjectures referred to above are more fully described in the useful
survey [14].

6 A partial converse
We shall now prove a partial converse of the result of §4.

Theorem 2 Let let G/k be absolutely simple and simply connected. Suppose there is a
topological central extension

1 — A= G(kso) — G(koo) — 1,

which splits on some arithmetic subgroup I'y. If G satisfies the congruence subgroup prop-
erty then this extension is the restriction to G(ks) of a metaplectic extension of G.

Remark 1 In fact with some extra work one could replace the condition that all arith-
metic subgroups are congruence subgroups by the weaker condition that the congruence
kernel is finite. However, since G(ks) is not topologically simply connected, it is conjec-
tured that C(G) is either infinite or trivial.

Remark 2 The theorem is essentially due to Deligne ([4]). Deligne makes the assumption
that G(k) is perfect, which is slightly stronger than the congruence subgroup property here.
Howewver the assumptions are at least conjecturally equivalent.

5



Proof. By the strong approximation theorem, §(k) is a dense subgroup of G(Af). We
may therefore identify

S(As) = lim (k)T

where the limit is taken over the congruence subgroups, or equivalently over the arithmetic
subgroups. We also define

§(As) = lim §(k)/7(D).

where g(k) is the preimage of G(k) in g(k:oo); I' ranges over congruence subgroups of I'y
and 7 : I'g — G(kw) is the splitting of the extension on I'g. For the moment we shall
assume that G(A(S)) is a group.

The canonical projections §(k)/7(I') — G(k)/T induce a projection G(A(S)) — G(A(S)).

As G(A(S)) is a completion of G(k) it follows that we have a commutative diagramme:

1 —- A

— Glks) — SGlk) — 1
] T 1

1 - A — Sk — Gk — 1
T |

Finally we define
5(8) = (S(kee) @ §(a)) /A1,

where A = {(a,a) :a € A}. As (A® A)/A = A, we have a central extension:
1— A—G(A) — G(A) — 1.

The restriction of this extension to (k) is our original extension. It remains show that
this extension is metaplectic.

Choose any section s : G(k) — G(k) and define ¢ : G(k) — (g(k) @é(k)) /A by
t(a) = (s(a), s(a))A. As the extensions are central we have s(a)s(3)s(a3)™! € A. Hence

t(a)t(B)t(aB)~! € A, so t is a homomorphism. This proves the theorem apart from the
assertion that G(A(S)) is actually a group. O

Remark 3 As the above theorem fails for the group SLy/Q, and we have not yet used the

congruence subgroup property, we may deduce that in this case the completion SLy(Ay) is
not a group.

6.1 A remark on profinite limits

Suppose G is an abstract group and we have a directed system F of subgroups I' C G.
We shall call F normal if for every g € G and every I' € F the subgroup ¢~ 'I'g contains
an element of F. If F is a normal filtration then the profinite limit

G = lim G/T.

“Treg

is a group (with the group operation continuous and compatible with the canonical map
G—G).
6



To complete the proof of the above theorem we must show that the system of subgroups
F ={r(T") : ' is a congruence subgroup of I'p}

is normal in G(k). Choose any § € G(k) and any congruence subgroup I' C T'y. Let g be
the projection of g in §(k). We define a section 79 : ['Y — g(k’) by 79(g vg) = g 7 (7)g.
Clearly the image of 79 is (7(T))9.

The intersection I' NI is a congruence subgroup. Furthermore on I' N I'Y we have two
splittings 7 and 79. As our extension is central we easily verify that

(y) = e()7(y), yelNTY,

where p : I'NTY — A is a homomorphism. Finally let '} = kery. As A is finite, I'y
is an arithmetic subgroup of I'g. Hence, by the congruence subgroup property, I'; is a
congruence subgroup. The sections 7 and 79 coincide on I';. Therefore 7(I';) C 79(I9)

7(T)9.

o

6.2 The classification of metaplectic extensions.

The above theorem is useful because the mataplectic extensions of absolutely simple, sim-
ply connected groups have been classified. For such a group G one defined the metaplectic
kernel M(SG) to be the kernel of the restriction

H*(G(A),CY) — H?(S(k),Ch).

This group is conjectured to be isomorphic to the Pontryagin dual of the group of roots
on unity in the base field k. This conjecture is proved in almost all cases (see [13]). Thus
if §(k) is not topologically simply connected then (in almost all cases) the metaplectic
kernel has order 2. As a consequence we obtain the following.

Theorem 3 Let G/R be absolutely simple and simply connected and let G — G bea
connected n-fold cyclic cover. Let T be a congruence subgroup of G such that every sub-
group of finite index in I' is a congruence subgroup. Furthermore, in the case that G is a
special unitary group, assume that the construction of I' does not involve is a non-abelian
division algebra. If T lifts to G then n < 2.

Proof. The special unitary case we have excluded is the only case in which the meta-
plectic kernel is not known. Let o € H?*(G,u,) correspond to the extension. As the
extension is part of a metaplectic extension, we know that the image of o in H?*(G,C?)
has order at most 2. However we have an exact sequence

HY(G,C"Y — H*(G, u,) — H*(G,CY.

As G is perfect, it follows that o has order at most 2 in H?*(G, p,,). a

7 Examples

The descriptions of fundamental groups of Sp,,,, SU and SO given below are taken from
[16]. The results for Spin(p, ¢) may be found in [6].
7



7.1 Symplectic groups

The symplectic group Sp,,.(R) of rank r is absolutely simple and algebraically simply
connected. However it’s topological fundamental group is Z. Hence Sp,,(R) has an n-fold
cover for every n € N. If r = 1 then Sp,,(R) = SLy(R) and it follows from Peterson’s
result that all fractional weights occur. However if r > 2, then we only have forms of
half-integral weight. This was pointed out in [4].

7.2 Spin groups

Let p > g > 1. The spin group Spin(p, ¢) has rank ¢. The group Spin(2,2) is isomorphic
to SLa(R) & SLy(R), so is not absolutely simple.

If p > q > 3 then the topological fundamental group of Spin(p, q) is 2, so we have
only a double cover of Spin(p, q).

For p > 3 the group Spin(p, 2) is absolutely simple and simply connected. The funda-
mental group is Z, so this group has an n-fold cover for every n. The congruence subgroup
property holds in this case. Hence we have only half-integral weight forms on Spin(p, 2).

7.3 Orthogonal groups

Let p > ¢ > 1. The special orthogonal group SO(p, ¢) has rank ¢q. The group has two
connected components. Let O"(p, ¢) denote the connected component of the identity. For
p > 3 the fundamental group of O (p,2)° is Z/2 © Z.

The group Spin(p,2) is the double cover of OT(p,2)° corresponding to the infinite
cyclic subgroup of Z & Z/2 generated by (1,1). Thus the unique double cover S}Sﬂl(p, 2)
of Spin(p,2) is the cover of O™ (p,2) corresponding to the subgroup generated by (2,0).
This shows that Spin(p,2) is a Z/2 & Z/2-cover of O (p,2) (rather than a Z/4-cover).

If we had a form of fractional weight on O™ (p, 2), then we could pull the form back to
a fractional weight on Spin(p,2). However this form would be a function on S/Ei/n(p, 2).
Hence the original form would have to be of half-integral weight.

7.4 Congruences between modular forms

We shall end by pointing out a consequence of the above result using Borcherds products.
Recall that a nearly holomorphic modular form for SLy(Z) is a holomorphic function f(q)
on the upper half-plane, which has the usual transformation behaviour, but which may
have a pole at co. In other words the Fourier expansion is allowed a finite number of

negative terms:
n>=>—oo

Let f be a nearly holomorphic form of weight 1 — [/2, normalized so that b, € Z for all
n < 0. Corresponding to such an f there is an automorphic form ¥ on SO(2,[)° given
by a Borcherds product (see [2],[3]). The weight of W is by/2. As we know that there are
only half-integral weight forms on SO(2,1)° (I > 3), we deduce the following:

Corollary 1 Let f(q) = > bag™ be a nearly holomorphic form on SLy(Z) negative weight.
If b, € Z forn < 0 then by € Z.



For a nearly holomorphic form f, we shall call the negative part of its Fourier expansion
the principal part. The following result is proved in [3].

Theorem 4 Let b_y,...,b_, € C. There is a nearly holomorphic form of (integral)
weight 2 — k and principal part b_iq~' 4+ ... + b_,q~" if and only if for every weight k
cusp form f(q) = >_ a;q*, we have

i aib,i =0.
=1

If such a nearly holomorphic form exists then its constant term is given by

n

by = Z ciby,

=1

where E(q) = 1+ Y oo, ¢iq" is the weight k FEisenstein series, normalized so as to have
constant term 1.

Using this characterization, we may reformulate our corollary as follows.

Corollary 2 Let E be the (integral) weight k level 1 Eisenstein series normalized so that
the coefficients are integers with no common factor. Then there is a cusp form f such
that the coefficients of f are congruent to those of E modulo the constant term of E.

The above result can be obtained by much more elementary methods; in fact it follows
immediately from the fact that F,; and Eg have constant term 1. One can however obtain
a similar result for the vector-valued, half-integral weight forms studied in [3] in the same
way. Such congruences have been proved for scalar valued forms of weight % and prime
level in [I0]. However as far a I know for general half-integral weight, this is a new result.
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Standard L-functions attached to
vector valued Siegel modular forms

Noritomo Kozima (Tokyo Institute of Techonology)

In this report, we study the analytic continuation of standard L-functions
attached to vector valued Siegel modular forms. In Section 1, we define
vector valued Siegel modular forms and standard L-functions. In Section 2,
we describe the results in special cases and tools to prove. In Section 3, we
describe one of the tools the differential operator generalized by Ibukiyama,
and construct the operator explicity in the cases. In Section 4, we consider
in general case.

81. Vector valued Siegel modular forms and standard L- functions
Let n be a positive integer. Let
H, ={Ze€Mn,C)|Z="Z Im(Z) >0}
be the Siegel upper half space of degree n, and
[, :=Sp(n,Z):={yeGL(2n,Z) | 'vJy=J}

0 1,
-1, 0
be an irreducible rational representation of GL(n,C) on a finite-dimensional
complex vector space V, such that the highest weight of pis (A1, X2,..., A\y) €
Z™ with Ay > Ay > ... > \,. Furthermore, we fix an inner product (-,-) on
V, such that

the Siegel modular group of degree n, where J := ) Let (p,V,)

(p(g)v,w) = (v, p(*g)w) for g € GL(n,C), v, w € V,.

A C*-function f: H,, — V, is called a V,-valued C*°-modular form of
type p if it satisfies

p(CZ + D) f(Z) = f(AZ + B)(CZ + D)™ ") for all ( é g ) eT,.

1



The space of all such functions is denoted by Mp°. The space of V,-valued
Siegel modular forms of type p is defined by

M, = {f € M;* | f is holomorphic on H,, (and its cusps)},
and the space of cuspforms by

Sp::{fEMp‘AILrglof(<§ g\)):() forallZEHn_l}.

Let H" be the Hecke algebra for (T',, GTSp(n,Q)) over C, where
G Sp(n, Q) = {g € GL(2n,Q) ’ tgJg = rJ with some r > 0} :
Then H" has the following structure

H'= & HI, HI~CXFL..., X"
p:prime

Here H} is the Hecke algebra for (', G*Sp(n, Q) N GL(2n, Z[1/p])) over C,
and W is the group generated by wi, ..., w, and permutations in Xy, ...,
X,,, where wy, ..., w, are automorphisms on C[X7"', ..., X*!] defined by

XoX; ifi=0,
w;i(X;) == X; if i # 7,
X1 if i = j.

Suppose f is an eigenform, i.e., a non-zero common eigenfunction of the
Hecke algebra ‘H™. For T' € ‘H", let A\(T") be the eigenvalue on f of 7. Then
for any prime number p, we determine (ag(p),...,a,(p)) € (C*)"™! such
that it gives the homomorphism

NHD = CIXE,.. XY 2 )
where X; — «;(p) means substituting «;(p) into X; (j = 0, ..., n). The
numbers ag(p), ..., a,(p) are called the Satake p-parameters of f. Then we

define the standard L- function attached to f by
. —1
L(s, f.8t) =[] {(1 —p ) [T = a;(p)p™)(1 - Oéj(p)‘lp‘s)} -
p:prime j=1

The right-hand side converges absolutely and locally uniformly for Re(s)
sufficiently large.



§2. Problem and results

Problem. (Langlands [6])

The standard L-function L(s, f,St) has meromorphic continuation to the
whole s-plane and satisfies a functional equation.

More precisely, we expect the following:

Conjecture. (Takayanagi [9])

We put
As, f,8t) := Tp(s) L(s, f,5t),
where N
Iy(s) :=Tr(s+¢e) [[Tels + X — )

j=1

with
Tr(s) := 72T (;) . Tols) = 2(2m)°T'(s),

and

40 if n even,
TV 1 ifnodd

Then A(s, f,St) satisfies the functional equation

A(s, f,5t) = A(L =5, f, 5).

We assume that k is a positive even integer and f is a cuspform.

For p = det® this conjecture was solved by Andrianov and Kalinin [1],
and Bocherer [2], and for p = det” ® sym! and p = det” @ alt”™! was solved
by Takayanagi [9], [10].

Result.
We proved the conjecture in the following two cases:
Case 1. p = det* @ alt’ (the highest weight (k+1,...,k+1,k,...,k)).
! —1
Case 2. the highest weight of p is (k+2,k+1,...,k+ 1, k,... k).
-2 n—l+1

To prove the above result, we use the non-holomorphic Eisenstein series
and the differential operator generalized by Ibukiyama [4].



First, for Z € H,, and a complex number s, we define the Eisenstein series
E¢(Z,s) by

El(Z,s) = det(Im(Z))* 3 det(CZ + D)™ |det(CZ + D)| >,
(C,D)

where (C,D) runs over a complete system of representatives of

{( 21, g ) el ‘ C= 0} \I',,. Then E}(Z,s) converges absolutely and lo-

cally uniformly for £+ 2Re(s) > n+ 1. Furthermore the following properties
are known:

(i) The Eisenstein series E}J'(Z,s) has meromorphic continuation to the
whole s-plane and satisfies a functional equation. (Langlands [7],
Kalinin [5] and Mizumoto [8])

(ii) Any partial derivative (in the entries of Z and Z) of the Eisenstein
series EJ'(Z, s) is slowly increasing (locally uniformly in s). (Mizumoto

[8])

Next, we introduce the differential operator D which sends the Eisenstein
series to the tensor product of two V,-valued Siegel modular forms. Using

Garrett decomposition [3], we compute (DE,%")( g V(I)/ ) ,s). Taking the
Z 0

o w )’
we obtain the integral representation of the standard L-function L(s, f,St),
ie.,

Petersson inner product of f and (DE?") (( s) in the variable W,

( f. (DE,%(( _OZ ! ) ,s)) — (T-factor) - L(2s + k —n, f,St) - (" (/))(2).

Using the properties (i) and (ii) of the Eisenstein series, we prove the con-
jecture.

In the above cases, we can construct the differential operator explicitly
and compute the integral representation of the standard L-function.
§3. Differential operator

In this section, we describe the differential operator generalized Ibuki-
yama and in the above cases we construct the operator explicitly.
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Let (o}, V) (j = 1, 2) be irreducible rational representations of G'L(n, C)
such that p} is equivalent to pj.

We assume k > n, and put p; 1= det” R0

If a polynomial P

P: M(n,2k;C) x M(n,2k;C) — V; ® V3
satisfies
(C1) P(a1 X1, a9Xs) = p'(a1) ® p'(ag) P(X1, Xs) for all ay, ay € GL(n,C),
(C2) P(X1g,Xa9) = P(X1,X,) forall g € O(2k)
(C3) P(X1,X>) is pluri-harmonic for each X, Xo,
then there exists a polynomial ()

Q:sym(2n,C) — V; ® V;

P(X, X5) ZQ(< é )t( % >)'

Here O(2k) is the orthogonal group of degree 2k, and sym(2n, C) the set of
all C-valued symmetric matrices of size 2n. And for j =1, 2, let X, = (a:l(fy))
be variables, then P is called pluri- harmonic for X; if

such that

2k 8 a

D

= 0x) 0]
We define the differential operator D by

D = Q(9),

P=0 forallp, .

where

1+0; O
0= ( J 5 ) , 2= (2ij)1<ij<on € Hap.
2 “ij ) 1<ij<on

Here ¢;; is the Kronecker’s delta. Then

Theorem. (Ibukiyama)

If f is a C*-modular form (resp. a Siegel modular form) of degree 2n
and type det®, then

(Df)(( A )) € MZ® M (resp. My, @ M,,)

5



In the above cases, we construct the differential operators explicitly.
First we write (o, V;) (j = 1, 2) explicity. We put

Wy:=Ce1®---®Ce,, Wy:=Cepi1®---& Ceyy.
Let [ be an even integer. Let T'(W;) be the I-th tensor product of W}, i.e.,

T'W,) =W; - @ W,
— —
l

and p the standard representation of GL(n,C) on T'(W;). Let ¢; be the
Young symmetrizer of (A},...,\,) on T'(W;) such that A} > ... > X, and
N4+ A =10 InCase 1, (N,...,\))=(1,...,1,0,...,0), and in Case 2,
IR
(N, A =(2,1,...,1,0,...,0). We put V; := ¢;(T"(W;)). Then (¢, V;)
-2 n—l+1

is an irreducible representation of GL(n, C).

On the other hand, let e§°‘) (t=1,...,2n,a =1, ..., 1) be indeterminants.
And for a symmetric matrix A of size 2n and positive integers «, # (1 <
a, [ < 1), we define

AP = (ega),...,ega),o,...,O)At(egﬁ),...,egf),O,...,O),
Af = (ega),...,eﬁf‘),O,...,O)At(O,...,0,62@1,...,(3%@),
Anp = (0,...,O,eﬁfﬁl,...,egi))At(O,...,O,e;@h...,eg’i)).

We consider a product

v— v Q2p+1 «
Amon | fomrow g o Ag o A A%

with {ay,...,oq} ={01,..., 0} ={1,...,1}. Then this product is

> (coefficient) eg) eWell) el

TTrE st St
1§'rj§n
n+1§sj <2n

Now we identify e(!) ... eg,ll)eg) o egll) with e, ®...®e, Ve, ®... Qe €
TH(W1) @ T'(Wy). Then this product belongs to TH(W;) @ T'(W5).

We call a linear combination of such products a “homogeneous polyno-
mial” of A. If Q: sym(2n,C) — V; ® V, is “homogeneous polynomial”, then

Q(( i((; >t< §; )) satisfies (C1), (C2). Therefore if Q(( §; >t< ﬁ; ))



is pluri- harmonic for each X;, X5, then we obtain the differential operator

' L X1 t X1 .
We put S := ( X, ) < X, ) Then in Case 1,

6102311 Ce Sll

is pluri-harmonic for each X;, X5, and in Case 2,

l
202k — (1=2))

0162(511 Ce Sll SlQSlQSg s Sll)

is pluri-harmonic for each X;, X,. Therefore we can compute (DE?")
( Z 0 )

o w )’
L-function L(s, f,St).

s). And we obtain the integral representation of the standard

84. Supplement

In general case, there exist three difficulties in proving the conjecture,
ie.,

(i) to construct the differential operator D explicitly,

(ii) to compute (DE?") (< g V(I)/ ) ,s),

(iii) to compute the Petersson inner product < [, (DE) (( _OZ 2 ) ,s)).

However, if we cannot construct the differential operator explicitly, the
following holds:

Proposition 1.

If Q(S) is a “homogeneous polynomial” of S := Xy 4 and
Xo Xo
pluri-harmonic for each X, X5, then there exists a “homogeneous polyno-

mial” P(X,s) of X such that

D67 &%) z2z, = (77 [6] &* - P(A — E, 5))| 2=z,



Here for > € Iy, and Z € Hy,, we put 6 := det(CZ + D), € :=

1
= (CZ+ D)"'C, and E := Z(Im(Z))_l. And we put

det(Im(Z2)), A :
Z 0
2y ( 20 )
For example, in Case 1, the “homogeneous polynomial” P(X, s) is

! -
P(X,s) = cieo H(—k—s—i—u)Xll...Xll,

j=1 2

and in Case 2,

-1 j -1
P(X,S) = C(C1C9 H(—]{? — s+ T)
=1

I | ! 1y2 !
x{( k—s 2—}—2(2]{:_(1_2)))X1X2‘..Xl

ls

k= 1—2)

X12X X3 .X;}.

Furthermore, using the “homogeneous polynomial” P(X,s), we obtain
the following;:

Proposition 2.

Under the assumption of Proposition 1, the Petersson inner product
(f, (DE,?”)(( _OZ 2 > ,s)) is equal to
(I'- factor) L(2s 4+ k —n, f,&)
(p(1 )1(v), P(R,5)) det(1, — S5)* "' dS, v)

Sn

( ( )(Z),

where v € V1,

S, :={SeMnC)|S="5 1,—S53 >0},

o L( s —2i1,
T i\ —2i1, 225(1, - S8)t )°

and v: V4 — Va is the isomorphism defined by t(e;) = e,4; for j =1, ..., n.



And if

1
T

/S (pa(L, = 5) u(v). P(R.5)) det(1L, — 55)"" ds, v)

is equal to

D T2s+k—n+ X —7)
tant
(constant) x 1] —50 =5 795

=1

then the conjecture holds.
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Spherical functions on certain spherical homogeneous
spaces over p-adic fields

Yumiko Hironaka*

§0 Introduction.

Throughout this paper, let k£ be a p-adic field. Let G be an algebraic group defined over
k, G = G(k), K a special good maximal bounded subgroup of G, X a G-homogeneous
affine algebraic variety defined over k, and X = X(k). We write the action of G on X
by (g,x) — g x x. Denote by C*°(K\X) the set of left K-invariant C-valued functions
on X. The Hecke algebra H(G, K) acts on C*°(K\X) from the left by the convolution
product, which we write (f, ¥) — fx W. A nonzero function ¥ € C*°(K\X) is called a
spherical function if it is an H(G, K)-common eigenfunction, which means, there exists
a C-algebra map A : H(G, K) — C satisfying

fxU =XV for feH(G K).

Spherical functions are very interesting objects to investigate. The explicit expressions
of spherical functions on p-adic groups have been given by I.G.Macdonald [Mac|. Later
on, W.Casselman has reformulated them by representation theoretical method ([Cas]),
for which there is an interpretative article written by P.Cartier([Car]). W. Casselman
and J.Shalika carried forward this method to obtain explicit expressions of Whittaker
functions associated to p-adic reductive group ([CasS]).

F.Sato and the author have investigated spherical functions on certain symmetric
spaces; the space of alternating forms ([HS1]) and the spaces of hermitian and symmetric
forms ([H1]-[H3]). In these cases, spherical functions can be regarded as generating
functions of local densities of representations of forms by forms of the same kind. Hence,
as an application, explicit formulas of local densities have been given( [HS1], [HS2], [H3],
[H4]).

In a similar method to [CasS], S. Kato has announced explicit expressions for spherical
functions on certain spherical homogeneous spaces obtained by general linear groups([K2]),
and S.Kato, A.Murase and T.Sugano have obtained explicit expressions for Whittaker-
Shintani functions (spherical functions ) of certain spherical homogeneous spaces ob-
tained by special orthogonal groups([KMS]). For the spaces which they investigated, the

* Department of Mathematics, School of Education, Waseda University, Tokyo 169-8050 Japan
e-mail address: hironaka@edu.waseda.ac.jp
A full version of this paper will be appear in elsewhere.



space of spherical functions attached to each Satake parameter, in other words, corre-
sponding to each eigenvalue, is of dimension 1.

On the other hand, in a similar method to [Cas], the author has given an expression
of spherical functions of certain spherical homogeneous spaces for which the dimension
of the space of spherical functions is not necessarily one ([H3, Proposition 1.9] ), and
applied it to the space of unramified hermitian forms and given the explicit expression of
spherical functions (the dimension is 2™ according to the size n of forms). This result has
also used by K.Takano and S.Kato to give an explicit expression of spherical functions
for the space GL(n, k")/GL(n, k), where k" is an unramified quadratic extension of k. In
this case the space of spherical functions has dimension one([Tak]).

In the following, we investigate spherical functions on the following space:
G = Spa x (5P1)27 X = Sps,
where (Sp;)? is imbedded into Sp, and the action is given by

gxx = gia'gy, forg= (91,92) € Spa % (Sp1)27 x € Spa,

(for the precise definition, see the beginning of Section 1). This X is a spherical homo-
geneous (G-space, which means X has a Zariski open orbit for a Borel subgroup B of G,
and X is not a G-symmetric space.

For this case, we will use the same result in [H3] in order to obtain a explicit formula of
spherical functions. The space of spherical functions attached to each Satake parameter
is of dimension 4. In [KMS], SO(n) x SO(n — 1)-space SO(n) is considered, which is
spherical and has an open Borel orbit over k for every n, and the case when n = 5
is isogeneous to the present case. But there seems to have no direct correspondence
between respective explicit formulas of spherical functions. Finally, Sps, X (Sp,)*-space
Spay is no longer spherical for n > 2.

We shall give a brief summary of our results. Taking a set {d;| 1 <1i <4} of ba-
sic relative B-invariants (cf. (1.5)) and characters y of k*/(k*)?, we construct typical
spherical functions (cf. (1.6))

4 4

w(zixis) = [ x(ITdilk = @) 1di(k x )

i=1 i=1

*dk, (re X, seCh,

where | | is the absolute value on k and dk is the Haar measure on K, and the integral
of the right hand side is absolutely convergent if Re(s;) > 0 (1 < i < 4) and analytically
continued to a rational function in ¢°!,...,¢**, where ¢ is the residual number of k. We
introduce a new variable z related to s by

21 =81+ S+ 83+ S84 +2, 29=2383+ 84+ 1,
23281+53+1, Z4:SQ+83+1,

and write w(z; x; 2) in stead of w(z; x; s).



These w(z; x; z) are H(G, K)-common eigenfunctions correspond to the same C-algebra
homomorphism A, : H(G, K) — C, which gives the Satake transform

A, H(G, K) = Cl¢*™, ¢, ¢**, ¢+ (Proposition 1.1),

where W is the Weyl group of G.

Under the assumption that &£ has odd residual characteristic, our main results are the
following.

[1] To give a complete se of representatives of K-orbits in X (Theorem 1).

2] For each x, to give a rational function F,(z) for whichF\(z) - w(x; x; z) belongs to
Clg=?,¢*%,¢*%, ¢= 7] and W-invariant (Theorem 2).

[3] To give an explicit formula for w(z; x; z) (Theorem 3).

[4] Employing spherical functions as kernel function, we give an H(G, K)-module iso-
morphism (spherical transform)

4 ) .. 2
S(K\X) =, <C[q:§:zl7q:l:zz’q:tzg7q:l:z4]w @ H(q% + q—7) . C[qi21’qi22’qi23’qiz4]w> ‘

=1

Especially, S(K\X) is a free H(G, K)-module of rank 4, and we give a free basis (The-
orem 4).

4
[5] Eigenvalues for spherical functions are parametrized by z € (C / %Z) /W. The

space of spherical functions on X corresponding to z € C* has dimension 4 and a basis
is given explicitly (Theorem 5).

Professor S. Bocherer has suggested to the author the significance of the investigation
of this space Sps from the view point of its relation to the global Gross-Prasad conjecture
for SO(5) (cf. [GR]). The explicit Hecke module structure of the Schwartz space of it
would be helpful for the question whether the vanishing of the period integral on spherical
vectors implies the vanishing of the period integral on the full modular representation
space. The author would like to express her gratitude to him for these useful discussion.

Notation: Throughout this paper, we denote by k a nonarchimedian local field of
characteristic 0. Denote by O the ring of integers in k, p the maximal ideal in O, 7 a
fixed prime element of k, ¢ the cardinality of O/p and | | the normalized absolute value
on k. For convenience of notation, we understand 0] = 0 for s € C with Re(s) > 0.
For an algebraic set Y defined over k, we use the corresponding letter Y for the set of
k-rational points Y(k).

As usual, we denote by C, R, Q, Z and N, respectively, the complex number field,
the real number field, the rational number field, and the set of natural numbers.



81 The spherical homogeneous space Sp-.

Set
Spn = {7 € GLoy | 'l = T}, Ju= < — Ln ) (1.1)

and let G = Spy x (Sp1)? and we embed (Sp;)? = (SLs)? into Spy by

(ta) (5a)—

Hereafter, we understand empty places in matrices mean 0-entries.
Take X = Sp,, and consider the action of G on X defined by

g*f - glxtg% g = (glaQQ) € G7 YRS X,

We set the Borel subgroup B = B; x By of G by

* %
0 =* *
B, = %« 0 C Spy, By = (12)
O * ok
Let us write an element b € B as
* % 1 T1 To 1 b3
. * 1 To T3 1 b4
b= ( b1 0 0 1 ’ U1 1 *
c by 1 Yo 1

where the entries at marked % are automatically determined. Then the left invariant
Haar measure on B(k) is given by

_ 1bs[ |bd]

db = -
|b1] 2]

|dby | |dbs| |de| |da:| |das| |das| [dbs| |dbs| |dy: | |dys| (1.3)

and the modulus character § ( d(bb) = 6 2(b/)db) is 6(b) = |by| " |ba] 2 |bs| ™2 |ba] 2.

Let W = W x W5 be the Weyl group of G with respect to the maximal torus consisting
of diagonal matrices in G, which is isomorphic to (Cor< (C2)?) x (C3)?, and we fix
generators {w; | 1 <i <4} of W by their action on the maximal torus

by, by, b, by)  ifi=1
by, byt bg, by)  if i =2
bl,bg,bgl,b4> le:3

(
w; - (blab27b37b4) — E
(b1, b, bs, byt if i =4,



A set of basic relative B-invariants and corresponding characters of B is given as

follows. Let x = < é lB) ) € X with 2 by 2 matrices A, B,C and D and we write
A A e
A= ( A; Ai ) € M, for simplicity. Set
dl(iU) = (1, fbl(b) = bibs
da(x) = Co, ¢a2(b) = b1by (1.5)
d3(z) = det C' = C1Cy — CoCs, ¢3(b) = b1bab3by '
dy(z) = (det C (C7'D))y = C1 D3 — C3Dy,  ¢a(b) = biby,

then {d;| 1 <i <4} forms a basis for relative B-invariants and X(B) =< ¢; | 1 <
1 < 4 > becomes the group of rational characters of B which corresponds to relative
B-invariants.

Let K = G(O) and H(G, K) be the Hecke algebra of G = G(k) with respect to K.
We consider the following integral. For z € X, s € C* and a character x of k* / (k*)2,

w(; s;x) :/KX(Hl di(k*x))_lill |di(k*x 2)|™ dF, (1.6)

where dk is the normalized Haar measure on K. The right hand of (1.6) is absolutely
convergent for Re(s;) > 0 (1 < i < 4) and analytically continued to rational functions in
q°',...,q*, which is a H(G, K)-common eigenfunction with respect to the convolution
product (cf. [H3, Remark 1.1, Proposition 1.1] ).

It is convenient to introduce a new variable z which is related to s as follows

21 =81 +8y+83+84+2 31:%(z1—22+23—z4—1)

Zg =83+ 584+ 1 52:%(21 29— 23+ 24— 1) )
23 =81 +s3+1 33:%( 21tz +2z3+ 24— 1) '
24 = So + 83+ 1, 34:%(zl+z2—z’3—z4—1)

and we write also
w(T;x; 8) = w(T;x; 2),

if there is no danger of confusion. It is easy to see

(be B,ge G,z € X),

4
H i(bgx x)|?

where

§(b) _ |b1|81+82+83+84+2 |b2|83+84+1 ’b3|81+53+1 |b4|82+83+1 _ ‘b1|Z1 |b2|ZQ |b3|z3 |b4|24



29, 21,23,24) fori=1
21, —22,23,24) fori=2
21, 22, —23,24) fori=3
21,22, %3, —Z4> for i = 4.

(1.8)

E
wz‘(21722723724) = (
(

The following statements can be calculated directly, though they are a special case of
Satake transform of algebraic groups [Si] and spherical functions on homogeneous spaces
[H3, Proposition 1.1].

Proposition 1.1 For every f € H(G, K), let
72 = [ F(9)764 (p(g)dg,

where dg is the Haar measure on G normalized by / dg =1 and g =p(9)k € G = BK.
- K

Then, by the map f+—— f(z), we have
HG K)=ZClg™ +q¢ " +q¢2+q 2, (¢ +qa)@2+q ™), *+q %, ¢ +q ™,

and for every f € H(G, K)

(frw(ix2)(e) = f(2)-wzx;z) (2 eX).

We recall the Bruhat decomposition of X = Spy

X = |_| BlwIBh, (19)

weWy

where W is the Weyl group of Spy and the symbol U means disjoint union. It is easy
to see that

1 s st t
. ‘ 1 t
B, = |_| Es,tBS, with Bg = "B,, Es,t = 1 )
s,t
—s 1

where s,¢ runs over the algebraic closure k of k, so we get for each w € W, that

BlwIBl = UIBleS,t]BS = UB *wEs,t . (110)

s,t s,t



Set
1

Wy = ( = WaW1WoW1 € W)

—1
—1

The following Proposition tells us that our space is spherical homogeneous.

Proposition 1.2 The set

4
Y = {Z‘EX I1di(z) #0}
i=1
s an open B-orbit over the algebraic closure of k
10
Y —Bx th  xy — L1 |l CwE . )
== ) w1 Ty — 1 1 1 1 = Woli-1,-1)-
o —-1]1 0
Further, the B-orbit decomposition of the set of k-rational points in Y is given by
Y(k) = L Y,
uek /(kx)?
where
! 0 |
Y, = {x cX Z:r[ldz(x) = u mod (k:X)Q} Swob g = |—7—7
0O -1 | u 0

Remark. By Proposition 1.2 and the injectivity of Poisson integral (cf. [K1]), we see
that w(z; x; 2) is not identically zero for generic z and linearly independent for characters
Xx. Indeed, we will see that the space of spherical functions has dimension 4 and we give
a basis by modifying w(x; x; z) for various x (cf. Theorem 5 in Section 5).

Before closing this section, we confirm the assumption (A2) of [H3]. Denote by H the
stabilizer G,, of zy in G and consider the action of B x H on G by

(b,h) x g =bgh™" (b;h) €B xH, g€ G,

then X = G/H as G-sets. Further, we see that BH = (B x H) * 1 is an open orbit in G
and G is decomposed into a finite number of B x H-orbits.

For g € G, denote by B, the image of the stabilizer (B x H), by the projection
B x H — B. Then we have

Lemma 1.3 For each g € G, g ¢ BH, there exists a rational character in X(B) which
is nontrivial on B,.



§2 Cartan decomposition

Hereafter we assume that k has odd residual characteristic. In this section we consider
“Cartan decomposition” of X, that is we give a complete set of representatives of K-
orbits in X.

To state the result, we introduce some notation: Let

1
A = {()\1,)\2,)\3,)\4)6Z4U(2+Z)4 AL >N >0, A3 >0, )\420},
A = {AeA| A >N>0, A3 >0, \; >0}, (2.1)
and for A € A and £ € O set

—AitAs

§7T/\2+)‘3 —qretAe

T(xe) = B R VI VD YEo e YRR
71_,/\2,)\4 7T*>\2+>\3

M —1 T
T2 ¢ -1 T
- TN 1 ¢ €1 T8
T2 1 1 M

Then our main result is the following.

Theorem 1 Let

AEA, £€0*/(O)?
& =1 unless A € A, ’

R= { (%6

then R makes a complete set of representatives of K-orbits in X.

In order to prove Theorem 1, we first construct another complete set of representatives.
We introduce some more notation. Set K; = Spy(O) and Ky = (Sp;(0))?(C K;), then
it suffices to consider the representatives of double cosets in the space K1\ X/K,. Set

7t —xlyTlz
1
Y

Toyzw =

7t —xlyTlz

and for a,b,c,d € Z and € € O, set
A(a’b) - T(ﬂ.avﬂ.bv&o), B(a,b,c) — T(Tra77-rb77-rc70),
C’(a,b,d) = T(ﬂ'“,ﬂb,Oer)a D(a,b,c,d;e) = T(fr“,ﬂ'b,SﬂC,ﬂ'd)'



4
Proposition 2.1 The set R = |_| R; is a complete set of representatives of K\ X, where

=1
A(a,b)‘aZ(), bZO}, RQI{B(a’b’C) a>c>0, b20},
a>0,b>0, a+b>d20}

Rlz

{
Rs = {C(a,b,d)

a>b if d=0
a>c, b+c>d, b+d>c, c+d>b
e € 0% /(0%) '

Ry =

Remark 2.1. (1) One proves that every K-orbit has a representative in the set R by
Lemmas 2.2 and 2.3. It is possible but tedious to show directly that there occurs no
K-equivalence within R, so we take another way.

We will see (in Corollary 5.3) that spherical functions w(z, x, z) take different values
at each element of R, by using their explicit formulas. Since spherical functions are
K-invariant function, it means that each element in R belongs to the different K-orbit
in X, and we see that R is a complete set of representatives of K-orbit of X. Thus we
establish Proposition 2.1.

(2) The set R4 corresponds bijectively to the set

R.= {7 | A €A, £€07/(07)}. (2.2)

(3) In a direct calculation, the assumption on the residual characteristic is needed
only for the proof that there occurs no K-equivalence within R,. For the even residual
characteristic case, we have to choose a suitable subset within R, (or within R.).

Lemma 2.2 Set R’ = Ry UR2 URLUTR) with
Ry = {Clapay| a>0, >0, d>0},
Ry = {Dihede)| a>c>0,b>0,d>0, = € 0*/(0*)}.

Then every K-orbit in X has a representative in R'.

Lemma 2.3 Because of the following relations, one can replace RY and Ry by Rs and
Ry, respectively.

Clapd) ~k A@py fd>a+0b. (2.3)
Cla0,4) ~K Ba.d)- (2.4)
Copd) ~k Bp-da0 ifb>d. (2.5)
Clap,0) ~K Clb,a,0)- (2.6)
Dapede) ~k Bapa ifd>b+c. (2.7)
Dapede) ~r Clearb—cay if 0> c+d. (2.8)
Dpede) ~k Clapay tfc=b+d (2.9)



Now we make each element of R correspond systematically to an element in R. Set

0 -7 0
—~ 0] —1, —em® —gb
D(a7b7cvd;x) = 12 O : D(a,b,c,d;g) = 7.‘-—@ _Eﬂ.—a—b-‘rc _gﬂ—a—b—i-c-ﬁ-d 7T—Cl+d Y
0 7T_b ﬂ.—b-‘rd 0
then N
Txne) = Diabiedse)
for
a=M+A3, b=+ Ng, c =X+ A3, d= A3+ Ay,
2a+b—c—d b+c—d —b+c+d b—c+d
N = 5 P e WS G e S P e
1 9 ) 2 9 ) 3 9 ) 4 9 )
e =—¢€.

Then R corresponds bijectively to 7A2/, in particular R4 corresponds to R..

§3 Functional equations and rationality of spherical
functions

The functional equations for w(z; z;x) and w(z; z;w;(x)) for w; € W, 1 < i < 4 can
be obtained by taking suitable parabolic subgroup P; containing B and prehomogeneous
space (P; x GL1,X x Ms;), for the details see [H5, §3]. Then we have the following
theorem, which gives us some information on the location of poles and zeros of spherical
functions.

Theorem 2 For each character x of k*/(k*)?, set

2)/G(2)

where
G(z) = (1 — g a2 (1 — g == 1:[ g5
{(+ = =)+ o) (= =) (= + =) (= = +H) (= = +-)
G(2) = X (== =)= ==k if x(0*) = 1 and x(r) =
T if X(0%) #1,
and

e1z1+e2z2+e323+e424—1)

=+,—, e=1,-1).

(e
Then F\(z) - w(z;z;x) belongs to Clg==,¢* %, ¢*% , ¢=2] and is invariant under the
action of the Weyl group W of G.

(€169e384) = 1 — sq%(

10



g4 Explicit expressions of spherical functions

In this section we give explicit expressions of spherical functions w(x; x; z) for each ele-

ment in R following the method of [H3, §1]. Since spherical functions are K-invariant,

it is enough to give such formulas for the representatives of K\ X. In Section 2, we have

given a set R of representatives of K\ X and left the proof that there is no K-equivalence

within R, which will be proved through the explicit formula w(z; x; z) in Corollary 5.5.
Set

P(z;x; 2 /X di(uxz)) [T Idi(u*z)|* du, (4.1)

i=1

where the variable z € C* is related to s € C* by (1.7), U is the Iwahori subgroup of G
compatible with B and du is the Haar measure on U normalized by / du = 1. The right

U
hand side of (4.1) is absolutely convergent for Re(s;) > 0 (1 < i < 4) and analytically
continued to a rational function in ¢°, ..., ¢**.

Applying [H3, Proposition 1.9] to our case, we have the following.

Proposition 4.1 Let G(z) and G (z) be as in Theorem 2, and set

4
H(z)=(1—q ™)1 —q™77) H (1—q7%),

where the variable z € C* is related to s € C* by (1.7). Then we have

1 . G(2) o (2) A
oia) = (e e e (e Pea)

ceW

We set -
Ri={mog | A €A, €0 /(07)},

and calculate P(z; x; 2) for z € R..
Proposition 4.2 For m¢ € 7%:, we have
P(mines Xi 2) = x(E)x(m) g NI g<h2>,

where ||A|| = X5, A and < X\, 2z >= 31, Nz

The following Proposition is an easy consequence of Propositions 4.1 and 4.2.

Proposition 4.3 Let x be nontrivial on O* and x € X be K-equivalent to some element
in R \Rx. Then w(z;x;2) =0.

11



For an element o of the Weyl group W, we set (o) = 1 (resp. —1) if o is expressed
by a product of even (resp. odd) numbers of {wy, ws, w3, wy}.

By Proposions 4.1, 4.2 and 4.3, we obtain our main results on explicit expressions of
spherical functions.

Theorem 3 For each A € A, £ € OF and character x of /{;X/(l{:x)z, set

X(Ox(m)? g M= Glz) 1
(14+q¢ "1 +q7?) Gy(z) Ho(z)

Crex(2) =

where G(z)/GX(z) = F\(2)~! is given in Theorem 2 and

4 z; —z; 3z1+z29+23+2
H()(Z) = (qzl _ q22)<1 _ q*ZI*ZQ) . H(q? —q 2 ) (: q 1 22 3= . H(Z)) ;
=1

so if x 1is nontrivial on O, G(z)/GX(z)HO(z) coincides with the c-function G(z)/H(z)
of G. Then the explicit formulas of spherical functions are given in the following.
(i) If x is trivial on O*, we have

wW(TogiX;2) = eaiy(2) - Z (o) o <GX(Z) _q<X,z>) ’

oceW
where \ = (M + %, Ao + %, A3 + %,)\4 + %)(E AL).

(ii) Let x be nontrivial on O*. Then w(me); x; 2) = 0 unless A € Ay, and if X € A,,
we have

W(Tre): X 2)
= CA,,;—“,X(Z) . ((q/\lzl — q_)‘wl) (q)‘2z2 _ q_)\QZQ) _ (q)\zz1 o q—/\2z1) <q/\1z2 _ q—)\1z2>>

% H (q)\izi o q*)\izz‘) )

i=3,4

85 Spherical Fourier transform

Let S(K\X) be set of K-invariant Schwartz-Bruhat functions on X:
S(K\X) ={p € C®(K\X) | compactly supported} ,

and we introduce the spherical transform on S(K\X) in the following. Set

Uy (z;2) = Fi(2) - w(x; 15 2), Uy(x;2) = Fyo(2) - w(x; x5 2),

12



where 1 is the trivial character and x* is the character for which x*(7) = 1 and x*(¢) =
(%) for e € O*, and F,(z) is the function defined in Theorem 2. By Theorem 2, we
know that W;(z;z), i = 1,2 belong to

Clg™ 7, ¢ 7, ¢5 %, ¢* 71V (= Cy, say).

On the other hand, as we saw in Proposition 1.1, H(G, K) is isomorphic to Cy by Satake
isomorphism.
Now we define the spherical Fourier transform on S(K\X) for i = 1,2

f;' : S<K\X) - C[qi%a qi%a qi%a qi%]W(: CO) SaY)
p — Fi(e)(2)
by
Fi@)2) = [ o@) - Wilws 2)d,
where dx is the normalized G-invariant measure on X. Since F; satisfies for every
f € H(G, K) N
Fi(f=o)(z) = f (2) - File)(2),  flg)=flg7),

Fi is an H(G, K)-module homomorphism, i = 1, 2.

Let us recall the sets A and A, defined in the beginning of Section 2. Set Ag = A\ A..
For A € A, denote by ¢, the characteristic function of the K-orbit containing 7(y,;) and
by ¢ the characteristic function of the K-orbit containing ) for £ € 0%, & & (O*)2

Then S(K\X) is generated by {ox | A € Ao} U{@n, ©re | A € ALt
For simplicity, we set

4 _ ..
n(z) = H (qu + q_f) ; C=Co@n(z)-Co,
here we regard Cy and C as free H(G, K)-modules through the Satake transform.

Our main theorem is the following.
Theorem 4 Set

S = <90)\|)\€A0>(c+<g0)\+90>\*’)\GA*>(C,
Sy = <(,0)\—90,\*|>\€A*>(C.

Then S(K\X) = §1 @S2 as an H(G, K)-module, and F; induces the H(G, K )-module
isomorphism S; = C for j =1, 2.
In particular, S(K\X) is a free H(G, K)-module of rank 4 with basis

(o

3111

A=(2,5, 5, =
(3333

), (21,1, 1)}.



It is clear that KerF; D S,, KerF, D S and F; is injective on S;. Theorem 5 follows
from Propositions 5.1 and 5.2 below.

Proposition 5.1 For A € A,, set

w5 (i)

oceW

Then

.7:2<§0>\ — (p)\*> = m,\(z) (mod(CX),
mx(z) € Cy (resp. n(2)Co) if M € 5 +Z (resp. M\ € Z), and
_ L ifA=(35373)
m(z) =
B A= (21,1,1),
In Particular, Fy gives an H(G, K)-module isomorphism Sy = C.
Proposition 5.2 For A € A, set

). <A, z>
- 2o (M)

oeW
Then,
B s 3 1 1 1
.7:1(90)\) = f1<g0)\*) = K’X(Z) (HlOd(C ), A= ()\1 + 5,)\2 + 5, )\3 + 5,)\4 + 5),
and X € A, K)(z) can be expressed as
Ky\(2) = cxma(2) + Y cumy(z), with some ¢, € C*, ¢, € C,

HEA

A
where \ = p means that | A| > |||l or ||Al| = ||xll, A > pa. In Particular, Fy gives an

H(G, K)-module isomorphism Sy = C. In particular

Since w(z; x*; 2) vanishes on Ro = R\R, and takes a different value at each element
of R, and w(x; 1; 2) takes a different value at each element of Ry, we conclude the proof
of Cartan decomposition given in Section 2.

Corollary 5.3 The set ﬁ, as well as R, is a complete set of representatives of K-orbit
mn X.

Finally, we give a parametrization of spherical functions. The characters on k* /(k*)?
are given by {1, x*, xx, X5}, where x.(7) = =1, xx(O*) =1 and x% = x*x». We set
for each y

Uy (x5 2) = Fy(z) - wl; x; 2),

so Wy« (x; 2) = Wy(x; 2) in the previous notation.

14



4
Theorem 5 FEigenvalues for spherical functions are parametrized by z € (C / ZTC:Q?Z) /W

through the Satake transform H(G,K) — C, f —— f(2) (c¢f. Proposition 1.1). The
set

{ Uy (z;2) + Wy, (235 2), Wye(z;2) — Wy (25 2), Uy (z52) = Wy (252) Wy(x;2) + Vs (25 2) }

n(2)

forms a basis of the space of spherical functions on X corresponding to z € C*.
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New vectors for GSp(4): a conjecture and
some evidence

Brooks Roberts * Ralf Schmidt
University of Idaho Universitat des Saarlandes

In this paper we present and state evidence for a conjecture on the existence
and properties of new vectors for generic irreducible admissible representa-
tions of GSp(4, F) with trivial central character for F' a nonarchimedean
field of characteristic zero. To summarize the conjecture, let O be the ring
of integers of F' and let P be the prime ideal of @. We define, by a simple
formula, a sequence of compact open subgroups K(P") of GSp(4, F) indexed
by nonnegative integers n. The first group K(O) is GSp(4, O). The second
group K(P) is the other maximal compact subgroup of GSp(4, F'), up to
conjugacy, and is called the paramodular group. Automorphic forms for the
global version of this group have been considered by T. Ibukiyama and his
collaborators in a number of papers dealing with a genus two version of Eich-
ler’s correspondence and old and new forms. In general, we refer to K(P™)
as the paramodular group of level P". Given a generic irreducible admissi-
ble representation m of GSp(4, F') with trivial central character, we consider
the space of vectors fixed by each K(P™). The conjecture for 7 makes three
assertions. First, for some nonnegative n, the space of K(P") fixed vectors is
nonzero; second, if N is the smallest such n, then the space of K(P™~) fixed
vectors is one dimensional; and third, this one dimensional space contains a
vector W, whose Novodvorsky zeta integral gives the Novodvorsky L-factor
of the representation:
Z(s,Wy) = L(s,m).

We call W, the new vector of 7. Zeta integrals depend on a choice of Whit-
taker model, which depends on a choice of nondegenerate character: we make
a choice independent of .

Evidently, the conjecture is similar to the theory of new vectors for generic
irreducible admissible representations of GL(2, F') with trivial central charac-
ter. Just as for GL(2, F'), there is a simple relation between new vectors and

*Partially supported by a NSA Young Investigators Grant



e-factors. Assume the conjecture holds for w. There exists an Atkin-Lehner
type element uy, in GSp(4, F') which normalizes K(P"~) and whose square
is in the center. Thus, 7(uy, )W, = €, W, for some e, = £1. Moreover, it is
easy to show that

E(Sa 7T) = Eﬂq_Nﬂ(s_l/z)

so that €(1/2,7) = €,. Here, ¢ is the order of O/P, and we use the mentioned
nondegenerate character in the definition of the e-factor.

We state three pieces of evidence for the conjecture. First, the first two
parts of the conjecture are true for all 7 containing a nonzero vector fixed by
the Iwahori subgroup. As evidence for the third part of the conjecture for
such 7 one also has

€(s, P, 1, diy) = exg N7

where ¢, is the L-parameter assigned to m by [KL]. Second, the first two
parts of the conjecture are true for many 7 induced from the Siegel or Klin-
gen parabolic subgroups, and for these 7, the level PV~ is as expected. Fi-
nally, in proving the analogue for GSp(4) of the dihedral case of the global
Langlands-Tunnell theorem, [R1] defined certain local L-packets II(7) and
L-parameters ¢(7) for GSp(4, F') which depend on a generic tempered irre-
ducible admissible representation 7 of GL(2, E') with trivial central character,
where F is either a quadratic extension of F', or F' x F'. The work |[R1] gave
strong global evidence that II(7) is the L-packet of (7). Assuming ¢ is
odd, we show that if F/F is unramified or E = F x F, then the generic
element 7 of II(7) contains a nonzero vector W fixed by K(P), where N
is defined by €(s, o(7),9,dzy) = cg V12 and ¢ is a constant. Moreover,
Z(s,W) = L(s,7).

To end this introduction, we emphasis that our conjecture is for generic
irreducible admissible representations of GSp(4, F') with trivial central char-
acter. In gathering evidence we have encountered various related cases and
questions, as mentioned below. But, for example, currently we are not in a
position to state a conjecture for the case of nontrivial central character.

Notation

In this paper GSp(4, F') is the group of g in GL(4, F') such that

tg[_ob 102}9:/\(9)[_012 102]

for some A(g) in F'*. Fix a continuous character ¢ of F' with conductor O
and a generator w for P. Let | - | be the valuation on F such that if p is
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a Haar measure on F', then p(zxA) = |z|u(A) for x in F and measurable
sets A in F. If 7 is an irreducible admissible representation of a group of
td-type [Car], let w, denote the central character of m. Let Lp = Wg x
SU(2,R) be the Langlands group of F', where W is the Weil group of F.
A GSp(4) L-parameter over F' is a continuous homomorphism ¢ : Ly —
GSp(4,C) such that ¢(z) is semisimple for all x € Wp and ¢|ixsuer) is a
smooth representation. We denote the e-factor of ¢ with respect to ¢ and
the Haar measure dz,, self-dual with respect to ¢ by (s, ¢, 1, dzy). One has
(s, 0,1, dxy) = cq~NG=1/2) for some nonnegative integer N and constant c.

1 The conjecture

To state the conjecture we need some definitions and results. First, we recall
the fundamentals of the theory of Novodvorsky zeta integrals for GSp(4, F'),
as proven in [T-B]. Fix ¢;,¢co € F*. Let 7m be an irreducible admissible
representation of GSp(4, F'). We say that 7 is generic if Homy (7, 9., ¢,) # 0,
where U is the group of all elements

1 w4 0 O 1 0 * =
y— 0 1 0 O 0 1 * wu

0 O 1 0 001 0|’

0 0 —u 1 0 00 1

and Y., o, (u) = Y (crus + couz). Whether 7 is generic does not depend on the
choice of ¢; and cp. Assume 7 is generic. Consider the space of functions
W : GSp(4, F) — C such that W(ug) = ¢, ,(w)W(g) for v in U and g
in GSp(4, F'), and W is right invariant under some compact open subgroup
of GSp(4, F). There exists a unique GSp(4, F') subspace W (m, 1, .,) of this
space which is isomorphic to 7 [Rod]. This subspace is called the Whittaker
model of m with respect to 9, .,. Fix Haar measures on F'* and F. Let
p o F* — C* be a continuous quasi-character. If W is in W (m, 4, ,), the
Novodvorsky zeta integral associated to W and p is

0 00 o
HMMMZ/(/W<O% O 0 Dty dw avy.
FX JF
0 z 01

The Z(s, W, ) for W in W (7, 1., ¢,) converge absolutely in some right half
plane and are elements of C(¢~®). There exists v(s, T, i, ¢, ) in C(g™*)
such that the following functional equation

20 =snl| ) 0 W) =26 ) 2050,
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holds for W in W (m, 4., ,). This y-factor does not depend on the choices of
Haar measure on F' and F'*. Here,

0 1
J= [ ol ] |
The C[¢®, ¢*] module generated by the Z (s, W, u) for W in W (m, ¢, ¢,) is a

fractional ideal of C(¢~*) with generator of the form 1/Q(¢*) with Q(0) = 1,
where Q(X) is in C[X]. We define

L(S> T, :u) = 1/@((]_5)'

This L-factor does not depend on the choices of Haar measures or ¢; and cs.
We also define

L(s, , )
L(l - S, (wmu')_l).

6(87 777 ,ua wq,cz) = ’Y(S? 7T7 /jﬁ w61702)

The function e(s,m, it,%¢,¢,) 1S a nonzero monomial in ¢~* (e.g., see the
top of p. 65 of [J]). The work [R2] verifies that L(s,m, ) = L(s,p, u),
and e(s, 7, pu, P1,-1) = €(s, @, g1, ¥, dxy,) for the generic element 7 in II(x, 7)
and ¢ = @(x,7), where II(x,7) and ¢(x,7) are the local L-packets and
parameters defined in [R1]. We take ¢; = 1 and ¢; = —1 in the remainder of
this paper, and write W () = W(m, 1 1), (s, 7, p) = y(s,m, p,1,-1) and
e(s,m, ) =€(s,m, p, 1 —1). If p =1 we drop p from our notation.

Next, we define the paramodular group of level P". This requires that
we first define the Klingen congruence subgroup of level P". Let n be a
nonnegative integer. The Klingen congruence subgroup KI(P") of level
P is the subgroup of GSp(4, F') of all elements k such that A(k) is in O*
and

o 0 0 0O
ke PO O O
Pt Pt O P"
P O O O

Define the Atkin-Lehner element of level P" in GSp(4, F') to be

70
Un =\ _zng 0 |

Evidently, u? = @" is in the center of GSp(4, F). We now define the

n

paramodular group K(P™) of level P" to be the subgroup of GSp(4, F')



generated by KI(P") and u, KI(P")u, ' = u, 'KI(P")u,. Equivalently, K(P")
is the subgroup of GSp(4, F) of all elements k such that A(k) is in O* and

o o P O
P O O O
Pt Pt O P
P O O O

ke

Conjecture 1.1 Let 7 be a generic irreducible admissible representation of
GSp(4, F') with trivial central character. For each nonnegative integer n, let
7(P™) be the subspace of  of vectors fixed by K(P™).

1. For some nonnegative integer n the space m(P") is nonzero.
2. If N, is the smallest n such that w(P™) is nonzero, then

dim 7 (PV") = 1.

3. There exists Wy in w(PN~) such that

Z(s,Wy) = L(s,m).

In (3) of the conjecture we use the Whittaker model W (7) for 7 as defined
above. If the conjecture holds for 7, we call PV~ the level of © and W, the
new vector of .

The reader will note that while the conjecture is quite similar to the theory
of new vectors for generic irreducible admissible representations of GL(2, F')
with trivial central character, there is a significant difference: K(P™) is not
contained in K(P"™)!" Thus, the theory of old vectors for GSp(4, F) will
not be strictly analogous to that for GL(2, F'). Nevertheless, we have some
evidence, which we will not discuss here, that a coherent theory of old vectors
for GSp(4, F') does exist.

2 A formal heuristic

Before stating implications for e-factors and our evidence, we will give some
formal motivation for the conjecture. As far as we know, there does not exist
a conjectural conceptual theory of new vectors for representations of the F
points of an arbitrary reductive algebraic group defined over F'. The situation
seems to be that, given a particular group like GSp(4), a theory of new vectors
would be useful, but one has no reason to believe it exists. Groups for which
new vectors have been considered include GL(n) (see [Cas|, [D], [J-PS-S])
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and SL(2) (see [LRI); for GSp(4) see also [J] for the case of square-free level.
In our considerations we mostly have been guided by empirical facts. Still,
for GSp(4) we can offer the following formal motivation.

Suppose one wants to derive the statement for a conjectural simple theory
of new vectors for generic irreducible admissible representations of GSp(4)
with trivial central character, and let m be one such representation. In 7 one
might consider the space of Klingen vectors of level P", i.e., the subspace
mx1(P™) of vectors fixed by KI(P™). Alternatively, one might consider vec-
tors fixed by I'o(P"), the Siegel congruence subgroup of level P". However,
without going into details, examples show that these vectors will not give
a simple theory. One might hope, then, that Klingen vectors work, so that
if NV is the smallest n such that 7 (P™) is nonzero, then dimm(PY) = 1,
and there exists a W in g (PY) such that Z(s,W) = L(s, 7). One might
also hope, as a consequence, that e(s, ) = cg~ V=12 for some constant c.
Examples show, however, for the smallest n such that 7k (P") is nonzero one
can have dim 7 (P™) > 1: being a Klingen vector at the smallest nontriv-
ial level is not enough to give uniqueness. It seems an enlargement of the
Klingen congruence subgroup is required.

How can one arrive at such an enlargement? One might start with a
Klingen vector W of level PV for which Z(s,W) = L(s,n) and e(s,7) =
cq NG=1/2) and see if W reasonably might be fixed by a natural larger com-
pact open subgroup. Using Z(s, W) = L(s, ), the functional equation gives

s L) =2 -sn(| % 7

Dividing by L(1 — s,7), one obtains the e-factor:

€(s,m)=Z(1 — s,w({ _OJ g })W)/L(l —8,7).
Now ¢(s,m) = cg~N~1/2); how can one make the right hand side look like

this? A bit of algebra yields

Z(1 — s, m(uy)W)

g NGET2)
L(1—s,m) '

€(s,m) =

It follows that Z (s, w(un )W) is a constant multiple of L(s, ), or equivalently,
Z(s,m(un)W) is a constant multiple of Z(s,W). What condition on W can
guarantee this? It would hold if w(uy)W is a constant multiple of W; and if
7(un)W is a constant multiple of W, then 7(uy )W is fixed by KI(PY). Thus,
one might consider, for nonnegative integers n, vectors W such that W and



u, W are both fixed by KI1(P™), or equivalently, vectors fixed by K(P"). Note
that if W is fixed by KI(P") then one has no reason to expect m(u, )W to also
be fixed by KI(P™), as u,, does not normalize KI(P"). On the other hand, w,
does normalize the Borel congruence subgroup B(P") = KI(P™) NTo(P") of
level P, so if W is fixed by KI(P™), then at least m(u,)W will be fixed by
B(P™).

3 The connection to e-factors

As mentioned in the introduction, the new vector and level of a representation
satisfying the conjecture are closely connected to its e-factor. This is useful
in providing evidence for the conjecture.

Proposition 3.1 Let m be a generic irreducible admissible representation of
GSp(4, F') with trivial central character. Assume (1) and (2) of the conjecture
for m hold. Then W, is an eigenvector for m(uy,) with eigenvalue €, = £1:

T(un, )Wr = €, W

Assume (3) of the conjecture for m also holds. Then

e(s,m) = exg N7V,

so that e, = €(1/2, ).

Proof. Assume (1) and (2) of the conjecture for = hold. A computation
shows uy, normalizes K(P"=). This implies that m(uy, )W, is in 7(PN~);
since this space is one dimensional, m(uy, )W, = €, W, for some €, € C*.
As u3;, = @™, and 7 has trivial central character, we have m(un,)? =1, so
that ¢2 = 1. Next, assume (3) of the conjecture for 7 also holds. Applying
the functional equation to W, we obtain

201 — s,w([ o 1)W,r) — (s, 7) % (s, W),

The definitions of the zeta integral and wuy, imply

Z(1— S,7T(|: _OJ g })Wﬂ) = eﬂquﬂ(sfl/Z)Zu — 5, Wy).

Substituting this into the functional equation and using Z(s, W,) = L(s, ),
we obtain
€xq VYA L( — 5, 71) = (s, ) L(s, T),
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so that (s, m) = e, V==1/2) O

This proposition can be used to supply evidence for the conjecture. For
example, suppose 7 is a generic irreducible admissible representation of
GSp(4, F') with trivial central character, and parts (1) and (2) of the con-
jecture for 7 are known. To obtain evidence for (3) of the conjecture for
7 we may proceed as follows. Suppose that it is believed that a certain
L-parameter ¢ is the L-parameter associated to 7w via the conjectural local
Langlands correspondence, so that it is believed that €(s, p, ¥, dzy) = €(s, 7)
(or even suppose this equality is known). Then, in light of Proposition 3.1,
verifying

€(1/2, 0,1, dxy) = epq Nr(571/2)

gives evidence that (3) of the conjecture for 7w holds.

4 FEvidence

We currently have three different pieces of evidence for the conjecture. Our
evidence considers a wide variety of generic irreducible admissible represen-
tations of GSp(4, F') with trivial central character, and includes all repre-
sentations of lower level and several families of induced and supercuspidal
representations.

To state the first piece of evidence, define the Iwahori subgroup [ of
GSp(4, F') to be the subgroup of all k in GSp(4, F') with A(k) in O* and

O 0 0 0
kEPOOO
P P O P
P P O O

Then we have the following theorem. The number €, is defined in Proposition
3.1.

Theorem 4.1 Parts (1) and (2) of the conjecture are true for all generic ir-
reducible admissible representations of GSp(4, F') with trivial central charac-
ter which contain a nonzero vector fixed by the Iwahori subgroup. Moreover,
suppose T is a generic irreducible admissible representation of GSp(4, F') with
trivial central character which contains a nonzero vector fixed by the Iwahori
subgroup, and let ¢ be the L-parameter associated to m by [KLJ. Then

€(1/2,0,1,dxy) = exq N2

which gives evidence that (3) of the conjecture for m holds, as explained in
section 3.



In fact, we have computed the spaces of vectors fixed by K(P?), K(P!),
K(P?) and K(P?) in all the, possibly nongeneric, irreducible admissible repre-
sentations of GSp(4, F') with trivial central character which contain a nonzero
vector fixed by the Iwahori subgroup. This information is displayed in the
table in the next section, which also includes information on how to under-
stand the table. It is interesting to observe that (1) and (2) of the conjecture
and €(1/2,p,1,dzy) = €, ¥*71/2) hold, with one exception, for all irre-
ducible admissible representations of GSp(4, F') with trivial central character
which contain a nonzero vector fixed by the Iwahori subgroup. This excep-
tion is the representation VIb, which does not admit a nonzero vector fixed
by K(P?), K(P'), K(P?) or K(P?); we would expect a nonzero vector fixed
by K(P?). However, the representations VIa and VIb form an L-packet, and
the conjecture holds for the representation VIa. This suggests that (1) and
(2) of the conjecture and the equality €(1/2,¢,v,dz,) = €, V=712 may
be true for all irreducible admissible representations of GSp(4, F') with trivial
central character at the level of L-packets.

Our second parcel of evidence concerns certain induced representations.
For the representations considered in the following theorem there is a natu-
rally associated L-parameter ¢, which should be the L-parameter associated
to m by the conjectural local Langlands conjecture; define the nonnegative
integer N by €(s, p, 9, dxy) = cq~NG=1/2) where ¢ is a constant. We use the
notation of [ST| for induced representations.

Theorem 4.2 Let 7 be a generic irreducible admissible representation of
GL(2, F). Assume w, is unramified.

1. (Siegel parabolic) Let o be an unramified quasi-character of F* such
that w,0? = 1. Assume
T=TX0o

is irreducible. Then 7 is a generic irreducible admissible representa-
tion of GSp(4, F') with trivial central character, and (1) and (2) of the
conjecture for w are true. Moreover, N, = N.

2. (Klingen parabolic) Assume

is irreducible. Then 7 is a generic irreducible admissible representa-
tion of GSp(4, F') with trivial central character, and (1) and (2) of the
conjecture for w are true. Moreover, N, = N.



Our final piece of evidence considers a broad distribution of represen-
tations of GSp(4, F'), including supercuspidals. Recall that [R1] proved an
analogue for GSp(4) of the global Langlands-Tunnell theorem. In doing so,
[R1] defined certain local L-packets of representations of GSp(4,F'). Let
II(7) = II(1,7) be such a local L-packet which happens to occur in a global
situation as in Theorem 8.6 of [R1]. Thus, in particular, 7 is a tempered
generic irreducible admissible representation of GL(2, E') with trivial central
character, where F is either a quadratic extension of F', or £ = F x F.
The packet II(7) has one or two elements, and all elements are tempered
irreducible admissible representations of GSp(4, F') with trivial central char-
acter. In [R2] it is shown that exactly one element 7 of II(7) is generic. The
paper [R1] also associates to 7 an L-parameter ¢(7) = ¢(1, 7), and Theorem
8.6 of [R1] provides evidence that II(7) is the L-packet associated to ¢(7) by
the conjectural local Langlands correspondence for GSp(4, F'). Again, define
the nonnegative integer N by €(s, (1), v, dvy) = cq V"2 where ¢ is a
constant.

Theorem 4.3 Assume q is odd. If E is unramified or £ = F X F, then 7
contains a vector W fixed by K(PY) such that Z(s,W) = L(s, ).

In writing Z(s,W) = L(s,m) we are, as in the conjecture, using the
Whittaker model W (r) defined in section 1.

5 The table

The table gives information relevant to the conjecture about all the irre-
ducible admissible representations of GSp(4, F') with trivial central character
which contain a nonzero vector fixed by the Iwahori subgroup.

The first column

By [Bol, an irreducible admissible representation of GSp(4, F') with trivial
central character contains a nonzero vector fixed by [ if and only if it is an
irreducible subquotient of a representation of GSp(4, F') with trivial central
character induced from an unramified quasi-character of the Borel subgroup.
The basic reference on representations of GSp(4, F') induced from a quasi-
character of the Borel subgroup is section 3 of [ST], and we will use the
notation of that paper. Thus, St is the Steinberg representation, 1 is the
trivial representation, and v = |- |. The reader will have to consult [ST]
for more details. Tt is also useful to consult section 4.1 of [T-B]. Let x1, x2
and o be unramified quasi-characters of F* with yix202 = 1, so that the
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representation xj X x2 X o of GSp(4, F') induced from the quasi-character
X1 ® X2 ® o has trivial central character. Of course, y; X y2 X ¢ may be
reducible. It turns out that by section 3 of [ST], there are six types of
X1 X X2 X o such that every irreducible admissible representation of GSp(4, F')
with trivial central character which contains a nonzero vector fixed by [ is an
irreducible subquotient of a representative of one of these six types, and that
no two representatives of two different types share a common irreducible
subquotient. The first column gives the name of the type. In the table
we choose a representative for a type with the notation as below, and in
subsequent columns we give information about the irreducible subquotients
of that representative. The types are described as follows:

Type I

These are the x; X x2 X ¢ where x1, x2 and ¢ are unramified quasi-characters

of F* such that x1x20% = 1 and x; X X2 X o is irreducible. See Lemma 3.2
of [ST].

Type 11

These are the v'/?y x =12y x ¢ where y and o are unramified quasi-
characters of F* such that y?c? = 1. See Lemmas 3.3 and 3.7 of [STJ.

Type III

These are the y x v x v~ 2g where x and ¢ are unramified quasi-characters
of F* such that yo? = 1. See Lemmas 3.4 and 3.9 of [ST].

Type IV

These are the v? x v x v=3/2¢ where ¢ is an unramified quasi-character of
F* such that 02 = 1. See Lemma 3.5 of [STJ.

Type V

These are the v€ x & xv~/20 where & and o are unramified quasi-characters
of F* such that & has order two and ¢ = 1. See Lemma 3.6 of [ST].

Type VI

These are the v x 1 x v~1/2¢ where ¢ is an unramified quasi-character of F*
such that 02 = 1. See Lemma 3.8 of [STJ.
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The second column

Choose a type as in the first column, and choose a representative y; X xa X
o of that type. Then y; X y2 X ¢ admits a finite number of irreducible
subquotients, and this number depends only on the type of x; X x2 x 0. We
index the irreducible subquotients by lower case Roman letters. The letter

[P

a” is reserved for the generic irreducible subquotient.

The third column

This column lists the irreducible subquotients of the representative of the
type of the first column. We use the specific notation as in the discussion of
the first column.

The fourth column

Suppose 7 is an entry of the third column, and let ¢ be the L-parameter
associated to m by [KL]. We define N by the equation

6(87 2 1/}7 d$¢) = Cq_N(S_1/2)7

where ¢ is a constant.

The fifth column

Using the notation of the explanation of the fourth column, this is e = ¢ =
€(1/2, ¢, 1, dxy).

The sixth, seventh, eighth and ninth columns

The numbers in the columns give the dimensions of the K(P™) fixed vectors
for the representations in the third column for n = 0,1,2 and 3. Note that
to save space we have abbreviated K(P™) by K(n). The signs under the
numbers indicate how these spaces of K(P") fixed vectors split under the
action of the Atkin-Lehner operator m(u,). The signs are correct if in the
type II case, where the central character of m is x?0?, the character yo is
trivial, and in the type IV, V, and IV cases, where the central character of 7
is 02, the character o is trivial. If these assumptions are not met, then the
plus and minus signs must be interchanged to obtain the correct signs.
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representation N € K(0)| K1) | K(2) | K(3)
I X1 X X2 X o (irred.) | O 1 1 2 4 6
+ S e
a | XStare) X o 1 |—ox(w)| O 1 2 4
I - T
b| yleye x o 0 1 1|1 | 2 | 2
+ + o+ ++
a | x X oStaL() 2 1 0 0 1 2
111 T
by % olane 0 1 1 p 3 | 4
+ +- e e
a | oStaspa) 3| —o(w) 0 0 0 1
b | L(v?, v oStaLe) 2 1 0 0 1 1
vV ’ ’
¢ | L(v*Starey, v 20) |1 | —o(@) | 0 | 1 | 2 | 3
d | olagpu) 0| 1 1|1 |1 |
+ + + +
a | 6([¢0, v&o], v 20) 21 -1 0 0 1 2
— +_
b L(V%&)StGL(z),V_%0'> 1| o(w) 0 1 1 2
\V + + ++
c L(I/%&)StGL(Q),&)V%O') 1| —o(w) 0 1 1 2
— + _—
d| L(v&, & x v i0) 0 1 1 0 1 0
+ +
al|r(S v 20) 2 1 0 0 1 2
+ +-
b|7(T,v20) 2 1 0 0 0 0
VI - -
¢ | L(v2Star), v 20) 1| —o(w) 0 1 1 2
d| L(v,1px x v 20) 0 1 1 1 2
+ + ++ ++

Table 1: Representations containing a nonzero vector fixed by the Iwahori
subgroup. Consult section 5 for definitions and comments.
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Supercuspidal Representations Attached to Symmetric Spaces
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§1. Some motivation.— The purpose of this lecture is to survey some recent results
related to harmonic analysis on H\G, where (G, H) is a symmetric space over a nonar-
chimedean local field. Harmonic analysis on symmetric spaces over R and C has been
developed extensively by many authors over many years. By contrast, the p-adic theory is
relatively undeveloped and new.

The impetus for much of the research in this field has come from Jacquet’s relative
trace formulas (starting with [15]) which were designed to study those automorphic repre-
sentations of a given adelic group which satisfy a specific period condition. Without going
into details about the global theory and what we mean by a “period condition,” suffice it
to say that the set of automorphic representations associated to a period condition tends
to be an important set for a variety of reasons. For example, it may be the image of an im-
portant (automorphic or theta) lifting. It may be set of representations for which a certain
automorphic L-function has a pole. It may be the set which determines when an induced
representation is irreducible. Or it may be all of these things (and some other things as
well). The original point of developing the local theory was that it described which rep-
resentations could arise as local components of automorphic representations satisfying a
period condition.

At first, most of the results in this area involved a combination of known techniques
from: (a) the theory of harmonic analysis on p-adic groups, (b) global theory, and (c)
the archimedean theory of symmetric spaces. Recently, more innovative techniques have
been developed and we are seeing phenomena which have no archimedean analogues. I
have been especially interested in finding techniques which exploit the special features of
supercuspidal representations. Below I will indicate various local applications which are
similar to the global applications mentioned above.

§2. Basic concepts.— We start by recalling the notion of a “symmetric space over a
nonarchimedean field.” Let F' be a finite extension of some p-adic field Q,. For simplicity,
we assume p is odd. Assume G is a connected reductive group over a field F' and let
G = G(F). Assume 7 is an automorphism of G of order 2 which is defined over F. Let
G7 denote the group of fixed points of 7 and let (G7)° be the identity component of G7.
Assume H is an F-subgroup of G such that (G")° C H C G”. Now let H = H(F'). Then
the pair (G, H) (or the quotient H\G) is called a symmetric space over F.

The terminology harmonic analysis on H\G may mean different things to different
people. Classically, one might think of the decomposition of L?(H\G) or some other
induced representation Ind% (1). For our purposes, it is appropriate to take Ind% (1) to be
the space C*°(H\@G) of smooth (that is, locally constant) functions on H\G.

Suppose 7 : G — Aut(V) is an irreducible, admissible complex representation of G.
Then we say 7 is H -distinguished if it occurs in Ind%( 1) in the sense that Homg (, Ind% (1))
is nonzero. A specific embedding A : 7 — Ind} (1) will be called an H-model for .
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Frobenius Reciprocity gives a canonical bijection between Home (7, Ind$ (1)) and the space
Homp (7, 1) of linear forms A : V' — C satisfying A(w(h)v) = A(v), for allh € H andv € V.
Such linear forms A are called H-invariant functionals. The explicit relation between A
and A is A(v)(g) = M(w(g)v), where g € G and v € V.

The relation between H-models and H-invariant functionals is entirely analogous to
the relation between Whittaker models and Whittaker functionals. One can hope for an
analogue of the uniqueness property of Whittaker models in the symmetric space setting.

Definition. We say that (G, H) has the multiplicity one property (or is a Gelfand pair) if
dim Homy (m, 1) < 1 for all irreducible, admissible representations 7.

Note that not everyone uses the terminology “Gelfand pair” in this way.

Definition. We say (G, H) is a geometric Gelfand pair if there exists an anti-auto-
morphism o of G of order two such that Hg° H = HgH for all g € G.

The Gelfand/Kazhdan Lemma [6]. If there exists an anti-automorphism o of G of
order two which fixes all bi-H-invariant distributions on G then (G, H) is a Gelfand pair.

The problem with this result is that, in principle, one needs to study all of the bi-
H-invariant distributions on GG in order to satisfy the hypotheses of the lemma. However,
if (G, H) is a geometric Gelfand pair then the hypothese are automatically satisfied and
hence we have the following:

Corollary. If (G, H) is a geometric Gelfand pair then it is a Gelfand pair.

§3. The example (GL(n,E),GL(n, F)).— Assume FE is a quadratic extension of F’
and use the notation x — Z for the nontrivial Galois automorphism of E/F. We consider
the pair (G, H), with G = GL(n,FE) and H = GL(n, F). This is a symmetric space over
F. If g € G let g be the matrix obtained by applying x — Z to each entry of g. Then 7 is
an automorphism of GG of order two and H is the group of fixed points. It is easy to show
Hg 'H = HgH, for all g € G. Hence, (G, H) is a geometric Gelfand pair.

The prototype example is the case in which n = 2 which I studied in my Ph.D. thesis
and in some subsequent papers motivated by the work of Jacquet/Lai [15] and
Harder/Langlands/Rapoport [13]. Flicker [2] generalized some of these results for arbi-
trary n. In some cases, he arrived at the appropriate conjectures relating distinguishedness
with base change from unitary groups and the existence of a pole for the Asai L-function
(a.k.a., twisted tensor L-function). For m = 2, there are two base change maps from
U(2,E/F) to GL(n, E), each characterized by character relations analogous to Shintani’s
character relations which characterize quadratic base change for GL(2). Flicker showed
that the H-distinguished representations of GG are precisely the representations which un-
stable lifts from U(2, E/F’). We also note that representations which are base change lifts
from U(2, E/F) are characterized by the symmetry condition 7 ~ 7, where 7(g) = 7(g).
The connection with Asai L-functions for general n has recently been firmly established in
unpublished work of Kable [17] and, independently, Anandavardhanan and Tandon [1].
Their work builds on [13] and results developed by Flicker in several papers (starting with
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A natural problem, which we will call the “classification problem,” is to explicitly
determine which irreducible, admissible representations of G' are H-distinguished. Assume
for a moment longer that n = 2. For the nonsupercuspidal representations, it is fairly easy
to give explicit conditions on the inducing data for these representations which correspond
to distinguishedness. This was probably first done by Clozel in unpublished notes. (See
[2], [4] and [9] for more details.) For supercuspidal representations, a characterization of
distinguishedness in terms of Jacquet-Langlands e-factors was given in [9]:

Proposition 1 [9]. Let 1) be a nontrivial character of E which is trivial on F. Then an
irreducible, supercuspidal representation m of G = GL(2, F) is H-distinguished if and only
if e(1/2,m ® x, ) = 1 for all quasicharacters x of E* which are trivial on F*.

The result in [9] is stated only under the assumption that the central character of
7 is trivial, however, this assumption is totally unnecessary. Note that the criterion in
Proposition 1 is closely related to Corollary 2.4 in Saito’s paper [24] on Tunnell’s formula.

According to the work of Howe [14] (in the tame case) and Kutzko (in general), the
supercuspidal representations of G may be realized via compactly supported induction
from compact-mod-center subgroups. To give a satisfactory solution to the classification
problem for distinguished supercuspidal representations requires giving conditions on the
inducing data which corresponds to distinguishedness. This is partially done in the tame
case for general n in [12]. (Note that if p > n then all representations are tame.) Ac-
cording to Howe’s construction, each irreducible tame supercuspidal representation 7 of
G corresponds to a certain equivalence class of quasicharacters y : L* — C* where L is
a degree n tamely ramified extension of E. The quasicharacter x must be E-admissible
in the sense of Kutzko. If 7 ~ 7, as is the case whenever 7 is H-distinguished, then it
is a basic fact that there must exist an automorphism o of order two of L/F such that
o(z) =z for all z € E and x~! = xoo. Let L' be the fixed field of 0. We say that
the pair (L/FE, o) is odd if the ramification degree e(L/F) is odd, L/L’ is unramified and
E/F is ramified. Otherwise, (L/FE, o) is even. Let X, and X, . be the class field theory
characters associated to L/L’ and E/F, respectively. The following result was proved in
collaboration with Fiona Murnaghan:

Theorem 2 [12]. Assume and x = x ! o ¢ is an E-admissible character of L* and T is

the associated irreducible, tame supercuspidal representation of G such that © ~ mwo T.
If (L/E,0) is even and x|L"™ =1 or if (E/F,0) is odd and x|L"* = x, , then m is H-
distinguished. If 7 is not H-distinguished and ' is a character of E* such that y*|L'* =
X,,, then m® x' is H-distinguished. Such characters x' always exist, for example, one
may take any character of E* whose restriction to F'* is x p

A closely related result in the case in which E/F is unramified was obtained by
Dipendra Prasad [22] by totally different methods.

Murnaghan’s initial interest in such problems resulted from her joint work with Repka
[21] on the reduciblity of induced representations of unitary groups, following the approach
of Goldberg [7] and Shahidi [25]. Roughly speaking, G may be embedded as a Levi com-
ponent of a maximal parabolic subgroup of the quasisplit unitary group U(2n, E/F). If =
is an irreducible, admissible representation of G then there is an associated induced repre-
sentation I(m) of U(2n, E/F). Then I(7) is irreducible if and only if 7 is H-distinguished.
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When n = 2, this is evident in the work of Kazuko Konno [18], where all of the non-
supercuspidal representations of the unitary group are computed.

The H-distinguished representations of G also arise in connection with the generic
packet conjecture for unitary groups. A relative trace formula approach to this problem
is developed for n = 3 in [5]. An alternate approach to the generic packet conjecture is
given by Takuya Konno [19].

§4. The example (GL(n),U(n)).— Let E/F be a quadratic extension and G =
GL(n, E), as in the previous example. Now fix 7 € G which is hermitian in the sense that
tp=n. Let H={h € G : hn'h = n} be the associated unitary group. One may expect
that (G, H) is Gelfand pair, since the analogous pair over a finite field is. Unfortunately,
it is not a Gelfand pair, though we will see that it comes very close.

Theorem 3 [11]. If 7 is an irreducible, tame supercuspidal representation of G then the
dimension of Homy (m,1) is at most one.

Again, it is natural to ask whether distinguishedness can be characterized in terms of
a simple condition on the inducing data. We have:

Theorem 4 [11]. Let L be a tamely ramified degree n extension of E which is embedded,
via an E-embedding, in the ring M of n-by-n matrices with entries in E. Assume that ¢
is the automorphism of M given by applying the nontrivial Galois automorphism of E/F
to the entries of each matrix in M. Let G = M* = GL(n,E) and T = L*. Suppose x is
an admissible character of T' and let w be the irreducible, supercuspidal representation of
GG associated to x by Howe’s construction. Let H be a unitary group in G associated to
some hermitian matrix n € G. Then the following conditions are equivalent:

i. The space Homp (7, 1) is nonzero.

. m~ToOoL.
iii. 7 is a base change lift from GL(n, F).

iv. There exists an automorphism o of L. which agrees with « on E and satisfies 0 = foo.

v. 0 is trivial U(1,L/L"), where L’ is the fixed field of an automorphism of L of order

two which agrees with + on F.

The method we use to solve the classification problem for tame supercuspidal repre-
sentations for (GL(n),U(n)) has worked, with some modifications, for other pairs (G, H),
as well. Using Jiu-Kang Yu’s building theoretic extension [26] of Howe’s construction, we
hope to extend our methods to essentially arbitrary pairs (G, H).

The situation for (GL(n),U(n)) motivates the following:

Definition. A pair (G, H) is a supercuspidal Gelfand pair if dim Hompg (w,1) < 1 for all
irreducible supercuspidal representations w of G.

Fiona Murnaghan has recently found some examples of symmetric spaces which are
not supercuspidal Gelfand pairs. Before this, there was a general suspicion that such pairs
might not exist.

§5. The example (GL(n),GL(n/2) x GL(n/2)).— Assume n = 2m is even and let
G = GL(n, F), where we write the elements of G as block matrices (CCL Z), with a,b,c,d €
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M(m, F). Let H= GL(m, F)xGL(m, F') be the subgroup of G consisting of block diagonal
matrices. Jacquet and Rallis [16] have shown in this case that (G, H) is a Gelfand pair.
However, since (G, H) is not a geometric Gelfand pair, it was necessary for Jacquet and
Rallis to conduct a very difficult 50-page analysis of the bi- H-invariant distributions on G
in order to show that the hypotheses of the Gelfand /Kazhdan Lemma are satisfied.

We have the following block matrix identity:

bd~lc—a 0 a b\ '[-a 0 _(a b
0 d—ca 'b c d 0 d) \c d
which is only valid when a and d are invertible. This shows that Hg~'H = HgH for
almost all g € G.

Definition. (G, H) is almost a Gelfand pair if there exists an anti-automorphism o of
order two such that Hg° H = HgH, for almost all g € G.

Theorem 5 [10]. Suppose « is an automorphism of order two of G such that Hg*H =
Hg 'H for almost all g € G. If 7 is an irreducible, H-distinguished supercuspidal represen-
tation of G then the contragredient 7 of 7 is equivalent to the representation 7*(g) = m(g®)
and dim Homp (7, 1) = dim Hompg (7,1) = 1.

Corollary. If (G, H) is almost a Gelfand pair then it must be a supercuspidal Gelfand
pair.

So, for (GL(n), GL(n/2)xGL(n/2)), this reduces Jacquet/Rallis’ lengthy argument to
the above matrix identity. Of course, Jacquet/Rallis’ result applies to arbitrary irreducible,
admissible representations and not just supercuspidal representations. We will discuss
some of the ingredients in the proof in the next section.

In the present context, Murnaghan and I [12] have an analogue of Theorem 2 which
gives a weak solution to the classification problem. Since it is rather technical to state, we
will not state it here.

We remark that distinguishedness may be correlated to the existence of a pole of the
exterior square L-function, in much the same way that distinguishedness for
(GL(n,E),GL(n, F)) is related to the existence of a pole of the Asai L-function. There
also is a relation with reducibility of induced representations of classical groups and it
is well known that the self-contragredient representations are expected to be lifts from
classical groups. We refer to [12] for details and references for these things.

§6. Character theory and the proof of Theorem 5.— If V is the space of 7
and V' is the space of 7, then we note that V' embeds in the space V* of linear forms on
V. In particular, v € V corresponds to the linear form v — (v,—) on V. The pairing

(—,—) is the natural pairing on V' X V and it extends in an obvious way to a pairing on

(‘N/* X ‘N/) U(V xV*). The elements of V* are sometimes referred to as “generalized vectors”
associated to 7. Similarly, V* is the space of generalized vectors for 7. If f € C°(G) and

A € V* then we may define m(f)A € V* by
(m(H)N ) = (N7 (f)o),
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where f(g) = f(g~!) and ¥ € V. In fact, m(f)A lies in V. Consequently, given generalized
vectors A € V* and A € V* there is an associated distribution

0, 5(f) = (T(SHAA).

It is natural to refer to such distributions as generalized matriz coefficients because they
generalize the matrix coefficients f, 3(g) = (7(g)v,?), where g€ G,v eV and v € V.

For harmonic analysis on H\G, the generalized matrix coefficients of most interest
are the coefficients ©, 5 for which A € Hompy(7,1) and A € Homp(m,1). We call these
spherical matrix coefficients.

If (G, H) is a Gelfand pair and 7w and 7 are distinguished then, up to scalar multiples,
there is a unique nonzero spherical matrix coefficient of 7. This spherical matrix coefficient
should be viewed as a symmetric space analogue of the character distributuion trz(f) of
7. One can ask whether these objects enjoy the same analytic properties (such as local
integrability and smoothness on the regular set) established for the character distributions
by Harish-Chandra (using various results of Howe). Indeed this is the case for pairs of the
form (H(FE),H(F')), where H is a connected reductive F-group and E/F is quadratic. (See
[8]) However, Rader and Rallis [23] have studied this problem for general pairs (G, H)
and they have shown the precise extent to which Harish-Chandra’s results fail to generlize
nicely.

Let us now give a sketch of the formal argument which underlies the proof of the
theorem. For the sake of convenience and to simplify our exposition, we now assume that
G has trivial center. Assume 7 is supercuspidal, as in the hypothesis of the theorem.
Note that if f, 5 is a matrix coefficient of m then, since 7 is supercuspidal, we have f, 5 €
C>®(@). In addition, f, 5 = f5. is a matrix coefficient of #. So if 7 is a supercuspidal
H-distinguished representation of G with spherical matrix coefficient © A4 and it f5. is
a matrix coefficient of 7 then the quantity O, 5 (f5,0) is well defined. A straightforward
generalization of the Schur orthogonality relations shows that

@A,S\(fﬁ,v) = d<7r)71<)‘7 T)> <’U, )‘>7

where d() is the formal degree of .

Unfortunately, © A4 Is not a true matrix coefficient, however, it may be realized, in
a suitable sense, as a limit of matrix coefficients fy,, ,. For the moment, in order to
provide a formal heuristic, we will pretend that © A coincides with a matrix coefficient
fuw i, where w and w are H-fixed vectors. To legltlmlze this heuristic, one must engage in
various technical manipulations involving approximations of ©, 5 by matrix coefficients.

Proceeding formally, we now let ¢ = fi, wfs0 € CX (G) Rader and Rallis have
produced a symmetric space analogue of the Weyl integration formula which formally

looks like: )
dg = —/Atmwwt@T. t) dt,
Je@ =30 1801 (9], 0

where: (i) we are summing over classes of “Cartan subsets” T'of H\G, (ii) A is a symmetric
space analogue of the Weyl discriminant, and (iii) (ID;‘CE _(t) is a type of orbital integral of
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[5,0(t) which represents an average over the double coset HtH. So we have a fundamental
identity

Am) () 03 = 3 o [IAO1 a0, (1) .
T

This identity, though we have obtained it by dubious means, is actually valid if f,, 5 is
interpreted as the smooth function, given by Rader and Rallis, which represents ©, 5 on
the (G, H)-regular set. ’

Now let o be the anti-involution g% = (¢%)~!, where « is as in the hypothesis of the
theorem. We observe that f;,(97) = (v,7(¢97)0) = (7(g*)v, ) is a matrix coeflicient of
7*(g) = m(g“). Since

d(m) " A B0, ) = /G o(g) dg = /G (g% dg

is nonzero for suitable v and v and since this is an average of a matrix coefficient of m against
a matrix coefficient of 7¢, Schur orthogonality implies that m must be equivalent to 7.
Thus we may choose a nonzero intertwining operator I : V. — V such that I(w(g)v) =
7*(g)I(v) for all g € G and v € V. Consequently,

fo(g”) = (n(g*)v, 0) = (I1(0), 7(9)I(v)) = f1ew).1-2()(9)-

It follows that

/G (g%) dg = d(m) "2\, I (5), X).

This yields the identity . }
(A 0) (v, A) = (A L)) (IT7H(©), A).

The theorem follows immediately from this identity, though this may not be obvious.
Indeed, fix ¥ such that (\,7) # 0. Since we know that v may be chosen so that (v, \) # 0,
we see that (I71(2),\) # 0. Now letting v vary, we deduce that I(ker ) = ker A. This
seems to contradict the fact that A and A were chosen independently. The only explanation
of this is that both Homp (7, 1) and Homg (7, 1) have dimension one and thus we essentially
have no choice when choosing A and A. This completes the formal argument. The precise
details of the proof of the theorem are in [10].
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ON FUNCTORIALITY OF ZELEVINSKI INVOLUTIONS

HIRAGA, KAORU

Let F' be a p-adic field and G a connected reductive algebraic group
defined over F. For simplicity, we assume that G is quasi-split. We
denote by Wy the Weil group of F. Let LG = G x Wy be the L-
group of G. We denote by L the set of standard Levi subgroups
of G. For M € L% we denote by r(M) the semisimple split F-
rank of M. Let II(G) be the set of equivalence classes of irreducible
admissible representations of G(F') and C[II(G)] the space of virtual
characters of G(F'). The parabolic induction defines a homomorphism
i, . C[II(M)] — C[II(@)] and the (normalized) Jacquet functor de-
fines a homomorphism r§; : C[II(G)] — C[II(M)]. Following S. Kato
[T1], we define the Zelevinski involution D¢ by

DG == Z (—1)T(M)Zf4 @) T]C\;/[.

MeL®
Let {M} be the set of associate standard Levi subgroups of M. We
say that m € II(G) is of type {M,} if r§; (7) is a non-zero linear
combination of supercuspidal representations of M, (F). We put r, =
r(M,). For m € II(G), we define

dg<7'(') = (—1)T”Dg(ﬂ').
A.-M. Aubert [4, 5] proved that dg() is irreducible. Thus the Zelevin-
ski involution preserves the irreducibility. It seems natural to con-
sider the relation between the Zelevinski involution and the conjec-
tural Langlands functoriality. Nevertheless the Zelevinski involution
does not preserve the L-packets. We consider the A-packets conjec-
tured by J. Arthur [3, Conjecture 6.1]. For a Langlands parameter
¢ Wp x SU3(C) — LG, we denote by II4(G) the corresponding
conjectural L-packet. Although SU,(C) is isomorphic to SLy(C), we
denote the second factor of this group by SU,(C) in order to distin-
guish it from the factor SLy(C) used to define the Arthur parameters
in [3]. Let
7,0 : WF X SUQ(C) X SLQ((C) — LG

be an Arthur parameter of G. We put

Sy = Cent(1, G,

Sy = S¢/Sg : Zg,
where S is the identity component of Sy and Z}, is the subgroup of

the center Zg of G consisting of the elements fixed by I' = Gal(F/F).
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Let II;(G) be the conjectural A-packet of ¢ and Il (G) the L-packet
corresponding to 1. We fix Whittaker data y of G(F'). This determines
the base point 7, € Ils, (G) as in [3, §6]. For 5 € Sy, and 7 € II4(G),
we define (5, 7|m,) as in [3, Conjecture 6.1]. Then it is conjectured
that (-, m|m,) is an irreducible character of S;,. We say that a vir-
tual character # € C[II(G)] is stable if 6 is stable as a distribution
on G(F). Let C[II(G)]* be the space of stable virtual characters of
G(F) and C[I1,(G)] the subspace of C[II(G)] generated by I, (G). We
put C[IL,(G)]* = C[II(G)]** N C[II(G)]. As F is a p-adic field, the
following hypothesis is believed.

Hypothesis 1. The map
7€ T4(G) — (-, 7lmy) € TI(S,)
is injective, where I1(Sy) is the set of irreducible characters of Sy, and
dim C[I1,(@)]* = 1.

In this article, we assume the Arthur conjecture [3, Conjecture 6.1]
and this hypothesis.

Now we turn to the Zelevinski involution. We identify SUy(C) with
SLy(C) and define d(v)) by

d()(w x t x u) =(w X u X t),
wXxtxueWprx SUy(C) x SLy(C).

Then d(v) is an Arthur parameter of G' constructed from 1 by inter-
changing the role of SUy(C) and SLy(C).

Conjecture 2.
de(Iy(G)) = Iy (G).

Since Sy = Sq(y), we may identify S, with Sy(,). We denote the base
point in Iy,  (G) by T,y

Conjecture 3. There exists a one-dimensional character p of Sy, which
satisfies

(S, da(m)|may) = pu(s)(s, 7lmy),
for all's € Sy.

If Sy = {1}, then II4(G) = {m} and Il4y(G) = {may}. The
following conjecture is a special case of Conjecture 2.

Conjecture 4. If 1 satisfies S, = {1}, then
dg(my) = Ty

In general, nevertheless, dg(m,) may not be equivalent to mg,. If
G = SLsy and if ¢ corresponds to an induced representation of G which
is a direct sum of two irreducible tempered representations, then dg

interchanges these two representations. Thus dg(my) # 7,y
2



In the case that G = GL,, Conjecture 2 follows from the results
of C. Moeglin and J.-L. Waldspurger [20]. Recently, K. Konno and
T. Konno have checked that Conjecture [2 is compatible with their
candidates for the A-packets of G = U(2,2).

Conjecture Bl implies that the Zelevinski involutions behave well un-
der the endoscopic transfers. Thus it turns our attention to the relation
between the Zelevinski involutions and the endoscopic transfers. Since

i§ (C[I(M)]*h) C C[II(G)]*t and r§,(C[II(G)]*!) C C[II(M)]**, we have
D¢/(C[I(G)]) = CIL(G)]™.

Let (H, H, s,&) be (standard) endoscopic data. For the sake of brevity,
we assume that H =2 “H. Unfortunately the existence of the endoscopic
transfer is still hypothetical. In this article, to define the endoscopic
transfer of virtual characters, we assume the fundamental lemma for

groups [1, Hypothesis 3.1] and for Lie algebras [21, Conjecture 1.3].
Let

Tran$ : C[II(H)]* — C[II(G)]

be the endoscopic transfer from H to G. Let Ay (resp. App) be a
maximal split torus of G (resp. H). We put a(G) = dim(Aj) and
a(H) = dim(App). Then we have the following theorem.

Theorem 5. Assume the fundamental lemma for groups and for Lie
algebras. Then we have

D¢ o Trang = (—1)“<G)_“(H) Trang oDy.

By using this theorem, we can reduce Conjecture 2] to Conjecture [l
Moreover, we can show that Conjecturedimplies the following formula;

(5, da(m)|may) = (5, da(my)|ma) (8, 7lmy),

where (-,dg(my)|may) is a one-dimensional character of S,. This is
Conjecture [3]

To prove Theorem [B, we show some properties of the double cosets
of the Weyl groups (a generalization of [7, Proposition 2.7.7]) and an
analogue of the geometric lemma [0, Lemma 2.12].

We fix an F-splitting (By, Ty, {Xa}) of G, an F-splitting (Bu o, Tro,{Ya})
of H, a D-splitting (B, 7, {Xs}) of G and a T-splitting (Bx, T, {Va})
of H. Then we may identify Ty (resp. Ty o) with 7 (resp. Tz). We
may assume that Ay C Ty and that Ayy C Ty We say that a
subtorus of Ay is standard if it is equal to the split component of the
center of a standard Levi subgroup of G. We assume that s € T,
&(Ty) =T and £(By) C B. Letig : Ty — 1o be the dual homomor-
phism of {711 T — Ty We may assume that io(Ag) is a standard
subtorus of Ay. We identify Ay o with the image ig(Amo) in Ap. Put
MH = Cent(AHp, G)
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We discuss the properties of the double cosets of the Weyl groups
with respect to the endoscopic groups. Let

Q(G) = Norm(Ay, G)/ Cent(Ag, G),
Q(H) = Norm(Ap, H)/ Cent(Apo, H),
be the Weyl groups. We denote the set of roots of (G, Ag) (resp.
(H, Anp)) by R(G) = R(G,Ao) (resp. R(H) = R(H, Apy)). For

wy € Q(H), there exists a unique wg € Q(G) which satisfies the fol-
lowing three conditions.

1) we(Amo) = Anyo,
2) walay, = wn,
3) wal R+ (My)) > 0.

By identifying wy with wg, we may regard (H) as a subgroup of
Q(G). For M € L, we put

Q(G)MJ{ = {w € Q(G)|W(AH70) D) AM},
where Aj; is the split component of the center of M. We also put
Dy = {we (UG yn) w(RT(M)) > 0}.

Let o € RY(H) and w € (Dy)~". Choose & € R*(G) whose restriction
to Apo is a. We say that wa is positive (and write wa > 0) if wa is
contained in R*(G). It is not hard to show that the positivity of wa
does not depend on the choice of &. We define Dy i by

Dy =A{we (DM)71| w(R*(H)) > 0}.
Lemma 6. (1) The set Dy is a system of representatives for
QMNUC) e, /QUH ).
(2) For w € Dy, put
M,, = Cent((w o ig) ' (An), H),
then M, is a standard Levi subgroup of H.
For L € £H we put
Dyprp={wé€ Dyu|M, =L}
and
Qp HL = JjDM,H,L~

Then we have the following formula, which is a generalization of [7,
Proposition 2.7.7].

Proposition 7.

5 (1) g = (1O (1)

MeLG
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Let “M, be the L-group of M,. Then we may regard “M, as a
subgroup of “H. Since G is quasi-split, we may regard Q(G) as a sub-
group of Q(G,Ty). The choice of the splittings defines an isomorphism
Q(G, Ty) — UG, T). We choose a representative 7, € Norm (7, G)
of

w e QG) C UG, Ty) =G, T).
We put s, = Intn,(s) and &, = Intn, o & Then (VM,, M, s., &)
is endoscopic data of M. We choose absolute transfer factors of these
endoscopic data and choose Haar measures of standard Levi subgroups
and tori suitably. The following formula is an analogue of the formula
of Bernstein—Zelevinski [6, Lemma 2.12].

Proposition 8. Assume the fundamental lemma for groups and for
Lie algebras. Then we have

r$, o Tran = E Tran%w orﬁw.
WGDM,H
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CAP automorphic representations of low rank groups *

Takuya KONNO T
April 22, 2003

Abstract

In this talk, I report my recent joint work with K. Konno on non-tempered
automorphic representations on low rank groups [KK]. We obtain a fairly complete
classification of such automorphic representations for the quasisplit unitary groups
in four variables.

1 CAP forms

The term CAP in the title is a short hand for the phrase “Cuspidal but Associated to
Parabolic subgroups”. This is the name given by Piatetski-Shapiro [PS83] to those cuspi-
dal automorphic representations which apparently contradict the generalized Ramanujan
conjecture. More precisely, let G be a connected reductive group defined over a number
field F', and G* be its quasisplit inner form. We write A = A for the adéle ring of F'. An
irreducible cuspidal representation 7 = @), 7, is a CAP form if there exists a residual
discrete automorphic representation 7* = @), m; such that, at all but finite number of v,
m, and 7, share the same absolute values of Hecke eigenvalues.

It is a consequence of the result of Jacquet-Shalika [JS8Tal, [JS81b] and Moeglin-
Waldspurger [MW89] that there are no CAP forms on the general linear groups. On
the other hand, for a central division algebra D of dimension n? over F'*, the trivial
representation of D*(A) is clearly a CAP form which shares the same local component,
at any place v where D is unramified, with the residual representation 1gz(,,4). On the
other hand, a quasisplit unitary group Ug,p(3) of 3-variables already have non-trivial CAP
forms, which can be obtained as ¢-lifts of some automorphic characters of U, (1) [GRI0],
[GRI1]. But the first and the most well-known example of CAP forms are the analogues
of the 6y representation by Howe-Piatetski-Shapiro [Sou88| and the Saito-Kurokawa rep-
resentations of Spy [PS83]. Also Gan-Gurevich-Jiang obtained very interesting example
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of CAP forms on the split group of type Gy [GGJ02] (see also the article by Gan in this
volume).

In any case, the local components of CAP forms at almost all places are non-trivial
Langlands quotients by definition, and hence non-tempered in an apparent way. To put
such forms into the framework of Langlands’ conjecture, J. Arthur proposed a series of
conjectures [Art89]. The conjectural description is through the so-called A-parameters,

homomorphisms ¢ from the direct product of the hypothetical Langlands group Lg of F'
with SL(2,C) to the L-group *G of G [Bor79]:

Y : Lp x SL(2,C) — LG,

considered modulo a—conjugation. We write ¥(G) for the set of @—conjugacy classes of
A-parameters for G. By restriction, we obtain the local component

Yy Lp, x SL(2,C) — @,

of ¢ at each place v. Here the local Langlands group Lp, is defined in [Kot84, §12],
and *G, is the L-group of the scalar extension G, = G ®p F,. The local conjecture,
among other things, associates to each 1, a finite set II, (G,) of isomorphism classes of
irreducible unitarizable representations of G(F,), called an A-packet. At all but finite
number of v, I, (G,) is expected to contain a unique unramified element 7. Using such
elements, we can form the global A-packet associated to 1

Hd,(G) = {® Ty (1) T € HWU(Gv)v VU; } '

: (i) m = 7!, Vo

Arthur’s conjecture predicts the multiplicity of each element in II,(G) in the discrete

spectrum of the right regular representation of G(A) on L*(G(F)As\G(A)). Here 2 is

the maximal R-vector subgroup in the center of the infinite component G(A) of G(A).
We say an A-parameter 1 is of CAP type if

(i) ¢ is elliptic. This is the condition for II,,(G) to contain an element which occurs in
the discrete spectrum.

(ii) ¥|sL2,c) is non-trivial.

According to the conjecture, the CAP automorphic representations of G(A) is contained
in some of the global A-packets associated to such A-parameters. In this talk, we shall
classify the CAP forms by such parameters along the line of Arthur’s conjecture, in the
case of the quasisplit unitary group Ug/r(4) of four variables. Although our description
of such forms tells nothing about the character relations conjectured in [Art89], it is quite
explicit and fairly complete. We hope to apply this to certain analysis of the cohomology
of the Shimura variety attached to GUg,r(4).

2 Parameter consideration

Global case Take a quadratic extension E/F of number fields and write o for the
generator of the Galois group of this extension. Let G = G, := Ug/r(n) be the quasisplit
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unitary groups in n variables associated to E/F. Later we shall mainly be concerned
with the case n = 4. The L-group LG is the semi-direct product of G = GL(n,C) by the
absolute Weil group Wg of F, where W acts through Wr/Wg ~ Gal(E/F) by

1

B ~1
pca(o)g=Ad(L,)!g", I,:=

(-1

Thus an A-parameter ¢ for G is determined by its restriction to Lg x SL(2,C), which is
just a completely reducible representation:

Vlcpxsrec) = @ o, & Pd;-
=1

Here II; is an irreducible cuspidal representation of GL(m;, Ag) enjoying the following
properties:

e o(II;) :=1I, o o is isomorphic to the contragredient IT;.

o Its central character wy, restricted to A* equals wgﬂ“miﬂ, where wg/p is the

quadratic character associated to E/F by the classfield theory.
e Some condition on the order of its twisted Asai L-functions at s = 1.

pa is the d-dimensional irreducible representation of SL(2,C). We note that 1) is elliptic
if and only if its irreducible components ¢y, ® pg4, are distinct to each other. The S-group

Su(G) = mo(Cent(,G)/Z(G))

is isomorphic to (Z/27) !, where my(e) stands for the group of connected components.
This plays a central role in the conjectural multiplicity formula.

Local case Similar description for the A-packets of the unitary group G = G, associated
to a quadratic extension E/F of local fields is also valid. For each A-parameter ¢, we
have the associated non-tempered Langlands parameter

wl* 0 L
@,:Epawl—wp(w, F )E G.

—1/2
0 |wlz"

Here the “absolute value” | |r on Lp is the composite | |p : Lp — W2 = FX g RY.
(rec denotes the reciprocity map in the local classfield theory.) In Arthur’s conjecture, it
was imposed that the L-packet I, (G) associated to ¢y should be contained in II;(G).
We also have the S-group Sy(G) as in the global case. We postulate the following:

Assumption 2.1. There ezists a bijection I1,(G) 3> m —— (5 — (5,m)y) € II(Sy(G)).
Here I1(Sy(G)) is the set of isomorphism classes of irreducible representations of Sy(G).
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Now for n = 4, the possibilities of {(d;, m;)}; for elliptic A-parameters with non-trivial
SL(2,C)-component are given as follows.

(1) Stable cases. {(4,1)}, {(2,2)}.

(2) Endoscopic cases.

from [Kon98§]| that all the contribution of the corresponding global A-packets belong to the
residual spectrum. On the other hand, Il (G) \ I, (G) is expected to be non-empty in
the rest cases. We shall use the local #-correspondence to construct the missing members.

3 Local #-correspondence

Local Howe duality First let us recall the local #-correspondence. We consider an m-
dimensional (non-degenerate) hermitian space (V, (, )) and n-dimensional skew-hermitian
space (W, (, )) over E. We write G(V') and G(W) for the unitary groups of V' and W,
respectively. If we define the symplectic space (W, ((, ))) by

W:=VerlW, ((vowdeuw): = %TTE/F[(Ua v)o ((w, w))],

Then (G(V), G(W)) form a so-called dual reductive pair in the symplectic group Sp(W)
of this symplectic space:

ww : G(V) x GW) 3 (9,9) — g®@g" € Sp(W).

Fixing a non-trivial character ©¥r of F', we have the metaplectic group of W which is a
central extension

1 — C' — Mpy, (W) — Sp(W) — 1.
This admits a unique Weil representation wy, on which C' acts by the multiplication
[RRI3]. For each pair § = (&,¢’) of characters of £ satisfying {|px = W /s Elpx = WE )y
we have the corresponding lifting tywe : G(V) X G(W) — Mpy, (W) of vy w:

TV, w,e

G(V) x GW) —— Mpy, (W)

H l

G(V) x GW) 225 Sp(W)

The composite wy,we := wy o tywge is the Weil representation of the dual reductive pair
(G(V),G(W)) associated to €. It is the product of the Weil representations wy¢ of G(V)
and wy ¢ of G(W).



We write Z(G(V),ww,) for the set of isomorphism classes of irreducible admissible
representations of G(V') which appear as quotients of wy¢. For my € Z(G(V),ww,), the
maximal 7y -isotypic quotient of wy e is of the form my ® O¢(my, W) for some smooth
representation O¢(my, W) of G(W). Similarly we have Z(G(W),wye) and O¢(my, V)
for each my € Z(G(W),wve). The local Howe duality conjecture, which was proved
by R. Howe himself if F' is archimedean [How89] and by Waldspurger if F' is a non-
archimedean local field of odd residual characteristic [Wal90], asserts the following;:

(i) O¢(my, W) (resp. O¢(mw,V)) is an admissible representation of finite length of
G(W) (resp. G(V)), so that it admits an irreducible quotient.

(ii) Moreover its irreducible quotient f¢(my, W) (resp. O¢(mw, V')) is unique.
(iii) my = Oe(my, W), mw — Oe(mw, V) are bijections between Z(G(V),wwe) and
Z(G(W),wye) converse to each other.

Adams’ conjecture A link between the local §-correspondence and A-packets is given
by the following conjecture of J. Adams [Ada89]. Suppose n > m. Then we have an
L-embedding iy, : “G(V) — *G(W) given by

e (w) <g . ) xw ifweWg,

iv,w,g(g Xw) =
( 1 g) X Wy it w = w,,
Jn—m

where w, is a fixed element in Wr \ Wg and

(-1

~

Let T : SL(2,C) — Cent(ivwe, G(W)) be the homomorphism which corresponds to a

~

regular unipotent element in Cent(iy,we, G(W)) =~ GL(n —m, C) (the tail representation
of SL(2,C)). Using this, we define the #-lifting of A-parameters by

Ovwe 1 V(G(V)) 2 ¥+ (ivweo ') - T € U(GW)).

Conjecture 3.1 ([Ada89] Conj.A). The local O-correspondence should be subordinated
to the map of A-packets: 11,(G(V)) — o,y (4) (G(W)).

Here we have said subordinated because Z(G(V),wwe) is not compatible with A-
packets, that is, I1,(G(V))NZ(G(V),ww,) is often strictly smaller than I1,(G(V)). But
when these two are assured to coincide, we can expect more:



Conjecture 3.2 ([Ada89] Conj.B). For V., W in the stable range, that is, the Witt
index of W is larger than m, we have

Mo GOV = | L (G(V), W).

Vidimg V=m

Now we note that our situation is precisely that of Conj. with m = 2 and W =
V @& —V. Moreover, we find that the A-parameters in the cases (2.b), (2.c), (2.d) in §
are exactly those of the form

Ovwe(), ¢ € W(G(V)).

e-dichotomy We explain the construction of the A-packets when F'is non-archimedean.
We need one more ingredient.

Proposition 3.3 (e-dichotomy). Suppose dimg V' = 2 and write Wy for the hyperbolic
skew-hermitian space (E?,( % 4§)). Take an L-packet 11 of Go(F) = G(W) and 7 € 11
[Rog90, Ch.11].

(i) 7€ Z(G(W),wye) if and only if

e(1/2, T x €6 pp)wn(—DAE/F,4bp) 2 = wp/p(— det V).

Here the e-factor on the right hand side is the standard e-factor for Gy twisted by £€'~!
defined by the Langlands-Shahidi theory [Sha90/. wn is the central character of the ele-
ments of Il and AN(E/F,vr) is Langlands’ \-factor [Lan70).

(ii) If this is the case, we have O¢(T,V) = (£ )1y Here (€7'¢)qqv) denotes the
character of G(V') given by the composite

det

G(V) = Ugp(1,F) 3 z/o(z2) — €€ (2) € C*.
v stands for the Jacquet-Langlands correspondentl of 7.

This is a special case of the e-dichotomy of the local #-correspondence for unitary
groups over p-adic fields, which was proved for general unitary groups (at least for su-
percuspidal representations) in [HKS96]. But since we need to combine this with our
description of the residual spectrum [Kon9§|, we have to use the Langlands-Shahidi e-
factors instead of Piatetski-Shapiro-Rallis’s doubling e-factors adopted by them. By this
reason, we deduced this proposition from the analogous result for the unitary similitude
groups [Har93] combined with the following description of the base change for Gs.

Lemma 3.4. Let 7 = w ® 7’ be an irreducible admissible representation of the unitary
similitude group GUg/p(2) ~ (E* x GL(2,F))/AF*, and write II(7) for the associated
L-packet of G2(F') consisting of the irreducible components of |c,ry. Then the standard
base change of II(7) to GL(2, E) [Rog90, 11.4] is given by w(det)n,, where 7l is the base
change lift of 7' to GL(2, FE) [Lan80).

n fact, the Jacquet-Langlands correspondence for unitary groups in two variables is defined only
for L-packets and not for each member of the packets [LL79]. We know that 7 — 7y certainly defines

a bijection between II and its Jacquet-Langlands correspondent. But we do not specify the bijection
explicitly here. See Rem. also.




Now we construct the A-packets. Our construction is summarized in the following
picture.

0c(e,12) T G(Wy) = Gu(F)

T4
G(V') Witt tower
0§(O,W2)
J-L corr. (
G(V) mv T G(W) = Ga(F)

95(.,‘/)

Each A-parameter of our concern is of the form

V) epxsrec) = Yilepxsoec) ® (€67 @ pa),

where 1, is some A-parameter for Gy. Take 7 € Il (G2) and let (V,(,)) be the 2-
dimensional hermitian space such that the condition of Prop. B3] (i) holds. If we write
Ty = Oe(1, V) = (€€ )ganm), then the result of [Kud86] tells us 7 := O (mv, W),
(7 € IIy,(Gs)) form the local residual L-packet Ily,(G4). We now suppose that there
exists a Jacquet-Langlands corresondent 7y, ~ (£€ 71)@1(\//)7’&/ of 7y on the unitary group
G (V') of the other (isometry class of) 2-dimensional hermitian space. Then Prop. B3 (i)
tells us that my ¢ Z(G(V'),ww, ¢). Yet its local #-lifting m_ := O¢(my/, W) to the larger
group G4(F) still exists. This is the so-called early lift or the first occurrence. Following
Conj. B2, we define

Hw(G;l) = {7Tj: | T € Hw(Gg)}
This gives sufficiently many members of the packet as predicted by Assumption 211

Example 3.5. (i) Suppose 11, (G2) is an L-packet consisting of supercuspidal elements.
For T € 11, (G2), my is the Langlands quotient JG4 (&e71 |1/2 ®T), where Py is a parabolic
subgroup with the Levi factor Rg/pG,, x Gs. On the other hand the early lift m_ of the
supercuspidal T is again supercuspidal. Thus I1,(G4) consists of non-tempered members
and supercuspidal elements.

(ii) On the contrary, we take & = &' and consider 11y, (Gs) consists of either the Steinberg
representation dq, or the trivial representation 1, .

o Og, lifts to my = 1gqvy, where V is anisotropic. myr = 0g,. T4 = J}C);l4(| |1/2 ® 0¢,)
and w_ 1s an irreducible tempered but not square integrable representation.

o 1g, lifts to my = 1y but V' is hyperbolic this time. wy: is again 1goyry but this
should be viewed as the Jacquet-Langlands correspondent of the A-packet {1gn}.
We have 7, = J%‘(IGL( ) F1®1)|det |1/2), where Py is the so-called Siegel parabolic

subgroup with the Levi factor GL(2, E). Obviously m_ = ng“(| |1/2 ® da,). This last
representation is shared by the two packets considered here.



Real case We end this section by some comments on the case F/F = C/R. Similar
results are obtained by applying the argument of Adams-Barbasch [AB95]. In fact, the
local f-correspondence between unitary groups of the same size is described quite explic-
itly and in full generality in [Pau98]. Their argument also works in the present case. Let
me explain some example.

We write G, , = U(p, q). For a regular integral infinitesimal character A = (A, A2) for
G111, consider the extended L-packet:

]:[/\ = {5f17 6i17 52,07 50,2}

consisting of the discrete series representation of various GG, ;, with the infinitesimal charac-
ter X. The subscript p, ¢ indicates that d5 , lives on G} .. We can write £'67"(2) = (2/2)",
Vz € C for some n € Z. An analogue of Prop B3 in the real case asserts that the local
-correspondence under the Weil representation wy, ¢ gives a bijection

O - I — 1L,

where n — A = (n — Ao, n — Aq).

If X is sufficiently regular, by which we mean |\; — n| > 1, then it is proved by J.-
S. Li [Li90] that 6¢(6(07;,), W2) is a non-tempered cohomological representation Aq(\),
where the Levi factor of the #-stable parabolic subalgebra q is u(1,1) & u(1)?. As for the
other elements 9, , € II,_x, 0¢(0,4, W2) is a discrete series representation Ag(\'). This
time g has the Levi factor u(2) @ u(1)?. The resulting A-packet 6¢(II,_) is exactly the
cohomological A-packet defined by Adams-Johnson [AJ87]. -

For the complete list of the packets both in the archimedean and non-archimedean
case, see our paper [KK].

One can easily check that the S-groups in the cases (2.b), (2.c), (2.d) satisfy Sy,(G4) >~
Sy, (G2) X Z/27Z. Now we define the bijection in Assumption 2.1 by

o (5,my)y = (5,T)y, on 5 € Sy, (Ga);
o (, my)y on Z/2Z equals the sign character if 7_ and trivial character otherwise.

For the other cases, only the first one in this definition is enough to give a complete
bijection. This finishes our local task.

Remark 3.6. In the above, we do not mention the definition of the pairing (., )y,. There
are several choices for this, and we can choose one by fixing a non-trivial character g of
F [LL79]. Also we did not specify the correspondence my +— my:, which is again a subtle
problem. In fact, we need to make a choice of (absolute) transfer factor as in [LL79]
which again involves a choice of Vg (appearing in N(E/F,v{r) in the transfer factor).
Using this specific transfer, we label the members of endoscopic L-packets of anisotropic
unitary group. The correspondence my +— Ty can be described in terms of these data, but
we do not go into details here.



4 Multiplicity formula

We now go back to the global situation where E/F' is a quadratic extension of number
fields. We note that there always exists a homomorphism Sy, (G4) 3 5+ 5(v) € Sy, (Gap)-
We can now state the main result of this talk. Although we treat only the number field
case, we believe the result holds also over function fields of one variable over a finite field
of odd characteristic.

Theorem 4.1. Let v be an A-parameter of CAP type for G4 = Ug/p(4). As was explained
in § [, we form the global A- packet 11,(G4) := @), Iy, (Ga,). Then the multiplicity m(r)
of m=Q), T € Iy(Gy) in L*(G(F)\G(A)) is given by

1 _ _
m(W)Im > @@ 60) 7,

5€8y(Ga) v

where the sign character €, is defined by

if U1 is a stable L-parameter
sgn
o= 0 and e(1/2, 9y 0667 = -1,
1 otherwise.

Here £(s,91 ® 55’_1) is the Artin root number attached to 1y, which equals the standard
e-function for T, (Go) x £€'7".

The proof divides into two parts. Our local construction together with the global 6-
correspondence shows that the multiplicity is no less than the right hand side. Note that
we also relies on the multiplicity formula of Labesse-Langlands for unitary groups in two
variables [LL79], [Rog90]. Then we prove a characterization of the image of such 6-lifts by
poles of certain L-functions, which gives the converse inequality. This also shows that all
the CAP forms for Ug/p(4) are obtained in the above as the contribution of the A-packets
we constructed. In particular the A-packets contains the sufficiently many members at
least for global purposes, so that our Assumption 2.1] is justified.
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Parabolic induction and parahoric induction

J.-F. Dat
March 26, 2003

1 Introduction

In the same way Eisenstein series theory is a masterpiece of the description
of the automorphic spectrum, the so-called parabolic induction and restric-
tion functors are prominent tools in the study of smooth representations of
a p-adic group G. Given a parabolic subgroup P of G with Levi component
M, we will note i% and rE respectively these functors. These are a priori
functors between categories of all smooth representations of G and M, but
it is well known that these functors restrict to (or respect) the subcategories
of admissible, resp. finite length, smooth representations. And actually it is
generally believed that only the latter category is relevant for automorphic
applications. For example the first interesting question for someone inter-
ested in automorphic spectral problems is the study of reducibility (and of
composition factors) of representations of G parabolically induced from irre-
ducible ones of M, especially when the latter are local components of some
automorphic representation. On this question we will say almost nothing.

But among all automorphic aspects, especially thinking to the links with
Galois representations, is the study of congruences between automorphic
forms as in the pioneering works of Serre and Ribet. This leads naturally
to studying not only complex but finite fields-valued and even ring-valued
smooth representations. For example one might be interested in studying
stable Z;-lattices in Q-representations. In this respect, the most promi-
nent work is that of Vignéras for GL,, : she classified the finite coefficients
smooth dual a la Bernstein-Zelevinski and a la Bushnell-Kutzko, she also
could thoroughly study lattices as above, and eventually she got a beautiful
local Langlands’ type correspondance modulo a prime [ and compatible with
Harris-Taylor-Henniart’s one through reduction of lattices. Unfortunately all
this was possible only by Gelfand’s derivatives theory and Bushnell-Kutzko’s
types theory which at present only exist for GL,,.



In this note we want to explain a general and systematic approach to the
study of ring-valued smooth representations. The proofs may be found in [3].
Our general motivation is a possible further application to finite coefficients
local Langland’s functoriality.

The first systematic algebraic approach to smooth representation theory
was that of Bernstein ; he recognized very soon the interest of working with
more general smooth representations than just admissible ones. In this re-
spect, he proved highly non trivial abstract (finiteness and cohomological)
properties of parabolic functors and relevant categories. However his results
work only for complex coefficients (more generally for coefficients in an alge-
braically closed field of banal characteristic). Our first task has been thus to
try and extend his results to general ring coefficients. His approach hinges
on a good “spectral” understanding of the parabolic functors, ours hinges
rather on a tentative of “geometric” understanding. We use Bruhat-Tits’
bulding theory and especially the parahoric groups they have defined after
Iwahori’s pioneering work. These are compact open subgroups in contrast
with parabolic subgroups which are closed non-compact.

2 Problems arising from Bernstein’s theory

Let R be a ring such that p € R*. Let us write Modg(G) for the category of
all smooth R-valued representations (recall that this merely means that any
vector is fixed by an open subgroup). We will sum up Bernstein’s theory [2],
[1] in the following

Theorem 2.1 (Bernstein)

i) There is a categorical decomposition Modc(G) = @y Mode(G)
where by definition ModC(G)M’7T is the full subcategory of all objects
all wrreducible subquotients of which have cuspidal support conjugate to
some unramified twist of (M, ) (and thus the sum runs over conjugacy-
unramified-twisting classes of such pairs).

ii) The category Modc(QG) is noetherian. In particular, for any compact
open subgroup H of G, the Hecke algebra Hc(G, H) of compactly sup-
ported bi-H -invariant distributions is a noetherian algebra.

iii) Parabolic induction functors send finitely generated complex represen-
tations on finitely generated representations (the corresponding state-
ment for restriction is also true and easy).



w) Parabolic restriction r5 is right adjoint to opposite parabolic induction
1'% for complex representations (highly non-trivial fact, not to be con-
fused with usual Frobenius reciprocity).

Bernstein’s arguments for the proofs of these statements rest heavily on
the following

Fact 2.2 Let w be a complex irreducible smooth representation of G, the
following assumptions are equivalent

i) m is cuspidal (meaning that its matriz coefficients are compact-modulo-
center).

i) ™ never appears as a subquotient of a parabolically induced representa-

tion i% (o).

ii1)  is a projective object in Modc(G) (“modulo center”).

Replacing C by a general algebraically closed field, the three above as-
sumptions may be distinct as soon as the characteristic divides the order of
some compact subgroup of G. As a consequence, point i) of the theorem is
definitely not true over this kind of fields and no substitute is even conjec-
tured in general. However, points ii), iii) and iv) are expected to hold true
in general, even on (noetherian) rings of coefficients.

3 Buildings and parahoric subgroups

3.1 Assume G = &(F) for some reductive algebraic group & over the p-
adic field F. Bruhat and Tits have attached to the pair (&, F') an euclidean
“extended” building Zs. This is a metric space isomorphic to a product of
a euclidean space and a polysimplicial complex with isometric polysimplicial
action of G.

Example : In the case of SL,, the euclidean part is trivial and the polysim-
plicial part is just simplicial of dimension n — 1. The set of vertices is in
bijection with the homothetic classes of lattices in F™, while d-simplices cor-
respond to collections of lattices (w;)i—o,...4—1 such that wy C w3 C -+ C
wy—1 C wp'wp. This together with obvious incidence relations give the data
of a combinatorial polysimplex, and Zg;, is the standard geometric reali-
sation of this combinatorial polysimplex. One can then identify Zg;, with
the spaces of homothetic classes of norms on F™. When n = 2 we get a
homogeneous tree, each vertex belonging to ¢ + 1 segments.



In the case of a torus T, the simplicial part is trivial and the euclidean
part is just X7 (T) ® R (rational cocharacters).

When = € Zg, we note G, its fixator in G. It is a compact open subgroup,
and it is well known that any compact open subgroup is contained in such a
fixator. This group G, has a pro-p-radical noted G}. In general G,/G7 is
isomorphic to the group of rational points of some reductive group over the
residue field kr of F.

Example :  For SL,, the stabilizer of some vertex is always GL,(F)-
conjugated to SL,(Op) where O is the ring of integers of F'. The reduction
map to kg sets up a bijection between parabolic subgroups of SL, (kr) and
fixators of points in the simplicial star of the vertex (i.e. the union of all
facets whose closure contains the vertex).

3.2 Let M be a F-Levi subgroup of G. Bruhat and Tits have also shown the
existence of a (non-unique) isometric and M-equivariant embedding Z); —
Zg. We will fix such an embedding and consider Z,; as a subset of Zg.
Taking up the foregoing notations with M in place of G, it is obvious that
M, = G, N M and it is also true that M = GF N M. This allows us to
use the following general notation : if H is a subgroup of G, we will note
H,:=HNG, and Hf := HNG}.

Example : If T the diagonal torus of SL, and u € X,(T) is a rational
cocharacter, we can attach to p the class of the lattice Y ., p(wp)iOre;
where e; is the standard basis of F™. This extends to an embedding of
X (T)®R < Zgy, , and the simplicial structure which is drawn on X, (7)®R
by the ambient building is that attached to the hyperplane arrangement of
X.(T) ® R given by equations {a(z) = k},, for all roots o and k € Z.

3.3 Let P be a parabolic subgroup of G with Levi component M, and
let P be the opposed parabolic subgroup . It is known that the group G
has a so-called Iwahori decomposition, meaning that the product map U x
M x U; — G is a bijection, whatever ordering is chosen to make the
product. We will briefly account for such decompositions by the simple
notation G = U MU . Notice that G} by definition is a normal subgroup
of G, so that the set G, p := P,G/ is a group. This group will be called a
parahoric subgroup of G ; this differs slightly from the Bruhat-Tits definition.
It also has a Iwahori decomposition G, p = UxMxU:.

3.4 Given z, M and P, we would like to construct functors Modg(M,) —
Modg(G, p) — Modgr(G,) with model the classical construction of parabolic
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induction Modgr(M) — Modgr(P) — Modg(G) where the first functor is
inflation and the second one is induction. The problem in the parahoric sit-
uation is the inflation stage which is impossible since M, is not a quotient of
G, p. Next lemma is intended to solve this problem. We need some notations
: for any subgroup H of G we will note Z[i][H | the algebra of all Z[%]—Values
compactly supported distributions. If K is pro-p-subgroup of H, we will note
ex the element of Z[%][H | given by the normalized Haar measure on K.
Lemma 3.5 There is a central and invertible element z, p € Z[i][GLp] such
that e, p == z;}geUzeﬁI is an idempotent in Z[%][Gx,p].

Notice that by our assumption p € R*, the algebra Z[é][Gw] naturaly
acts on any smooth R-valued representation of G, p, in particular on the
space Cy(G,) of smooth R-valued functions on G,. Thus we may define
E,p :=¢c,;p.Cx(G;). This R-module is endowed with smooth action of G,
on the right and M, on the left, since M, normalizes ¢, p. We may thus
define functors

Rm,p . MOdR(GI)

and
pri MOdR(Mz) - MOdR(GCC)

7 W w— E,pQpu, W

where tensor products are taken with respect to adequate (right or left)
actions. The above lemma implies that I, p is left adjoint to R, p.

3.6 Given z and M, next question is to what extend these functors rely on
the choice of P. As already said, for any parabolic subgroup P containing M,
G, p is a parahoric subgroup of G,. But the map P — G, p is not injective
in general : for example if z is inside a maximal simplex, all G, p are equal
to G, which in this case is a Iwahori subgroup. But when one proves the
former lemma, one can also prove that the above functors actually depend
only on G, p and not on P. By the way this justifies the name “parahoric
induction /restriction”.

But the following question remains open : does parahoric induction really
depend on the parahoric subgroup G, p 7

Thinking to the parabolic analog, it is well known that even for com-
plex coefficients, the parabolic functors heavily depend on the choice of a
parabolic subgroup. In contrast, for a finite group of Lie type, it was shown
by Howlett and Lehrer [4] that the parabolic functors don’t depend on this



choice. Inspired by their work, we can restate our question of dependance in
purely algebraic terms :

Question 3.7 Fiz x, M and let P be a parabolic subgroup with Levi com-

gonent M. Do we have e, p € Z[%][Gx]f‘:x’ﬁgap and ¢, € Z[%][Gx]sx,psw,p

Next section will justify our interest in answering this question. The only
cases we can treat at present are summed up in

Proposition 3.8 i) If M is a minimal Levi subgroup, then the answer is
positive for any parabolic P with Levi component M.

i) In general, we have &, peyr+ € Z[i][GI]eaﬁex’peMj.

The second point is a direct consequence of Howlett and Lehrer’s results.

4 Applications of parahoric functors

Theorem 4.1 Fix a parabolic subgroup P with Levi component M and as-
sume that question [3.7] has a positive answer for any v € Iy. Then the
map
g.,pCp(G) — CR°(U\G)
fo= (g~ [y [(ug)du)

s an isomorphism of M, x G smooth R-representations, for any x € Iy;.

In order to stress up the scope of the displayed statement in the theorem,
let us explain some consequences. First for any x, M, P as above we get an
isomorphism of functors on R-representations

M, o
Resyi o1 =~ Ry, p o ResS®.

Notice that this immediately implies that parabolic restriction respects ad-
missibility, which is generally not known on non-Artinian rings of coefficients.
On another hand we get after little further work an isomorphism of functors,
still on R-representations,

ind% oI, p~i%oindy .
As an immediate application, this clearly shows that parabolic induction
sends finitely generated objects on finitely generated objects.
Next consequence rests on ideas of Bernstein and deserves a special treat-
ment



Corollary 4.2 Under the same hypothesis as in previous theorem, the func-
tor 1'% is left adjoint to the functor rk.

As an immediate application, we see that parabolic induction preserves pro-
jective objects while parabolic restriction preserves injective ones.
Resting on these results, we can then prove

Proposition 4.3 Assume now that the answer to [3.7 is positive for any
x,M,P. Then

i) For any compact open H , there is a compact-modulo-center subset Sy C
G supporting all cuspidal bi-H -invariant functions on G, regardless of
the ring of coefficients.

ii) The category Modz[%](G) is noetherian.

Other applications, to shape of reducibility points and to K-theory are
given in [3], under the same assumptions as in this proposition.

Recall now that our theorem rests on a basic assumption we cannot grant
in full generality. By the proposition in the former section, this assumption is
fulfilled when M is minimal, and in this case our theorem gives a real result
and the former proposition applies for any relative rank 1 group GG. By the
same proposition we can also state results on the “level 0 subcategory”. We
mention first :

Fact 4.4 (Moy-Prasad-Vigneras [6] +¢c) There is a decomposition
MOdZ[%}(G) = MOdZ[%](G)O @ MOdZ[%](G)O

where by definition Modz[;](G)o 18 the full subcategory of all objects generated

by their G} -invariants, x running through Zg (called the level O subcategory).
Moreover, the parabolic functors preserve level 0 subcategories.

For level 0 representations, our theorem and its consequences are listed in
Proposition 4.5 i) For any x, M, P, the morphism

et €x,p-Cp(G) — e+Cr(U\G)
fo= (g [, f(ug)du)

is an isomorphim of M, x G representations.
ii) On the level 0 subcategories, the functor 1'% is left adjoint to rf.

iii) The level 0 subcategory ModZ[;](G)O is noetherian.
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About proofs in [3]: that of the lemma is elementary algebra, that of the

theorem rests on a dynamical argument on the building inpired by work of
Moy-Prasad [5], that of the corollary rests on “completions” as in Bernstein’s
unpublished work [1], that of noetheriannity requires new other arguments.
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On Siegel modular forms of degree 2 with
square-free level

RALF SCHMIDT

Introduction

For representations of GL(2) over a p-adic field F' there is a well-known
theory of local newforms due to CASSELMAN, see [Cas|. This local theory
together with the global strong multiplicity one theorem for cuspidal auto-
morphic representations of GL(2) is reflected in the classical Atkin-Lehner
theory for elliptic modular forms.

In contrast to this situation, there is currently no satisfactory theory of local
newforms for the group GSp(2, F'). As a consequence, there is no analogue of
Atkin-Lehner theory for Siegel modular forms of degree 2. In this paper we
shall present such a theory for the “square-free” case. In the local context
this means that the representations in question are assumed to have non-
trivial Iwahori—invariant vectors. In the global context it means that we are
considering congruence subgroups of square-free level.

We shall begin by reviewing some well known facts from the classical the-
ory of elliptic modular forms. Then we shall give a definition of a space
Sp(To(N)@)ew of newforms in degree 2, where N is a square-free positive
integer. Table 1 on page 8 lies at the heart of our theory. It contains the
dimensions of the spaces of fixed vectors under each parahoric subgroup in
every irreducible Iwahori—spherical representation of GSp(2) over a p-adic
field F'.

Section 4 deals with a global tool, namely a suitable L—function theory for
certain cuspidal automorphic representations of PGSp(2). Since none of the
existing results on the spin L—function seems to fully serve our needs, we have
to make certain assumptions at this point. Having done so, we shall present
our main result in the final section 5. It essentially says that given a cusp
form f € Si(Io(N))"*", assumed to be an eigenform for almost all unramified
Hecke algebras and also for certain Hecke operators at places p|N, we can
attach a global L-packet 7y of automorphic representations of PGSp(2, Ag)
to f. This allows us to associate with f a global (spin) L—function with a
nice functional equation. We shall describe the local factors at the bad places
explicitly in terms of certain Hecke eigenvalues.



1 Review of classical theory

We recall some well-known facts for classical holomorphic modular forms.
Let f € Sk(I'o(N)) be an elliptic cuspform, and let G = GL(2), considered
as an algebraic Q-group. It follows from strong approximation for SL(2)
that there is a unique associated adelic function ®; : G(A) — C with the
following properties:

i) @r(pgz) = y(g) for all g € G(A), p € G(Q) and z € Z(A). Here Z is
the center of GL(2).

ii) ®r(gh) = ®4(g) forallg € G(A) and h € [], ., K,(N). Here K,(N) =

{(Z Z) € GL(2,Zp) : c€ NZp} is the local analogue of I'y(N).

i) ®r(g) = (f],9)(0) = det(9)*/?j(g,7)"*f(g(i)) for all g € GL(2,R)*
(the identity component of GL(2,R)).

Since f is a cusp form, @ is an element of L*(G(Q)\G(A)/Z(A)). Let 7y be
the unitary PGL(2, A)-subrepresentation of this L?-space generated by ®.

1.1 Theorem. With the above notations, the representation s is irredu-
cible if and only if f is an eigenform for the Hecke operators T'(p) for almost
all primes p. If this is the case, then f is automatically an eigenform for T'(p)
for allp{ N.

Idea of Proof: We decompose the representation 7; into irreducibles,
n; = @, m. Each m can be written as a restricted tensor product of lo-
cal representations,

o ® Tips mip a representation of PGL(2,Q,).

p<oo

Assuming that f is an eigenform, one can show easily that for almost all p we
have 7; , > m;,,. But Strong Multiplicity One for GL(2) says that two cuspidal
automorphic representations coincide (as spaces of automorphic forms) if
their local components are isomorphic at almost every place. It follows that
¢ must be irreducible. [

Thus to each eigenform f we can attach an automorphic representation
T = ®@m,. A natural problem is to identify the local representations m,
given only the classical function f. This is easy at the archimedean place:
Teo 18 the discrete series representation of PGL(2,R) with a lowest weight
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vector of weight k. It is also easy for finite primes p not dividing N. At
such places m, is an unramified principal series representation, i.e., m, is
an infinite-dimensional representation containing a non-zero GL(2, Z,)-fixed
vector. These representations are characterized by their Satake parameter
a € C*, and the relationship between o and the Hecke-eigenvalue A, is
Ay = pF 2 (a0 + ).

In general it is not easy to identify the local components 7, at places p|N.
But if N is square-free, we have the following result.

1.2 Theorem. Assume that N is a square-free positive integer, and let f €
Si(To(N)) be an eigenform. Further assume that f is a newform. Then
the local component m, of the associated automorphic representation m; at
a place p|N is given as follows:

- :{ Stare) ifa,f = —f,
P § Stawe) ifa,f = f.

Here Stgy,(2) Is the Steinberg representation of GL(2,Q,), and & is the unique
non-trivial unramified quadratic character of Q. The operator a; is the
Atkin—Lehner involution at p.

Idea of Proof: It follows from the fact that f is a modular form for I'y(V)
that 7, contains non-trivial vectors invariant under the Iwahori subgroup

[— {(ZZ) € CL(2,7,) : CEpr}.

The following is a complete list of all such Iwahori-spherical representations

together with the dimensions of their spaces of fixed vectors under I and
under K = GL(2,Z,).

representation K17
7T(ny_l), x unramified, x? # | ‘:I:l 119 )
StGL(Q) or é-StGL(Q) O 1

We recall the definition of newforms, for notational simplicity assuming that
N = p. We have two operators

To, Ty = Sk(SL(2,Z)) — Sk(T'o(p)), (2)
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where T} is simply the inclusion and 77 is given by (71 f)(7) = f(p7). Then
the space of oldforms is defined as

Se(To(p)™ = im(Ty) + im(T1), (3)
and the space of newforms Si(I'o(p))*" is by definition the orthogonal com-
plement of Sy.(Ty(p))°d with respect to the Petersson inner product. Now it
is easily checked that locally, in an unramified principal series representation
7(x, x ') realized on a space V, we have

Vi=TvE + T VE (4)

Hence the fact that f is a newform means precisely that 7, cannot be an un-
ramified principal series representation m(x, x*). Therefore m, = Stgr) or
7, = § StaL(2), and easy computations show the connection with the Atkin—
Lehner eigenvalue (cf. [Sch], section 3). n

Knowing the local components 7, allows to correctly attach local factors to
the modular form f. For example, if f is a newform as in Theorem 1.2, one
would define for p| N

_ _ @=pett e f = —f,
Lp(s, f) = Lp(S, 7Tp) - { (1 +p—1/2—s)—1 if alf — f

1/2=s if alf = _f7

é?p(S, f) = €p(5,77p) = { ]:1}/)273 if a1 f = f.

With these definitions, and unramified and archimedean factors as usual,
the functional equation L(s, f) = &(s, f)L(1 — s, f) holds for L(s, f) =

I, Ly(s, ) and (s, f) = [T, &n(s, f)-

2 Newforms in degree 2

It is our goal to develop a similar theory as outlined in the previous section
for the space of Siegel cusp forms Sy (I'o(N)®@) of degree 2 and square-free
level N. Here we are facing several difficulties.

e Strong multiplicity one fails for the underlying group GSp(2), and even
weak multiplicity one is presently not known. Thus it is not clear how
to attach an automorphic representation of GSp(2,A) to a classical
cusp form f.



e The local representation theory of GSp(2,Q,) is much more compli-
cated than that of GL(2,Q,). In particular, there are 13 different
types of infinite-dimensional representations containing non-trivial vec-
tors fixed under the local Siegel congruence subgroup, while in the
GL(2) case we had only 2 (see table (1)).

e There is currently no generally accepted notion of newforms for Siegel
modular forms of degree 2.

The last two problems are of course related. Let P, be the Siegel congruence
subgroup of level p, i.e.,

p1:{<é‘g) € GSp(2,Z,) - C’EOmodp}. (5)

Every classical definition of newforms with respect to P, must in particular
be designed to exclude K-spherical representations, where K = GSp(2,Z,).
Since an unramified principal series representation of GSp(2,Q,) contains a
four-dimensional space of Pj—invariant vectors (see Table 1 below), we expect
four operators

T07T17T27T3 : Sk(Sp(Q,Z)) - Sk(r(](p))

whose images would span the space of oldforms. (From now on, when we
write T'o(N), we mean groups of 4 X 4-matrices.) For this purpose we are
now going to introduce four endomorphisms Ty(p),...,T5(p) of the space

Si(To(NV)), where N is square-free and p|N.
e Ty(p) is simply the identity map.

e Ti(p) is the Atkin—Lehner involution at p, defined as follows. Choose
integers «, 0 such that pa — %ﬁ = 1. Then the matrix

pa 1
- pa 1
Tp = N§3 »
NG p

is in GSp(2, R)™ with multiplier p. It normalizes I'¢(V), hence the map
f f‘knp defines an endomorphism of Sy,(I'o(N)). Since 1. € pL'o(N),
this endomorphism is an involution (we always normalize the slash
operator as

(f,9(Z) = u(9)*i(g, 2) " f(9{Z))  (uis the multiplier),

which makes the center of GSp(2,R)™ act trivially). This is the Atkin—
Lehner involution at p. It is independent of the choice of a and £.
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e We define Ty(p) by

(Ta(p)f)(Z) = > (f],9)(2)
g€To(NN\To(V) (1 1 ) To ()

1 1 x
- > ", R @ e

T,p,KEL[PL
/ D 1

This is a well-known operator in the classical theory. In terms of
Fourier expansions, if f(Z) =" c(n,r,m)e>™rtrztmm) with 7 =

<T Z,), then
2T

(Ta(p) )(Z) =Y clnp,rp,mp)e™ " r=tmr), (7)

n,r,m

n,r,m

e Finally, we define T5(p) := T3 (p) o Ta(p).

Now we are ready to define newforms in degree 2.

2.1 Definition. Let N be a square-free positive integer. In Si(I'o(N)) we
define the subspace of oldforms Si(Io(N))° to be the sum of the spaces

T;(p)Sk(To(Np™)), i=0,1,2,3, p|N.

The subspace of newforms Si(I'o(N))"" is defined as the orthogonal com-
plement of Sy,(T'y(N))° inside S (To(N)) with respect to the Petersson scalar
product.

Note that this definition is analogous to the definition of oldforms in the
degree 1 case. The operator T} given in (2) has the same effect as the Atkin—
Lehner involution on modular forms for SL(2,Z).

See [Ib] for more comments on the topic of old and new Siegel modular forms.

3 Local newforms

Let us realize G = GSp(2) using the symplectic form (_1 1). In this

section we shall consider GG as an algebraic group over a p-adic field F'. Let
0 be the ring of integers of F' and p its maximal ideal. Let K = G(o0) be
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the standard special maximal compact subgroup of G(F). As an Iwahori
subgroup we choose

* *

X ook X

I=<geK: g= mod p

* X X X

The parahoric subgroups of G(F') correspond to subsets of the simple Weyl
group elements in the Dynkin diagram of the affine Weyl group Cs:

o——o—o
S0 S1 S2

The Iwahori subgroup corresponds to the empty subset of {so, s1,s2}. The
numbering is such that s; and sy generate the usual 8-element Weyl group
of GSp(2). The corresponding parahoric subgroup is P = K. The Atkin—
Lehner element

n = € GSp(2, F) (ww a uniformizer) (8)

induces an automorphism of the Dynkin diagram. The parahoric subgroup
Py corresponding to {sg, s} is therefore conjugate to K via . We further
have the Siegel congruence subgroup P; (see (5)), the Klingen congruence
subgroup P, its conjugate Py = nPyn~!, and the paramodular group

o p o o

B o o 0o o p!
POQ— gEG(F)g,g < 0 p 0 0
ppp o

K and Py, represent the two conjugacy classes of maximal compact subgroups
of GSp(2, F). By a well-known result of BOREL (see [Bo]) the Iwahori-
spherical irreducible representations are precisely the constituents of repre-
sentations induced from an unramified character of the Borel subgroup. For
GSp(2), such representations were first classified by RODIER, see [Rod], but
in the following we shall use the notation of SALLY—TADIC [ST]. The fol-
lowing Table 1 gives a complete list of all the irreducible representations of
GSp(2, F') with non-trivial /-invariant vectors. Behind each representation
we have listed the dimension of the spaces of vectors fixed under each para-
horic subgroup (modulo conjugacy). The last column gives the exponent of
the conductor of the local parameter of each representation.
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representation Pyp | B P I
I X1 X x2 X o (irreducible) 2 | 4] 4 8
A R B
XStGL(Q) X o 1 2 1 4
11 - S it
XlgLe) X o 1 (2] 3 4
+ ++— | -
X X 0Stasp() 0 |1] 2 4
111 B B
X X olasp) 2 [ 3] 2 4
+- +— | ++—-
O'StGSp(Q) 0 0 0 1
L((VQ, V_IO'StGSp(l))) 0 1 2 3
Iv +— ++—
L((V3/QStGL(2), V_3/20')) 1 2 1 3
— — +77
olasp2) 1 (1] 1 1
+ + +
§([&o, v&o], v /%0) 01| 0 2
+_
b | L((v"/%¢Star ), v %0)) 111 2
vV + + ++
L((vY2&Star ), Sov20)) 1111 2
d | L((v&, & x v™1%0)) 0 [1] 2 2
+- +-
a | 7(S,v1%0) 0|1] 1 3
— +77
b | 7(T,v=1%0) 00| 1 1
VI hi hi
L((v*?StaLe), v 120)) 1 1] 0 1
d | L((v,1p- x v™1%0)) 1|2 2 3
+ +- ++—

Table 1: Dimensions of spaces of invariant vectors in

Iwahori-spherical representations of GSp(2, F).




The signs under the entries for the “symmetric” subgroups Py, P, and [
indicate how these spaces of fixed vectors split into Atkin—Lehner eigenspaces,
provided the central character of the representation is trivial. The signs listed
in Table 1 are correct if one assumes that

e in Group II, where the central character is x?c?, the character yo is
trivial.

e in Groups IV, V and VI, where the central character is o2, the character
o itself is trivial.

If these assumptions are not met, then one has to interchange the plus and
minus signs in Table 3 to get the correct dimensions.

The information in Table 1 is essentially obtained by computations in the
standard models of these induced representations. Details will appear else-
where.

Imitating the classical theory, one can define oldforms by introducing natural
operators from fixed vectors for bigger to fixed vectors for smaller parahoric
subgroups. Here “bigger” not always means inclusion, since we also consider
K “bigger” than Py,. More precisely, we consider R’ bigger than R, and shall
write R’ > R, if there is an arrow from R’ to R in the following diagram.

POl P12

N4
/(\ \/\ (9)

L

Whenever R’ = R, one can define natural operators from V to V', where
V' is any representation space. For example, our previously defined global
operators Ty(p) and Ty(p) correspond to two natural maps VE — V. Our
T1(p) and T3(p) correspond to two natural maps V1 — V1 composed with
the Atkin-Lehner element VX — V701,

This can be done for any parahoric subgroup, and it is natural to call any fixed
vector that can be obtained from any bigger parahoric subgroup an oldform.
Everything else would naturally be called a newform, but the meaning of



“everything else” has to be made precise. Let it suffice to say that if the
representation is unitary one can work with orthogonal complements as in
the classical theory.

Once these notions of oldforms and newforms are defined, one can verify the
decisive fact that each space of fixed vectors listed in Table 1 consists either
completely of oldforms or completely of newforms. If this were not true, our
notions of oldforms and newforms would make little sense. In Table 1 we
have indicated the spaces of newforms by writing their dimensions in bold
face. We see that they are not always one-dimensional.

4 [—functions

For the applications we have in mind we need the spin L—function of cuspidal
automorphic representations of GSp(2, A) as a global tool. There are several
results on this L—function, see [No], [PS] or [An]|. Unfortunately none of these
results fully serves our needs. What we need is the following.

4.1 L-Function Theory for GSp(2).

i) To every cuspidal automorphic representation m of PGSp(2, A) is asso-
ciated a global L—function L(s,n) and a global e—factor (s, ), both
defined as Euler products, such that L(s, ) has meromorphic continu-
ation to all of C and such that a functional equation

L(s,m)=¢(s,m)L(1 —s,m)
of the standard kind holds.

ii) For Iwahori-spherical representations, the local factors L,(s,w,) and
e4(8, Ty, 1) coincide with the spin local factors defined via the local
Langlands correspondence as in [KL].

Of course such an L—function theory is predicted by general conjectures over
any number field. For our classical applications we shall only need it over
Q. Furthermore, we can restrict to the archimedean component being a
lowest weight representation with scalar minimal K—type (a discrete series
representation if the weight is > 3). All we need to know about e—factors is
in fact that they are of the form c¢p™® with a constant ¢ € C* and an integer
m.

The local Langlands correspondence is not yet a theorem for GSp(2) (but see
[Pr], [Rob]), but for Iwahori-spherical representations it is known by [KLJ.
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In fact, the local parameters (four-dimensional representations of the Weil-
Deligne group) of all the representations in Table 1 can easily be written
down explicitly. Hence we know all their local factors. There is one case of
L—indistinguishability in Table 1, namely, the representations VIa and VIb
constitute an L—packet. The representation Va also lies in a two-element
L-packet. Its partner is a #,o—type supercuspidal representation.

4.2 Theorem. We assume that an L-function theory as in 4.1 exists. Let
m = ®m, and Ty = @My, be two cuspidal automorphic representations of
PGSp(2,Ag). Let S be a finite set of prime numbers such that the following
holds:

i) my ~ m, for each p ¢ S.

ii) For each p € S, both m, and 7, possess non-trivial Iwahori-invariant
vectors.

Then, for each p € S, the representations m , and Ty, are constituents of
the same induced representation (from an unramified character of the Borel
subgroup).

Idea of proof: We divide the two functional equations for L(s,m;) and
L(s,m) and obtain finite Euler products by hypothesis i). Since we are over
Q, and since the expressions p~* for different p can be treated as independent
variables, it follows that we get equalities

Ly(s, 1) — p Ly(1 = s,m1p)
Ly(s,m2,) Ly(1—s,mp)
for each p € S. But we have the complete list of all possible local Euler

factors. Ome can check that such a relation is only possible if 7, and w9,
are constituents of the same induced representation. [

ceC*, meZ,

Remark: In Table 1, for two representations to be constituents of the same
induced representation means that they are in the same group I-VL.

With some additional information on the representation this result sometimes
allows to attach a unique equivalence class of automorphic representations to
a classical cuspform f. For example, if NV is square-free and f € Si(I'o(V))™"
is an eigenform for almost all the unramified Hecke algebras and also an
eigenvector for the Atkin—Lehner involutions for all p|N, then Theorem 4.2
together with the information in Table 1 show that the associated adelic
function ®; generates a multiple of an automorphic representation 7 of

PGSp(2, A).
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5 The main result

Let N be a square-free positive integer. In the degree 1 case, given an
eigenform f € Si(Io(N))"v, knowing the Atkin—Lehner eigenvalues for p| N
was enough to identify the local representations and attach the correct local
factors. In the degree 2 case, since there are more possibilities for the lo-
cal representations, and since some of them have parameters, we need more
information than just the Atkin—Lehner eigenvalues. For example, the repre-
sentations Ila or IIla, both of which have local newforms with respect to P,
depend on characters x and . Hence there are additional Satake parameters
which enter into the L—factor. What we need are suitable Hecke operators on
Se(To(N))™¥ to extract this information from the modular form f. It turns
out that the previously defined operator T5(p) works well, but we need even

more information. We are now going to define an additional endomorphism
T4(p) of Sk(FO(N))neW.

For notational simplicity assume N = p is a prime and consider the following
linear maps:

Su(To(p))"™" === S (TPara () e (10)

d1

Here d; and dyy are trace operators which always exist between spaces of
modular forms for commensurable groups. Explicitly,

1
doof = Il
(Ppara(p) Lo (p) M Fpara(p» ve(ro(p)mrr;a(p))\wafa(p) ‘k

It is obvious from Table 1 that these operators indeed map newforms to
newforms. The additional endomorphism of Si(I'o(p))"*" we require is

Ty(p) := (1 +p)*dy o dgy. (11)

Similarly we can define endomorphisms Ty(p) of Si(I'o(N))"*" for each p|N.
Looking at local representations, the following is almost trivial.

5.1 Proposition. Let N be square-free. The space Sy(I'o(N))**" has a basis
consisting of common eigenfunctions for the operators To(p) and Ty(p), all
p|N, and for the unramified Hecke algebras at all good places pt N.

We can now state our main result.
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5.2 Theorem. We assume that an L—function theory as in 4.1 exists. Let
N be a square-free positive integer, and let f € Si(I'o(N))™" be a newform
in the sense of Definition 2.1. We assume that f is an eigenform for the
unramified local Hecke algebras 'H, for almost all primes p. We further
assume that f is an eigenfunction for Ty(p) and Ty(p) for all p|N,

Tr(p)f = M f, Ty(p)f = ppf for p|N. (12)
Then:

i) f is an eigenfunction for the local Hecke algebras H, for all primes
pIN.

ii) Only the combinations of \, and i, as given in the following table can
occur. Here ¢ is £1.

A m rep. Lp(s,f)~! ep(s,f)

—ep | ¢{0,2p} | Tla | (14e(p+1)(p—p)p~3/275+p=2%)(14ep~1/273) | epl/2=

#+p 0 I1Ia (1—Ap=3/2=s)(1=A—1pl/2—5) pl—2s
—ep | 2 | Vbe (1—ep'/2=9)(1—p~1/2=*) (14p~1/27) ep!/27
—ep 0 Via,b (14ep=1/2-5)2 plt—2s

(We omit some indices p.)

iii) We define archimedean local factors according to our L—function theory
and unramified spin Euler factors for p{ N as usual. For places p|N we
define L— and e-factors according to the table in ii). Then the resulting
L—function has meromorphic continuation to the whole complex plane
and satisfies the functional equation

L(s, f) = e(s, f)L(1 = s, f), (13)

where L(s, f) =TT, Ly(s. /) and (5, f) = Tlyjeo €905 ).

Sketch of proof: Statement i) follows from Theorem 4.2. Statement ii)
follows by explicitly computing the possible eigenvalues of T5(p) and Ty (p)
in local representations. In the present case we cannot conclude that in
the global representation 7y = @m; all the irreducible components m; must
be isomorphic, because the eigenvalues in (12) cannot tell apart local rep-
resentations VIa and VIb. This is however the only ambiguity, so that we
can at least associate a global L—packet with f. (As mentioned before, Vla
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and VIb constitute a local L—packet.) The table in ii) indicates the possible
representations depending on the Hecke eigenvalues.

The L—factors given in the table are those coming from the local Langlands
correspondence. By hypothesis they coincide with the factors in our L—
function theory. Hence the L-function in (13) coincides with the L-function
of any one of the automorphic representations in our global L—packet. By
our L—function theory we get the functional equation. [

5.3 Corollary. If a cusp form f € S,(Sp(2,7Z)) is an eigenfunction for the
unramified Hecke algebras 'H, for almost all primes p, then it is an eigen-
function for those Hecke algebras for all p.

Remarks:

i) The corollary does not claim that f generates an irreducible automor-
phic representation of PGSp(2, A), but a multiple of such a represen-
tation. Without knowing multiplicity one for PGSp(2) we cannot con-
clude that f is determined by all its Hecke eigenvalues.

ii) The local factors given in Theorem 5.2 are the Langlands L— and e
factors for the spin (degree 4) L—function. The following table lists the
Langlands factors for the standard (degree 5) L—function.

A I rep. Lp(svf’St)_l ap(s,f,st)

—ep | ¢{0.2p} | Ha | (I—(p+D)(p—w)p 2 S+p 172%)(1—p~%) | p'=2°

#+p 0 IITa (1=M2p=2=8)(1=A"2p2=5)(1—p~—179) pl—2s
—&p 2p Vb,c (14p~1=9)(14+p=%)(1—p~*) pl—2s
—€p 0 VIa,b (1—p~)2(1—p~179) pi-2s

iii) There is a statement analogous to Theorem 5.2 for modular forms with
respect to the paramodular group I'P*#(N). Instead of Ty(p) as defined
n (11) this result makes use of the “dual” endomorphism T5(p) :=
(1 + p)2 dog o dl of Sk(rpara(N))new.
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Global base change identity and
Drinfeld’s shtukas

Ng6 Bao Chéau

This is the text of my talk at the conference "Automorphic forms and repre-
sentation theory op-adic groups” in Kyoto, January 2003. It summarizes my
preprint [7] which will be published elsewhere. In loc. cit. we propose a new
approach to prove the global base change identity which arises in the compari-
son of the Lefschetz trace formula on moduli space of Drinfeld’s shtukas and the
Selberg’s trace formula, without using the fundamental lemma for base change.

I would like to thank the organizers Professors H. Saito and T. Takahashi for
this very instructive conference. | am also grateful to Professor L. Breen for lin-
guistic helps in the preparation of this manusript.

1 Drinfeld’s shtukas with multiples modifications

Let X be a geometrically connected, smooth and projective curve layet et
X = X @&, k wherek is an algebraic closure d,. Leto denote the geometric
Frobenius element dbal(k/IFy).

Let F denote the function field oX. For every closed point € |X|, let F, be
the completion of at x andOy be the ring of integers df,.

Letd > 2 be an integer an® = GL4. According to Drinfeld, one has the
notion of G-shtukas with multiples modifications which we are going to review in
amoment. Lek,, ..., X, € X(K) ben mutually distinct geometric points . Let
T = {X4, ..., X,}. A T-modification is an isomorphism

t: T a7

between the restrictior®”” anV" of vector bundles of randd v’ andV overX
totheX-T.

Let x € T and let denoteV and Vi the completions ofy” and <V at x.
These are fre@xmodules of rankd whose generic fibers are identified with:
VZ— V,. By the theory of elementary divisors, tv@-lattices within the same



FxVvector spaces can be given an invariant
inv(ty) e Z¢ = {(A%,...,.a%N ez | At > --- > 29).

For general reductive grou®, Z¢ must be replaced by the set of dominant coweights
of G and and this set comes equipped with a natural partial ordex A’ if and

only if A — A2’ is a sum of positive coroots. This partial order has geometric origin
since anx-modification with invariantl can only degenerate toxamodification

with some invarianf” < A. It will be convenient to write formally

n
inv(t) = > inv(tx)X.
i=1
We will say
n n
D, Ivt)% < ) A%
i=1 i=1
if for everyi = 1,...,n, we havanv(ty) < 4;.

Definition 1 (Drinfeld) Let X = (Xg,..., X,) be a collection of mutually distinct
k-points of X and left a collection of dominant coweights, ..., A, € Zﬂ. A
A-shtuka over xs a pair (V,t) whereV is a vector bundle of rank d ovet and t
is aT-modification withlT = {Xy, ..., Xn}

t: oyt ST
withinv(t) < >, 4;%. Here?<V denotes the pull-back 6f by the endomorphism
idx ®g, o of X®p, k
These data have a moduli stack
C, 8= X"=-A

whereA is the union of all diagonals iX". This moduli space can be continued
over the diagonals at the price of a small break of symmetryxkefx,, ..., X)) €
X"(k) with possiblyx = X;. Then al-shtuka overx is a collection of vector
bundles of ranid

Vo, V1,....,Vq

overX equipped with

e a collection of modifications
t:VESVE Lty VSN
such that for every=1,...,n, inv(t) < AiX,
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e and an isomorphism&Vy — V.

For a pointx away from the diagonals, this definition is equivalent to Definition
1.1. Therefore the abow& can be continued in a natural way to a obtain a smooth
morphism

Ci: S, - X"

For every finite subschemieof X, one can define the notion of drevel
structure of a shtuka. We also have a moduli spacg-shitukas withl-level
structure

¢S = (X=D
This morphism is smooth, locally of finite type but in general not of finite type.
This lack of finiteness is one of the mainffitulties that L&forgue had to over-
come in his solution of Langlands’ correspondenceGay over function fields
[5]. Since we want to focus into another aspect of moduli spaces of shtukas, we
prefer for the moment to avoid thisfticulty by restricting ourself to the case of
P-shtukas associated to a division algebra.

Let D be a division algebra ovdf and letD be a maximaby-algebra with
generic fiberD. Let X’ be the open oX whereD is unramified. LeilG = D*
asF-group. For every place € |X'|, G, is isomorphic toGLy. We can define
the moduli space dB-shtukas in completely similar way to shtukas k4 and
obtain a morphism

Cla: (D-8Y/a" - (X' =1)"

which is a separated, proper and smooth morphism under the assumption
Herea e A¥ is an idele withdeg@) # 0 and the group’ acts freely on the moduli
space of shtukas bV, t) — (V ® L(a), id z5) whereL(a) is the line bundle on
X associated to the ide&e

Let 7, be the intersection complex &f,. As usual, the restricted tensor prod-

uct
H = @ H,

Vel X —|

whereH, is the unramified Hecke algebra@§, acts by correspondences on
R (-7
which is a local system ofX’ — I)" for all integeri.
Theorem 2 We have the following equality in the Grothendieck group of local

systems ofX’ — |)" equipped with action of'

D DR 7 = P mma' © (X) pr L, (x)
i i=1

s
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wherer runs over the set of automorphic representation ¢A where & acts
trivially, m(r) its multiplicity, £, (n) is the local system on’X- | such that the
equality of L-functions holds

L(-E/li (ﬂ-)’ S) = L(ﬂ-’ /lh S)

where W, 4; s) is the automorphic L-function associatedr@nd to the repre-
sentation ofs of highest weight;.

This statement is what one can expect from the cohomology of moduli space
of shtukas, according to Langlands’ philosophy.

2 Outline of the proof

In order ro simplify the exposition, we will restrict ourself to the case 1 and
A=@At>--- > A% with 3}; 4/ = 0.

Let x € (X' —1)(k) with o5(X) = x whereo denotes the action of the geometric
Frobenius or{X’ — I)(k). Let x be the closed point oX’ — | supportingx.

Let T’ c X' — 1 — {x} be a finite reduced subscheme andllet: |T'| — 78 be
an arbitrary function. Let

Qrr o, = ® brw ® ® 1, eH

VelT’| ve[T’|

where¢,(, is the characteristic function of the double co&0,)1,G(0,) in
G(F,), andl, is the unit function.

One can use a similar method for counting points, due to Langlands and Kot-
twitz [3], in order to prove the following formula

Tr(oS o @ry ) = > VOI(dy5,(F)a™\Jyy s, (AF))

(v0,0x)

[T 0@ []00@rw)TOswa0 @)

VveIX-T’—{x}| veX!|

where

e o is a conjugacy class @(F), o is ac-conjugacy class oB(Fy ®r, Fgs)
whose norm down t&(Fy) is the class ofy.

o Ji00, IS theF-group which is an inner form of the centralizgy, of y, such
that at a place # X, (Jy,.s,)v IS isomorphic taG,,), and atx, (Ji.s,)x IS
isomorphic to the twisted centralizer &f. This inner form is well defined
up to isomorphism.



e The functiony, x € H(G(Fx ®r, F¢s)) is defined as follows. Leys, ...,y
be the places oF ®r, Fys over x. Assume the geometric pointlies over
y1. Then we define

Yax=dayy ®l, @@ 1y,

wherel,,, ..., 1, are the unit functions oH(Gy,), .. ., H(Gy,) respectively.
The functiony,y,) € H(Gy,) is the unique function whose the Satake trans-
form is the function orG(C) given by

g Tr@, V)
whereV, is the irreducible representation Gfof highest weighti.

| refer to [7] for the detailed proof of this counting point formula.
To prove the theorem, we need to transfofhifi to a sum without twisted
orbital integral. Namely, we want to prove th@) (s equal to the following sum

D VoIG,(F)a\Gyy(Ar) [ ] 0,1

VveIX-T’—{x}|

[ ] Oso(d2)0s0 (b2 (2)

ve|X'|

where
b : H(G(Fx®r, Fs)) = H(G(Fy))

is the base change homomorphism. Once the equalty: (2) has been etab-
lished, it remains to apply Selberg to obtain the equality between thgZusnd
the following

Trl Q) L&) v ®bWan, L? (3"G(F)\G(As)) (3)

VEIX=T’"—{x}| ve[T’|

and the theorem follows by a standard argument.

The above strategy is well known and goes back to Langlands and Kottwitz’s
work on Shimura varietie®]. For the moduli space of shtukas, this is also done
by Drinfeld and Ld@forgue with maybe some technicaftérences. The only new
point in our work concerns the proof of the ident{) = (2). Usually, one needs
the fundamental lemma for base changein order to convert a twisted orbital inte-
gral into orbital integral, which is known ip-adic case due to works of Kottwitz,
Clozel and Labesse. In positive characteristic, the fundamental lemma for base
change was not written down except for the function associated to the minuscule



coweight which is proved by a direct calculation due to Drinfé@}l put it is
known to Henniart.

Our point is that one can prove the global base change idém)ity (2) with-
out using local harmonic analysis but rather a combination of counting of points,
local model theory, a geometric interpretation of the base change homomorphism
in terms of perverse sheaves and Tchebotarev’s density theorem. We hope that
our method can be generalized to other situations.

3 Global base change identity

Equality (1) = (2) will be proved by counting points on two féerent moduli
spaces called A and B.

3.1 Situation A

The moduli space A is a scalar restriction a la Weil. Considestfodd product
(€’ (D-8ya")> - (X -1)°

of ¢\, : (D -8)/a” — X' — 1. This morphism comes with an action of the
symmetric groups and of the action by correspondenceg&f )®s. Let denote

[Al:= > (1R, )SF

the class in the Grothendieck group of local systenfXin- 1) equipped with an
action of(#H)® and with a compatible action @s. By the Kunneth formula,A]

should be < s s
EB H m(r;) ® e ® pri La(m) (4)
i= i=1 i=1

M1y Tg 1=1

wherer, ..., s are automorphic representations@fwith trivial action of aZ.
It's clear howS and(H')® should act or{4).

Assume for simplicity that the closed poixsupportingx is of degreel. Let
X = (X...,X) be the correponding point in the small diagonalXf — I)5. By
usual properties of Weil’s scalar restrictiqf) is equal to

Tr(roo o (1®---®1®<DTWT/),[A]K) (5)

wherer € & is the cyclic permutation.



3.2 Situation B

Let us consider a particular collection of coweights
st=(4,...,4)
S

and the associated moduli space of shtukas with "symmetric modifications”
Cy : (D-Sy)/a — (X -1

By the very definition, for every € &, the fiber ofcl, over a point(Xy, . . ., Xs)
away from the uniom\ of all diagonals, is canonically isomorphic with the fiber
overt(Xxi,...,Xs). This gives rises to a compatible action®{ on the restriction
of

R(cy)-Fst

to (X’=1)°=A. Since this directimage is a local system, we can extend canonically
the action ofSs over the diagonals. Let denote

[B] = D -DRE.Fu

the class in the Grothendieck group of local systems equipped with an action of
H' and a compatible action @..
Assuming Theorem 4B] should be

P mnr' © () pr La(x) (6)
i=1

s

Let x = (X, ..., X) in the small diagonal as in 3.1. We want to compute
TI‘(T o (g o ®T/’/u|" . [B]X) (7)

wherer is the cyclic permutation like in 3.1. A priori, it is not obvious how to
compute this trace by counting points, since the action of the symmetric group is
not concretely defined over the diagonals. This is however possible using local
model theory and the geometric interpretation of the base change homomorphism
in terms of perverse sheaves on thiene@ Grassmannian. What we get finally is

(2)= (7).
3.3 Main observation

To prove(1) = (2) is now equivalent to provingb) = (7). We can in fact prove a
more general equality.



Theorem 3 For all ¢ € m1((X’ - 1)%) and¢ € H' and for the cyclic permutation
7€ S,, we have

Tr(toéo(l®--®1eD),[Aly) = Tr(r o £ o @,[B]y) 8)

s-1

Heuristically, assuming Theorem 2, equali8) can be proved as follows. In
comparing6) with (4) one can observe théd) consists essentially in the diagonal
termsmy, = - -- = g 0f (4), up to multiplicity. But the non-diagonal terms @) are
permuted around by and therefore don’t contribute to the trace. The diagonals
terms of(4) give now the same trace #8) according to the following general
linear algebra lemma which is implicit in papers of Saito and Shintani on base
change.

Lemma 4 Let V be a finite dimensional vector space over some field K. Let f be
any endomorphism of V. Then

Tr(f,V)=Tr(ro (1®---® 1af), V®)

s-1

wherer is the cyclic permutation.

3.4 Tchebotarev’s density theorem

The rigourous proof of Theorem 3 makes essential use of Tchebotarev’s density
theorem. LeU = (X’ — I)® — A be the complement of the union of all diagonals.
Let U = U/(r) the free quotient ot) by the cyclic groupr) = Z/sZ generated

by . One has the exact sequence of fundamental groupoids

1 - mU) - m0) - Z/sZ — 1.

Any closed pointi |U| gives rises to a conjugacy clamhy; of 71(U). A closed
pointi € U] is calledcyclic if the image ofFroly, in Z/sZ is the generator. By
Tchebotarev’s theorem, it is enough to prove

Tr(Frobjo (1®---® 1®d),[A]) = Tr(Frok; o @, [B])

s-1

for all cyclic closed pointsi € |U| and for all® € H'.

Since we are away from the diagonals one can compute the above traces by
counting points without using local model theory. The nice feature of cyclic points
is that in the expressions of traces of cyclic points|ahand[B], there are no
twisted orbital integrals. The expressions we get for the traces of cyclic points on
[A] and on[B], are in fact identical.



Note that even outside the diagonals, if we t&kelf instead ofFroky, the
expressions we gets for the traces[@h and[B] are no longer identical due to
the apperance of twisted orbital integrals on both side. Therefore our proof relies
heavily on Tchebotarev’s theorem.

The proof in the casea > 1 is a little more complicated since the closed
points of X"$/(Z/sZ) are not as nice as those ¥f/(Z/sz). For that case, we
made essential use of a theorem of Drinfeld asserting that the representations of
71 (X" = 1)") on[A] and on[B] factor throughr, (X’ — I)"S. Consequently, instead
of closed pointsX"$/(Z/sZ) we can take collections of cyclic closed points of
X8/(Z ] sZ). We refer again taq] for more details.
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RESTRICTION OF HERMITIAN MAASS LIFTS AND
THE GROSS-PRASAD CONJECTURE
(JOINT WITH T. IKEDA)

ATSUSHI ICHINO

This note is a report on a joint work with Tamotsu Ikeda [12].

After the discovery of the integral representation of triple prod-
uct L-functions by Garrett [5], Harris and Kudla [I0] determined the
transcendental parts of the central critical values of triple product L-
functions. The transcendental parts behaves differently according to
whether the weights are “balanced” or not. In the “balanced” case,
the critical values of triple product L-functions have also been studied
by Garrett [5], Orloff [I8], Satoh [20], Garrett and Harris [6], Gross
and Kudla [7], Bocherer and Schulze-Pillot [4], and so on. By contrast,
in the “imbalanced” case, there are no results on the critical values of
triple product L-functions except [10] to our knowledge. We express
certain period integrals of Maass lifts which appear in the Gross-Prasad
conjecture [§], [9], as the algebraic parts of the central critical values
in the “imbalanced” case.

1. THE GROSS-PRASAD CONJECTURE

In [8], [9], Gross and Prasad suggested that the central values of cer-
tain L-functions control a global obstruction of blanching rules for auto-
morphic representations of special orthogonal groups. Let V' be a non-
degenerate quadratic space of dimension n over a number field £ and
H = SO(V) the special orthogonal group of V. Take a non-degenerate
quadratic subspace V' of V' of dimension n—1 and regard H' = SO(V")
as a subgroup of H. Let 7 ~ ®,7, (resp. 7/ ~ ®,7/) be an irreducible
cuspidal automorphic representation of H(Ay) (resp. H'(Ag)).

Conjecture 1.1 (Gross-Prasad). Assume that 7 and 7" are both tem-
pered. Then the period integral

(Gl F) = / G(h)F(h) dh
H'(k)\H'(A)

does not vanish for some G € T and some F € 7' if and only if
(i) Hompgrk,) (70, 7,) # 0 for all places v of k,
(il) L(1/2,7 x ") #£ 0.

Remark that a meromorphic continuation of the L-function L(s, T X
7') has not been established in general, however, it could be described

in terms of L-functions of general linear groups by the functoriality.
1



We also note that the conjecture is supported by the results of Wald-
spurger [22] for n = 3, Harris and Kudla [10], [I1] for n = 4, Bocherer,
Furusawa, and Schulze-Pillot [3] for n = 5.

Gross and Prasad restricted their conjecture to the tempered cases.
According to the Arthur conjecture [2], non-tempered cuspidal auto-
morphic representations exist, and if 7 or 7/ is non-tempered, then
the L-function L(s,7 x 7’) could have a pole at s = 1/2. Hence a
modification to the condition (ii) would be inevitable if one consider
the Gross-Prasad conjecture in general (see [3] for n = 5). Our result
provides an example for n = 6 when 7, 7’ are both non-tempered. Re-
mark that the triple product L-function considered in this note is only
of degree 8 and is a part of the L-function L(s, 7 x 7') of degree 24.

2. SAITO-KUROKAWA LIFTS

First, we review the notion of Saito-Kurokawa lifts [16], [17], [1], [23].
Let k be a positive even integer. Let

=Y A(B)e™ED ¢ §,(Sp,(Z)), Z € b
B>0

be a Siegel modular form of degree 2. Here b5 is the Siegel upper half
plane given by

={Z="Z€eM(C) |Im(Z) >0} .

We say that F' satisfies the Maass relation if there exists a function
G5+ N — C such that

4 2
A ((;}2 %2)) = |<Z )d‘“‘lﬁ,*v (—?m;g - ) .
d|(n,r,m

We denote by Sp#(Sp,(Z)) the space of Siegel cusp forms which
satisfy the Maass relation.
Kohnen [I3] introduced the plus subspace S, /2(T'o(4)) given by

Si12(To(d) = {h(r) = Y e(N)g" € Serj2(To(4)) |

N>0

¢(N)=0if =N # 0,1 mod 4}.
For F € SMaass(Sp,(Z)), put

CKE)m) = D BrN)e"
N>0
—N=0,1 mod 4
Then Q5K (F) € S;_l/Q(FO(ZL)), and the linear map
QK - 51 (Sp,(2)) — 57, (To(d))

is an isomorphism.



3. HERMITIAN MAASS LIFTS

Next, we recall an analogue of Saito-Kurokawa lifts for hermitian
modular forms by Kojima [I4], Sugano [21], and Krieg [15]. Let K =
Q(v/—D) be an imaginary quadratic field with discriminant —D < 0,
O the ring of integers of K, wx the number of roots of unity contained
in K, and y be the primitive Dirichlet character corresponding to K/Q.

Write
X = H Xq>
9€QD
where @Qp is the set of all primes dividing D and Y, is a primitive
Dirichlet character mod ¢°*%P for each ¢ € Qp.
Let k be a positive integer such that wg | k. Let

G(Z)= > AH) I € §(U(2,2), ZeH,
HeAz(0)*

be a hermitian modular form of degree 2. Here H; is the hermitian

upper half plane given by
1 _
Ho=32€My(C) | ——=(Z-"Z)>07¢,
={zem(©) | 521250}

and

Ay (O)F = {H ='H e

M, (O)

1
diag(H) € Z°, H >0 ¢ .
o s(H) }
We say that G satisfies the Maass relation if there exists a function
ag, : N — C such that

A = 37 @t (2,
dle(H)
where
e(H) =max{n € N|n'H € A,(O)"}.

We denote by SMa5(U/(2,2)) the space of hermitian cusp forms which
satisfy the Maass relation.

Krieg [15] introduced the space S;_;(I'o(D), x) which is an analogue
of the Kohnen plus subspace and is given by

Sic1(Lo(D), x) = {g"(r) = Y _ ag(N)g" € Sp1(To(D), X) |

N>0

a,-(N) = 0 if ap(N) = 0},

where
ap(N) = ] (1 + xq(=N)).
7€Qp
Let
g(1) = Z (N)g™ € Si—1(To(D), x)



be a primitive form. For each ) C ()p, set
xo=1]xe xo= I xo
qe@ q€Qp—Q
Then there exists a primitive form
90(T) = Y a4 (N)g" € Sp1(Fo(D), x)
N>0
such that

/

0 (p) = Xo(pag(p) ifp¢Q,
% Xo(p)ag(p) ifpe @,

for each prime p. Put
(3.1) g =Y xo(-1)go
QCQp

Then g* € S;_1(Io(D),x). When ¢ runs over primitive forms in
Sk—1(Fo(D), x), the forms g* span S;_,(Io(D), x).
For G € SMaass([J(2,2)), put

QG)(r) =) ap(N)ag(N)g".
N>0
Then Q(G) € Si_1(To(D), x), and the linear map

Q: 8*(U(2,2)) — Si_1(To(D), x)

is an isomorphism.

4. STATEMENT OF THE MAIN THEOREM

Let k be a positive integer such that wg | k. Let f € So_2(SLa(Z))
be a primitive form and h(r) = Y y.,c(N)¢V € S,;tl/Q(Fo(él)) a
Hecke eigenform which corresponds to f by the Shimura correspon-
dence. Note that h is unique up to scalars. Let F = (Q5)~!(h) €
SMaass(Sp,(Z)) be the Saito-Kurokawa lift of f. Define the Petersson
norms of f and F' by

(. f) = / ()PP,
SL2(Z)\b1

FF)= [ F@) ez iz,
SPQ(Z)\h2

respectively.

Let g(7) = > neo (V)¢ € Si_1(To(D), x) be a primitive form
and G = Q7 1(g*) € SMaas3({7(2,2)) the hermitian Maass lift of g, where
g € S;_1(Io(D), x) is given by ([B1)). Observe that hy C Hs, and by
[15], the restriction G|y, belongs to Sp**(Spy(Z)).

The completed triple product L-function A(s,g x g X f) is given by
A(s,gxgx f) = (2m) T80 () (s—2k+4) (s —k+2)2L(s, gx g X f),

4



and satisfies a functional equation which replaces s with 4k — 6 — s.
Our main result is as follows.

Theorem 4.1.
A2k —3,9 x g x f) 4k—67y—2k (Glp,, I7)?
’ = D2 ti(D)2 2
(f. f)? D) (F, F)?
5. PROOF
Theorem [A.] follows from the following seesaws.
0(3,2) x O(1) SLy 0(2,1) x O(1)
(5:2) Spe 0(2,2)°
SL3 0(2,2)

To explain these seesaws more precisely, we introduce some notation.
In [13], Kohnen defined a linear map

STp 1 851 5(To(4)) — Sar—2(SLa(Z)),
o, [ N?
> e(N)gV — D> x(d)d e <?D) 7.
N>0 N>0 d|N
If 2(7) = Pnsoc(N)g™ € S 5(To(4)) is a Hecke eigenform and
corresponds to f € Sg,_o(SLa(Z)) by the Shimura correspondence, then
SIp(h) = c¢(D)f.
Let TrP denote the trace operator given by
Trllj . Sgkfg(ro(D)) — Sgk,Q(SLQ(Z)),
fr— > fh
v€l0(D)\ SL2(Z)

The seesaw (B.1]) accounts for the following identity.

Proposition 5.1.
S (2%(Glp)) = ay(D)* TP (¢%).

This identity is proved by computing the Fourier coefficients of the
both sides explicitly.
The seesaw (0.2) accounts for the following refinement of the main

identity by Harris and Kudla [10].
5



Proposition 5.2.
A2k = 3,9 x g x f) = =2"-5D~2+3 (DY (TP (¢?), f)?

This identity is proved by computing the local zeta integrals which
arise in the integral representation of triple product L-functions by
Garrett [5], Piatetski-Shapiro and Rallis [19] at bad primes.

Now Theorem 1] follows from Propositions [B.1] and

REFERENCES

[1] A. N. Andrianov, Modular descent and the Saito-Kurokawa conjecture, Invent.
Math. 53 (1979), 267-280.

[2] J. Arthur, Unipotent automorphic representations: conjectures, Astérisque
171-172 (1989), 13-71.

[3] S. Bocherer, M. Furusawa, and R. Schulze-Pillot, On the global Gross-Prasad
conjecture for Yoshida liftings, preprint, 2002.

[4] S. Bocherer and R. Schulze-Pillot, On the central critical value of the triple
product L-function, Number theory (Paris, 1993-1994), London Math. Soc.
Lecture Note Ser. 235, Cambridge Univ. Press, 1996, 1-46.

[5] P.B. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann.
of Math. 125 (1987), 209-235.

[6] P.B. Garrett and M. Harris, Special values of triple product L-functions, Amer.
J. Math. 115 (1993), 161-240.

[7] B. H. Gross and S. S. Kudla, Heights and the central critical values of triple
product L-functions, Compositio Math. 81 (1992), 143-209.

[8] B. H. Gross and D. Prasad, On the decomposition of a representation of SOy
when restricted to SO,_1, Canad. J. Math. 44 (1992), 974-1002.

, On irreducible representations of SOg,11 X SOgy,, Canad. J. Math.

46 (1994), 930-950.

[10] M. Harris and S. S. Kudla, The central critical value of a triple product L-
function, Ann. of Math. 133 (1991), 605-672.

[11] , On a conjecture of Jacquet, preprint, 2001, arXiv:math.NT/0111238.

[12] A. Ichino and T. Ikeda, On Maass lifts and the central critical values of triple
product L-functions. preprint, 2003.

[13] W. Kohnen, Modular forms of half-integral weight on T'g(4), Math. Ann. 248
(1980), 249-266.

[14] H. Kojima, An arithmetic of Hermitian modular forms of degree two, Invent.
Math. 69 (1982), 217-227.

[15] A. Krieg, The Maaf spaces on the Hermitian half-space of degree 2, Math.
Ann. 289 (1991), 663-681.

[16] N. Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms
of degree two, Invent. Math. 49 (1978), 149-165.

[17] H. Maass, Uber eine Spezialschar von Modulformen zweiten Grades, Invent.
Math. 52 (1979), 95-104; II, Invent. Math. 53 (1979), 249-253; III, Invent.
Math. 53 (1979), 255-265.

[18] T. Orloff, Special values and mized weight triple products, Invent. Math. 90
(1987), 169-180.

[19] I. I. Piatetski-Shapiro and S. Rallis, Rankin triple L functions, Compositio
Math. 64 (1987), 31-115.

[20] T. Satoh, Some remarks on triple L-functions, Math. Ann. 276 (1987), 687—
698.

6



[21] T. Sugano, On Maass spaces of SU(2,2) (Japanese), Surikaisekikenkytisho
Kokytiroku 546 (1985), 1-16.

[22] J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en
leur centre de symétrie, Compositio Math. 54 (1985), 173-242.

[23] D. Zagier, Sur la conjecture de Saito-Kurokawa (d’aprés H. Maass), Seminar
on Number Theory, Paris 1979-80, Progr. Math. 12, Birkh&user Boston, 1981,
371-394.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA
CrTy UNIVERSITY, 3-3-138 SUGIMOTO, SUMIYOSHI-KU, OSAKA 558-8585, JAPAN
E-mail address: ichino@sci.osaka-cu.ac.jp



MULTIPLICITIES OF CUSP FORMS

WEE TECK GAN

1. Introduction

Let G be a connected simple linear algebraic group defined over a number field
F. Tt is a basic problem in the theory of automorphic forms to describe the spectral
decomposition of the unitary representation L?(G(F)\G(A)) of G(A). Such a unitary
representation possesses an orthogonal decompostion

L*(G(F)\G(A)) = L3, ® L?

disc cont

into the direct sum of its discrete spectrum and its continuous spectrum. Let us write:
Lflisc = @mdisc<7r> T
™

It is known that the discrete multiplicities mg;s.(m) are finite. The discrete spectrum
has a further orthogonal decomposition

LA(G(F)\G(A)) = L2, @ L?

cusp Tes

where Lgusp is the subspace of cusp forms, and L2, is the so-called residual spectrum.

Let us write:

Lgusp = @,rmcusp(ﬁ) o and L2, = OpMypes(m) - .
In this talk, we consider the following two simple-minded questions:

(A) Does there exist 7 such that meysy(m) - Myes(m) # 07

(B) Can the collection of non-negative integers {meus,(7)} be unbounded?

Here are some prior results on these questions:

(i) When G = PGL,, the results of Jacquet-Shalika [JS] and the multiplicity one
theorem imply that mg;.(7) < 1 and thus the answers are negative for both questions.

(ii)) When G = SL,, it is a recent result of Ramakrishnan [R] that mg.(7) < 1.

(iii) For a more general classical group G , it is known that me,s,(7) can be > 1.
Examples of such failure of multiplicity one were constructed by Labesse-Langlands
[LL] for the inner forms of SLs, by Blasius [B] for SL, (with n > 3) and by Li [L]
for quaternionic unitary groups. However, in these examples, the multiplicities are
bounded above by a number depending only on the given G.

In this talk, I will discuss the following theorem, which was obtained jointly with N.
Gurevich and D.-H. Jiang in [GGJ]:

A talk given at the conference “Automorphic forms and representations of algebraic groups over
local fields” at RIMS, Kyoto, 20-24th January 2003.
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Theorem 1.1. When G = G4, both questions A and B have positive answers. More
precisely, for each finite set S of places of F', with #S > 2, there is an irreducible
unitary representation wg of Go(A) with

{mres(71—5> - ]-7

Maise(Ts) > £(2%5 + (=1)#52).

The representations mg of the theorem are very degenerate: their local components
are non-tempered and non-generic. They are the so-called unipotent representations.
This may lead one to think that the phenomenon of unbounded cuspidal multiplicities
only happens for very degenerate representations. However, as we explain in Section
3, it should already occur for representations in tempered L-packets. We shall discuss
in Section 5 how we intend to construct these tempered representations of arbitrarily
high cuspidal multiplicities.

In fact, the unboundedness of discrete multiplicities for G, is a consequence of a
famous conjecture of J. Arthur (see [Al] and [A2]). Hence, we shall begin by reviewing
his conjecture in the following section.

2. My Understanding of Arthur’s Conjecture
In this section, we shall briefly discuss Arthur’s conjecture on L2, (G(F)\G(A)).

disc
For simplicity, we assume that G is split, simple and simply-connected, so that the

dual group G is adjoint. We begin by introducing some notations.

Let Lp denote the Langlands group of F' (whose existence is still conjectural). For
the purpose of understanding Arthur’s conjecture, there is no loss in pretending that
L is the absolute Galois group of F'. For each place v of F, one also has a local group
Lp,, and there should be a natural class of embeddings Ly, — Lp. The group Lp, is
actually known to exist: it is the Weil group if v is archimedean and the Weil-Deligne
group if v is finite.

By an Arthur parameter for G, we mean a @—conjugacy class of homomorphisms
¥ Lp x SLy(C) — G

so that the following conditions hold:

e (Ly) is bounded in G;
e the centralizer Sy of the image of v is finite.

Given ¢, Arthur defined a quadratic character €, of Sy. In the examples we will look
at later, €, turns out to be the trivial character. Hence we will not bother to go into
the general definition here.

We will describe the conjecture in the statements A, B and C below.

(A) There is a decomposition:

Ly GIM\G(A)) = P L[],
v
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indexed by the Arthur parameters for G.
Fix a parameter ¢. We must now describe the G(A)-module L?[¢)]. Using the
embedding L, — Lp, we obtain local parameters

1/)1; : LFU X SLQ((C) — @

Let us set:

e Sy, = the finite group of components of the centralizer of the image of 9,.
e Sya=1]I[,Sy,, a compact group.
o A: S, — Sy a, the natural diagonal map.

(B) For each place v of F, there is a finite subset Ay, of unitary representations of
G(F,) associated to 1),; this is the so-called local Arthur packet. This finite set is
indexed by the irreducible characters of Sy, :

va = {7T77v : /rI'U € S"pv}
Moreover, it should satisfy the following conditions:

e for almost all v where v,|1,, is unramified, mq, is the irreducible unramified
representation with Satake parameter

1/2
Sw’u = ,QZ)’U FI‘ObU X qv q_1/2 .

e a particular linear combination of the characters of the m,, ’s is a stable distri-
bution.
e certain identities involving transfer to endoscopic groups hold.

Here we have not described the last two conditions precisely as they will not be relevant
for us in this talk.

If n =@, 7 is an irreducible character of Sy 4, then we may set
-
v

This is possible because for almost all v, n, = 1, and 7y, is required to be unramified
by the above. We can now state the last statement of Arthur’s conjecture:

(C) The G(A)-submodule L?[¢)] has a decomposition given by:
L*[y] = @ My = Ty
NESy, A
where
my = (&, A™(n))s,
is the multiplicity of € in the representation A*(n) of Sy.

This concludes our discussion of Arthur’s conjecture.
3



3. The Example of GG,

Now we examine the special case when G' = G4 so that G = G2(C). We shall write
down some Arthur parameters for Gy and see what Arthur’s conjecture says for them.
Essentially, the only fact we need to know about G5 is the following:

Lemma 3.1. G5(C) contains a subgroup isomorphic to SO3(C) x Ss, where Ss is the
symmetric group on 3 letters. Moreover, the centralizer of SO3(C) is precisely Ss.

The map SLy(C) — SO3(C) — G5(C) corresponds via the Jacobson-Morozzov
theorem to the subregular unipotent orbit in G(C). With this lemma in hand, we can
now write down our first family of Arthur parameters.

3.1. Cubic unipotent parameters. Let E be an étale cubic F-algebra. Then E
corresponds to a conjugacy class of maps

pp: Lp — Gal(F/F) — Ss.
Using pp and the natural projection map from SLy(C) to SO3(C), we set:
Vg Lp x SLy(C) — S35 x SO5(C) — G2(C).
The maps g are the cubic unipotent Arthur parameters.

For simplicity, we shall only consider the case when F = FEj is the split algebra
F x F x F. In this case, pg, is the trivial map, and so we have:

Sppy = Sppyw = 53
Sppyn = S3(A).
The map Sy, — Sy is simply the natural embedding S3(F) — S3(A).

What does Arthur’s conjecture say for the parameter 5,7 Well, statement B pre-
dicts that for each place v, the corresponding local Arthur packet has 3 members
indexed by the irreducible characters of S3. So we have:

AwEO = {7T1v7 ’n—'f"u ) 7r€'u}

where ¢, is the sign character of S3 and r, is the 2-dimensional one. Further, for S a
finite set of places of F', let

N5 = (Duests) @) (Dugsly)
Then statement C predicts that the representation
g 1= Ty = (Quests,) Q) (Rugsm,)
occurs in L%[1g,] with multiplicity equal to the multiplicity of the trivial representation
nrer®..er (#S times). A quick computation gives:
Maines) > - (2% 4 (~1)#92),

which is one of the main claims of Theorem [[LII Thus Arthur’s conjecture predicts
the existence of a family of representations {mg} whose discrete multiplicities are un-
bounded as #5 — .
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3.2. Some Tempered Parameters. Now we consider some tempered Arthur pa-
rameters, i.e. those for which 1 is trivial on SLy(C). Let us start with a cuspidal
representation 7 of PG Ly such that

Steinberg representation for v € S;;
T, —
! an unramified representation for v ¢ S

for some finite set S, of finite places of F'. Conjecturally, 7 corresponds to a map
¢, : Lp — SLy(C). Because of our assumptions, the map ¢, is surjective; in fact,
for v € S;, the local parameter ¢, is already surjective, since it corresponds to the
Steinberg representation.

Now we construct an Arthur parameter for Gy using ¢, as follows:
wr . LF — SLQ((C) — SOg(C) — GQ(C)

Then we have:

81/)7 = 81/17-,1) = Sg for all v € ST.
Sy,o ={1} forallv ¢ S;.

In particular, statement B in Arthur’s conjecture predicts that the local packets have
the following form:

. {ry,,m. .7} ifveS
T L) ifu ¢ S,
Moreover, the representations in the local packets should be tempered.

In fact, the parameter 1, is an example of Langlands parameter considered by
Lusztig. Hence, in this case, the local packet A, , has already been defined, and
it does consist of 3 discrete series representations (see [GrS]).

Finally, if we set
T = (®ves, ) Q) (Sugs, T, ) »

then statement C in Arthur’s conjecture implies that

1
M) 2 & (245 1 (1)),

In fact, since the representation 7. is tempered, it cannot occur in the residual spec-
trum, and so we have

(2757 4 (—=1)#572).

|~

mcusp (77'7') Z

Now one can find cuspidal representations 7 of PG Ly of the above type and with S
as big as one wishes (using the trace formula for example). Hence, Arthur’s conjecture
predicts that one can find a family of tempered representations of Gy(A) whose cuspidal
multiplicities are unbounded.



4. Construction of Unipotent Cusp Forms

In this section, we explain how one constructs the unipotent representation mg and
demonstrates Theorem [L1]

Let H be the disconnected linear algebraic group Sping x S3. For each place v
of F, the group H(F,) has a distinguished representation II, known as the minimal
representation. To be more precise, II, is a particular extension to H(F,) of the
unramified representation of Sping(F),) whose Satake parameter is

L q})/Q 1/2
Qv

where ¢ : SLy(C) — PGSOs(C) is the map associated to the subregular unipotent
orbit of the dual group PGSOg(C).

Now H contains the subgroup S3 x G5, and one may restrict the representation II,
to the subgroup S;3(F,) x G2(F,) to get:

II, = @ Ny @ Ty, .

UUESS(FU)

In the beautiful papers [HMS] and [V], Huang-Magaard-Savin (for non-archimedean v)
and Vogan (for archimedean v) showed that each m,, is a non-zero irreducible unitariz-
able representation and the m,, ’s are mutually distinct. Moreover, the representations
Ty, can be completely determined, and 7, is unramified with Satake parameter St
In view of these results, it seems natural to take the set of representations ,, as the
elements of the local Arthur packet Ay, .

Consider now the global situation. If II = ®,II,, then as an abstract representation
of S3(A) x Go(A), we have:
n-@ner,
"

as 11 = ®,m, ranges over the irreducible representations of S3(A). In particular, for
each 7, we have an embedding

ty i @my, — IL
Using residues of Eisenstein series, one can construct a Sping(A)-equivariant embed-
ding
O : I — A*(Sping)
of II into the space of square-integrable automorphic forms of Sping. For each n, we
may now define a G3(A)-equivariant map ©,, as follows:

S}

0, nem, —— Il A2(Sping) MU fhinctions on Go(F)\Ga(A)}.

Then the following was proved in [GGJ]:
6



Theorem 4.1. (i) The image of ©, is contained in A*(Gs).

(F)

i) The restriction of ©, to the subspace n°*Y) @ m, is injective.
7 n "

The proof of the theorem is not difficult; it involves showing the non-vanishing
of certain Fourier coefficients. Also, it is easy to see that the restriction of ©, to
(7753(F Nt ® 7, is identically zero. In any case, the theorem immediately implies that

1
mdisc(ﬂ-S) Z 6 : (2#5 + (_1)#S2)

In fact, in [G], we show that equality holds when F is totally real.

To complete the proof of Theorem [L.Il one may appeal to the determination of the
residual spectrum of Gy by H. Kim [K| and S. Zampera [Z]. Their results show that
L2, has the multiplicity one property, and further that m,.s(ws) = 1. This concludes

TEeSs

the proof of Theorem [I11

5. Potential Construction of some Tempered Cusp Forms

Finally, we would like to explain how we expect to show that the tempered repre-
sentation 7, discussed in Section 3 has cuspidal multiplicity at least that predicted by
Arthur’s conjecture.

The parameter
@bT . LF — SOg(C) — GQ(C)
actually factors as:

Hence, instead of lifting the cuspidal representation 7 of PG Ly directly to GG, one may
first lift it to a cuspidal representation of PG Ls. This is precisely the Gelbart-Jacquet
lift, and we denote this cuspidal representation of PG L3 by GJ(7). Note that

the Steinberg representation St, if v € S;;

GJ(1), = {

a specific unramified representation if v ¢ S..

Now it turns out that PGLj3 x G5 is a dual pair in the split (adjoint) exceptional
group of type Fg. This suggests that we may use exceptional theta correspondence to
lift GJ(7) from PGL3 to Gy: hopefully we will get the representation .. For this to
work out, one should first verify that under local theta correspondence, the Steinberg
representation St, of PGLs(F),) lifts to the representation 7. of Go(F,). However, it
was shown in [GS] that the theta lift of St, is equal to 7} @ 7. So this doesn’t work
out as planned.

Thankfully, a homomorphism Lp — SL3(C) is not just a Langlands parameter for
PGLs; it is also a parameter for any inner form of PG Ls. Such an inner form is of the
form PD* where D is a degree 3 division algebra. Over a p-adic field F},, there are
two such division algebras: D, and its opposite D¢P?. Being opposite algebras, their
groups of invertible elements define isomorphic algebraic groups. Thus, locally, PG L;

has precisely one inner form PD*.
7



Now under the local Jacquet-Langlands correspondence, the Steinberg representation
St, corresponds to the trivial representation 1, of PD*(F,). Moreover, PD* x Gy is
a dual pair in an inner form of Eg. It was shown in [S] that the local theta lift of 1, is
indeed equal to 7.

Hence we are led to the following strategy for embedding 7, into Lgusp. Choose a

global division algebra D of degree 3 which is ramified precisely at the set S.. Then
one lifts 7 from PG Ly to Gy as follows:

PGLQ Gelbart-Jacquet PGL3 Jacquet-Langlands PD* theta lift G2
T — GJ(T) ——— JLp(GJ(1)) —— O(JLp(GJ(1))).

As an abstract representation, O(JLp(GJ(7))) is indeed isomorphic to m, (if it is
NON-ZEro).

How does the multiplicity ¢ - (2#57 + (—1)#572) arise in this case? The answer lies
in the following lemma:

Lemma 5.1. The number of global division algebras of degree 3 ramified precisely at
a set S is equal to

1

5 (2%5 + (—1)#92).

In particular, the number of inner forms of PGLs which are ramified at the set S is
half of the above number.

Note that the various inner forms of the lemma are non-isomorphic as algebraic
groups, but their groups of adelic points are abstractly isomorphic. Thus the reason
for the high multiplicity here is the failure of Hasse principle for the inner forms of
PGL3!

In order for the above strategy to work, it remains to show:

e the non-vanishing of the theta lift ©(JLp(GJ(7)));
e the various ©(JLp(GJ(7)))’s generate linearly independent copies of 7. in
L2, .
cusp

At the moment, we are still trying to resolve these questions.
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ON THE LIFTING OF HERMITIAN MODULAR
FORMS

TAMOTSU IKEDA

Notation

Let K be an imaginary quadratic field with discriminant —D =
—Dg. We denote by O = O the ring of integers of K. The non-trivial
automorphism of K is denoted by x + Z. The primitive Dirichlet
character corresponding to K/Q is denoted by x = xp. We denote by
0% = (vV—=D)'O the inverse different ideal of K/Q.

The special unitary group G = SU(m,m) is an algebraic group de-
fined over Q such that

0, —1,)\+ 0 —1pm
G(R) = {g € SLom(R® K) g (1m (US >tg: (1m O )}

for any Q-algebra R. We put I‘g{”) = G(Q) N GLy,(0).
The hermitian upper half space H,, is defined by

Mo = {2 € Mn(C) | 5o (7 - '7) > 0}.

Then G(R) acts on H,, by

9(2) = (AZ+ B)(CZ+ D)™, Z€MHp,g= (é

wliey
N

We put
A (Ot = {h € A (O) | h > 0},

We set e(T) = exp(2ry/—1tr(T)) if T is a square matrix with entries
in C. For each prime p, the unique additive character of @, such
that e,(z) = exp(—2my/—1z) for x € Z[p~'] is denoted e,. Note that
e, is of order 0. We put es(r) = e(vo) [, €p(p) for an adele
r = (z,), € A.



Let x = ®ux, be the Hecke character of A*/Q* determined by Y.
Then x  is the character corresponding to Q,(v/—D)/Q and given by

0 =(5")

Let Qp be the set of all primes which divides D. For each prime
q € Qp, we put D, = ¢°"%P_ We define a primitive Dirichlet character

Xq by
() = {x(n’) if (n,q) = 1

0 if g|n,

where n' is an integer such that

, {n mod D,

n =

1 mod D;lD
Then we have x = [],p x4 Note that

- (221 ()

pln

for g { n, n > 0. One should not confuse y, with X,

1. Fourier coefficients of Eisenstein series on H,,

In this section, we consider Siegel series associated to non-degenerate
hermitian matrices. Fix a prime p. Put &, = x(p), i.e.,

1 if —D e (Q))?
& =4—-1 ifQ,(v—D)/Q, is unramified quadratic extension
0 if Q,(v—D)/Q, is ramified quadratic extension.

For H € A,,(O), det H # 0, we put
y(H) = (=D)"™/* det(H)
G(H) = x ((H)™,
The Siegel series for H is defined by

by(H,s) = > e,(tr(BR))p~ o) Re(s) > 0.
ReHery, (Kp)/Herm (Op)

Here, Her,,(K),) (resp. Her,,(O,)) is the additive group of all hermitian
matrices with entries in K, (resp. O,). The ideal v(R) C Z, is defined
2



as follows: Choose a coprime pair {C, D}, C, D € My,(O,) such that
C'D = D'C,and D~'C = R. Then v(R) = det(D)O, N Z,.
We define a polynomial ¢,(K/Q; X) € Z[X] by

[(m+1)/2 ) |
LIEK/QX) = [ a-p"X) [T -p"6X).
i=1 =1

There exists a polynomial F,(H; X) € Z[X] such that
Fy(H;p™®) = by(H, 8)t,(K/Q;p~°) .
This is proved in [9].
Moreover, F,(H; X) satisfies the following functional equation:
Fy(H;p 2" X~1) = G(H)(p" X)W E, (H; X).
This functional equation is a consequence of [7], Proposition 3.1. We
will discuss it in the next section.
The functional equation implies that degF,(H; X) = ord,y(H). In
particular, if p{vy(H), then F,(H;X) = 1. Put
Fy(H; X) = XD E (Hyp ™ X?).
Then following lemma is a immediate consequence of the functional
equation of F'(H; X).
Lemma 1. We have

E(H; XY= E,(H;X), ifm is odd.
EJ(H;£,X7Y = E,(H; X), if m is even and &, # 0.

Let k be a sufficiently large integer. Put n = [m/2]. The Eisenstein

series Eé?lQn(Z ) of weight 2k + 2n on H,, is defined by

Eézl-i)-Qn<Z) = Z det(CZ + D)—Qk—2n7
{C.D}/~

where {C, D}/ ~ extends over coprime pairs {C, D}, C, D € My,(O)
such that C'*D = D'C modulo the action of GL,,(O). We put

i=1
Here
o e if m = 2n + 1,
T (=)t D2 = 9,
3



Then the H-th Fourier coefficient of ;"5 (Z) is equal to

2k+2n
|2k 1 H F —2k 2n> : |k; (1/2) H F —k’+(1/2))
ply(H) ply(H
:|’7 |k (1/2) H F 1/2))
plv(H

for any H € Ag,11(O)" and any sufficiently large mteger k.
The H-th Fourier coefficient of 52(131)271(2 ) is equal to

NVE)* 1] F(H;p ) = y(m)* ] Fo(Hsp™*
plv(H) ply(H)

for any H € Ay,(O)" and any sufficiently large integer k.

2. Main theorems

We first consider the case when m = 2n is even.
Let f(1) = Y. Nv_;a(N)¢"V € So1(Io(D), x) be a primitive form,
whose L-function is given by

[e.9]

L(f,s) = Z a(N)N~*
=[J( = ap +x@p™* ) ] - ale)g™) "

p{D q/D

For each prime p { D, we define the Satake parameter {a,,(,} =
{op, x(p)a, '} by

(1 —a(P)X +x(p)p*X?) = (1 = p", X)(1 - p*5,X).
For ¢ | D, we put a, = ¢ *a(q).

Put
AH) = () T] Fo(H, ), H € Ay (O)F
plyv(H)
F(Z)= Y  A(H)e(HZ), Z € Ha,.
HEA2,(0)*

Then our first main theorem is as follows:

Theorem 1. Assume that m = 2n is even. Let f(1), A(H) and F(Z)

be as above. Then we have F € SQkJrgn(Fg")). Moreover, F is a Hecke
eigenform. F =0 if and only if f(7) comes from a Hecke character of

K and n is odd.
4



Now we consider the case when m = 2n + 1 is odd.
Let f(1) = Y. v_ia(N)¢" € Sa(SLy(Z)) be a normalized Hecke
eigenform, whose L-function is given by

L(f,s) = a(N)N~*°

N=1
=TIt —alpp +p*2)"
p

For each prime p, we define the Satake parameter {a,, o, 11 by

(1 —a(p)X +p™*'X?%) = (1 = p~ 1P, X)(1 - p*~ D1 X).

Put

p
A(H) = ()= 1] Fp(H, ), H € Mgy (0)*
plv(H)
F(Z)= Y  A(H)e(HZ), Z € Hamp.
f]E/\zthl((/))+

Theorem 2. Assume that m = 2n + 1 is odd. Let f(1), A(H) and

F(Z) be as above. Then we have F € Sgk”n(f‘gnﬂ)). Moreover, F is
a non-zero Hecke eigenform.

(1]
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