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保型形式と局所体上の代数群の表現
研　究　集　会

京都大学数理解析研究所の共同事業の一つとして、下記のように研究集会を催
しますのでご案内申しあげます。

研究代表者　 齋藤 裕
（京都大学人間環境学研究科）
高橋　哲也
（大阪府立大学総合科学部）
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１月２４日（金）１１：４５

場所：京都大学数理解析研究所 4階４２０号室 　
京都市左京区追分町
市バス　京大農学部前　または　北白川　下車
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13:30 - 14:30 Tsuneo Arakawa (Rikkyo Univ.)

Shimura correspondence for Maass wave forms and Selberg

zeta functions

14:45 - 15:45 Shuichi Hayashida（Osaka Univ.)

Skew holomorphic Jacobi forms of general degree

16:00 - 17:00 Shin-ichiro Mizumoto (Tokyo I. T.)

Certain series attached to an even number of elliptic modular forms

1月 21日（火）
9:30 - 10:30 Taku Ishii (Univ. Tokyo)

Principal series Whittaker functions on symplectic groups

10:45 - 12:15 Kyo Nishiyama (Kyoto Univ.）
Theta correspondence and representation theory

14:00 - 15:00 Takayuki Oda(Univ. Tokyo)

Whittaker functions of nonspherical principal series on SL(3,R)

15:15 - 16:15 Richard Hill (Univ. College London)

Fractional weights and non-congruence subgroups

18:00 - party（Kyodai-kaikan）
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１月２２日（水）
9:30 - 10:30 Noritomo Kojima (Tokyo I.T.)

Standard L-functions attached to vector valued Siegel

modular forms

10:45 - 11:45 Yumiko Hironaka（Waseda Univ.）
Spherical functions on certain spherical homogeneous spaces

over p-adic fields

13:15 - 14:15 Brooks Roberts (Univ Idaho)

Canonical vectors for representations of GSp(4):results

and conjectures

14:30 - 15:30 Jeffrey Hakim (American Univ)

Supercuspidal representations attached to symmetric spaces

15:45 - 16:45 Kaoru Hiraga (Kyoto Univ.)

On functoriality of Zelevensky involution

１月２３日（木）
9:30 - 10:30 Takuya Konno(Kyushu Univ.)

TBA

10:45 - 11:45 Jean Francois Dat (Univ Strasbourg)

Parabolic induction and paraholic induction

13:15 - 14:15 Ralf Schmidt (Univ Saarlandes)

On Siegel modular forms with square-free level

14:30 - 15:30 Bao Chau Ngo (Univ Paris 13)

Shtukas with multiples modifications and base change identities

15:45 - 15:45 Atsushi Ichino (Osaka City Univ.)

Restrictions of hermitian Maass lifts and the

Gross-Prasad conjecture(joint work with Ikeda)
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9:30 - 10:30 Wee Teck Gan (Princeton Univ)

Multiplicities of cusp forms

10:45 - 11:45 Tamotsu Ikeda(Kyoto Univ.)

On the lifting for hermitian modular forms

ホームページ
http://wwwmi.cias.osakafu-u.ac.jp/ takahasi/workshop/january/index.html

に当研究集会関連の情報を随時掲載しますので、こちらもご覧ください。
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Shimura correspondence for Maass wave forms

and Selberg zeta functions

Tsuneo ARAKAWA (Rikkyo University)

荒川 恒男 (立教大学 理学部)

0 Introduction

Shimura in [Shm] established a significant correspondence from holomorphic modu-
lar forms of even integral weight 2k−2 to modular forms of half integral weight k−1/2
which is consistent with the actions of Hecke operators. The converse correspondence
was given by Shintani [Shn] in terms of period integrals. After these results, Kohnen
([Koh]) showed that this correspondence yields a bijection from the space S2k−2 of
holomorphic modular forms of weight 2k − 2 on SL2(Z) to the plus space S+

k−1/2 of

modular cusp forms of weight k − 1/2 on Γ0(4). On the other hand the plus space
corresponds bijectively to the space J cusp

k,1 of holomorphic Jacobi cusp forms (resp. the

space Jsk, cusp
k,1 of skew holomorphic Jacobi cusp forms ([Sk1], [Sk2])) of weight k and

index 1 on SL2(Z) if k is even (resp. odd). We exhibit here the isomorphisms in the
case of k > 1 being odd:

(0.1) S2k−2
∼= S+

k−1/2
∼= Jsk, cusp

k,1 .

As for the Maass wave forms Katok-Sarnak in [KS] formed the Shimura correspon-
dence from the space of even Maass wave forms to a certain plus space consisting of
automorphic forms of weight 1/2. This work is understood to give an analogue of
Shintani’s converse correspondence to the case of Maass wave forms.

A purpose of this article is to explain an analogue of the right correspondence in
the above (0.1) in the case of Maass wave forms. Another purpose is to interpret
this Shimura correspondence for Maass wave forms from viewpoints of Selberg zeta
functions and resolvent Selberg trace formulas. Finally we discuss some arithmetic
aspects of Selberg zeta functions and also some applications.

We explain a little more in details. Let Γ = SL2(Z) and Heven
0 denote the space

of even functions f ∈ H0 = L2(Γ\H) satisfying f(−z) = f(z). It is known by Katok-
Sarnak [KS] that to each Hecke eigen Maass wave form f ∈ Heven

0 there corresponds an
automorphic form g in the plus space of weight 1/2 having reasonable properties. The
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whole plus space corresponds to the spaceH−1/4,χ of automorphic forms attached to the
theta multiplier system χ defined by (1.2). This space plays an alternative role of the
space of skew holomorphic Jacobi cusp forms in (0.1). We have computed the resolvent
trace formula for Heven

0 and that of H−1/4,χ. There attached to the space Heven
0 the

Selberg zeta function Zeven(s) is introduced, while associated to the multiplier system
χ we have the Selberg zeta function Zχ(s) (see (2.1), ( 2.3) ). By comparing the both
resolvent trace formulas for Heven

0 and H−1/4,χ the conjectural bijectivity of the Katok-
Sarnak correspondence will be reduced to some simple relationship of the two Selberg
zeta functions concerned, which will be presented as a new conjecture (Conjecture 4).
Towards the solution of our conjecture we discuss an explicit arithmetic expression
of the Selberg zeta function Zχ(s). The explicit espression of Zeven(s) can easily be
obtained similarly from that of Z(s), the original Selberg zeta function for SL2(Z).

Finally as an application of the trace formula for Heven
0 the prime geodesic theorem

((4.4), Theorem 6) for GL2(Z) will be given. This will be a refinement of the original
result for the group SL2(Z) due to Sarnak [Sa].

1 Shimura correspondence for Maass wave forms

We use the symbol e(w) for exp(2πiw). Throughout this article Γ denotes the modular

group SL2(Z). Let H denote the upper half plane. For A =

(
a b
c d

)
∈ SL2(R) and

z ∈ H, J(A, z) := cz + d denotes the usual factor of automorphy for SL2(R). For a
non-zero complex number w, argw is chosen so that −π < argw 5 π and the branch
of a holomorphic function ws = exp(s logw) (w 6= 0) is fixed once and for all. For
A, B ∈ SL2(R), the cocycle σ2k(A,B) is given by

σ2k(A,B) = exp
(
2ik{arg J(A,Bz) + arg J(B, z)− arg J(AB, z)})

(note here that the right hand side is independent of z).
Following [Fi], we give a definition of a multiplier system of Γ. Let V be a finite

dimensional C-vector space equipped with a positive definite hermitian scalar product
〈v, w〉 (v, w ∈ V ) and let U(V ) denote the group of unitary tansformations of V with
respect to the scalar product. A map χ : Γ −→ U(V ) is called a multipier system of Γ
of weight 2k (k ∈ R), if it satisfies

(i) χ(−12) = e−2πikidV , idV being the identity map of V .

(ii) χ(AB) = σ2k(A,B)χ(A)χ(B) for all A, B ∈ Γ.

We set, for A ∈ SL2(R) and a function f on H,

f |[M,k](z) := jM(z)−1f(Mz)

2



with jM(z) = exp(2ik arg J(M, z)). Let Hk,χ denote the space of V -valued measurable
functions on H with the properties

(i) f |[M,k] = χ(M)f for all M ∈ Γ,

(ii) (f, f) :=

∫

Γ\H
〈f(z), f(z)〉dω(z) < +∞.

Then Hk,χ forms a Hilbert space with respect to the scalar product

(f, g) =

∫

Γ\H
〈f(z), g(z)〉dω(z), (f, g ∈ Hk,χ).

The differential operator ∆k which is consistent with the action f |[A, k] is given by

∆k := y2
( ∂2

∂x2
+

∂2

∂y2

)− 2iky
∂

∂x
.

A fundamental subspace D of Hk,χ consists of C2-class functions f satisfying
(∆kf,∆kf) < ∞. Since −∆k is symmetric on D, it is known by [Ro],I, Satz3.2 that

there exists the unique self-adjoint extension −∆̃k : D̃ −→ Hk,χ, where D̃ denotes the

domain of definition of −∆̃k. By the self-adjointness of −∆̃k, eigen values of −∆̃k are
all real numbers. So we let

λn =
1

4
+ r2

n (λ0 < λ1 < · · · < λn < · · · )

denote all distinct eigen values of −∆̃k. We may choose rn so that rn ∈ i(0,∞)∪[0,∞).
Denote byHk,χ(s) the space of C2-class functions f ∈ Hk,χ satisfying−∆kf = s(1−s)f .
It is known that Hk,χ(s) is a finite dimensional C-vector space. Moreover

dn := dimHk,χ(
1

2
+ irn)

gives the multiplicity of λn = 1
4
+r2

n of −∆̃k. Let s, a ∈ C. The spectral series attached
to the multiplier system (Γ, χ) is defined by

(1.1) SΓ,χ(s, a) :=
∞∑

n=0

(
dn(

s− 1/2
)2

+ r2
n

− dn(
a− 1/2

)2
+ r2

n

)
.

It is known that the infinite series is absolutely convergent for s, a with s 6= 1
2
± irn,

a 6= 1
2
± irn. Then SΓ,χ(s, a) indicates a meromorphic function of s whose poles are

located at s = 1
2
± irn. They are simple poles except for s = 1/2 (rn = 0).
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In this note we exclusively concider the following two cases. First let k = 0, V = C
and χ be the trivial character of Γ. Then

H0 := H0,χ = L2(Γ\H).

A function f of H0 is called an even function if it satisfies f(−z) = f(z). Let Heven
0

(resp. Heven
0 (s) (s ∈ C)) be the subspace of H0 consisting of even functions (resp. even

C2-class functions with −∆kf = s(1 − s)f). We denote by Seven
Γ (s, a) the spectral

series attached to the space Heven
0 and the differential operator ∆0 = y2

(
∂2

∂x2 + ∂2

∂y2

)
which is similarly defined as in (1.1).

Another one is the multiplier system obtained from the theta transformation for-
mula. Let θi(τ, z) (i = 0, 1) be the usual theta series defined by

θi(τ, z) =
∑

n∈Z
e
(
(n+ i/2)2τ + (2n+ i)z

)
.

The theta transformation law for these theta series is described as follows:
(
θ0(M(τ, z))
θ1(M(τ, z))

)
= e

( cz2

J(M, τ)

)
J(M, z)1/2U(M)

(
θ0(τ, z)
θ1(τ, z)

) (
M=

(
a b
c d

)
∈ Γ

)
,

where U(M) is a unitary matrix of size two. For the convenience we consider the
complex conjugate χ of U :

(1.2) χ(M) = U(M) (M ∈ Γ).

Since we have χ(−12) = eπi/212, χ forms a multiplier system of Γ with weight −1/2.
Let H−1/4,χ and H−1/4,χ(s) be the spaces defined as above for this multiplier χ and Γ.

We explain here the Maass wave form version of the correspondences in (0.1).
Denote by j(M, τ) (M ∈ Γ0(4)) Shimura’s factor of automorphy on Γ0(4) given by

j(M, τ) = θ(Mτ)/θ(τ),

θ(τ) being the theta series θ0(τ, 0) =
∑

n∈Z e(n
2τ). Katok-Sarnak defined a certain plus

space consisting of Maass wave forms of weight 1/2. For s ∈ C let T+
s denote the space

consisting of C2-class functions g : H −→ C satisfying the following two conditions:

(i) g(Mz) = g(z)j(M, z)|cz+d|−1/2 for all M ∈ Γ0(4) and

∫

Γ0(4)\H
|g(z)|2 dω(z) < +∞,

(ii) g has a Fourier expansion of the form:

g(z) =
∑

n∈Z
B(n, y)e(nx),
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where we impose the condition that if n ≡ 2, 3 mod 4, then necessarily B(n, y) = 0.
Moreover we assume the Fourier coefficients B(n, y) for n 6= 0 are given of the form

(1.3) B(n, y) = b(n)Wsignn/4, s−1/2(4πy|n|),
where Wα,β denotes the usual Whittaker function.

Then a modified version of the second isomorphism in (0.1) generalized to Maass
wave forms is given by

Proposition 1 There exists the following anti C-linear isomorphism

(1.4) H−1/4,χ(s) ∼= T+
s

given by H−1/4,χ(s) 3 g =

(
g0

g1

)
7→ G(τ) = g0(4τ) + g1(4τ) ∈ T+

s .

Remark. We note that, if s is real or of the form s = 1
2

+ ir with r real, then
T+

s = T+
s , and moreover that T+

s = {0}, otherwise. In particular if s = 1/4, then the
space T+

1/4 = T+
3/4 is nothing but M+

1/2(Γ0(4)).

For the proof of the proposition we refer to [Ar4].
An analogue of the correspondences in (0.1) to Maass wave forms is described as

follows:

Heven
0

(
2s− 1

2

) ∼ T+
s
∼= H−1/4,χ(s).

Here the symbol ”∼” means that there exists a certain correspondence from
Heven

0

(
2s− 1

2

)
to T+

s described as in the following theorem due to Katok-Sarnak [KS].

Theorem 2 ([KS]) Let s ∈ C and let f be an even Hecke eigen Maass wave form
of Heven

0 (2s − 1/2). Then there exists g =
∑

n∈ZB(n, y)e(nx) ∈ T+
s whose Fourier

coefficients satisfy the relation

b(−n) = n−3/4
∑

T, det 2T=n

f(zT )|AutT |−1 (n ∈ Z>0),

where T runs through all the SL2(Z)-equivalence classes of positive definite half-integral
symmetric matrices T with det 2T = n and |AutT | denotes the order of the unit group
of T . Moreover zT is the point in H corresponding to T ; namely if we write T = tg−1g−1

with g ∈ GL+
2 (R), then zT = g(i).

Remark. It is expected that for each Hecke eigen Maass wave form f there exists at
least one non-zero g corresponding to f . Under this expectation

(1.5) dimHeven
0 (2s− 1/2) 5 dimT+

s (?).
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2 Selberg zeta functions concerned

The Selberg zeta functions Zeven(s) has been introduced in [Ar3] to describe the trace
formula forHeven

0 . Let Prm+(Γ) be the set of primitive hyperbolic elements P of Γ with
trP > 2 and Prm+(Γ)I the set consisting of P ∈ Prm+(Γ) that are primitive even in

GL2(Z). Set Γ̃ = GL2(Z)− SL2(Z). An elemnet of Γ̃ is called primitive hyperbolic, if

trP 6= 0 and P cannot be represented as any power of any element of Γ̃. Let Prm+(Γ̃)

be the set of primitive hyperbolic elements P of Γ̃ with trP > 0. For any element
P ∈ Prm+(Γ) (or P ∈ Prm+(Γ̃)) let N(P ) denote the square of the eigen value (> 1)
of P . For any subset S of GL2(Z) which is stable under the SL2(Z)-conjugation we
denote by S/Γ the set of Γ-conjugacy classes in S. We define Zeven(s) by

(2.1) Zeven(s) =
∏

{P0}Γ

∞∏
m=0

(
1− (−1)mN(P0)

−s−m
)2

×
∏

{P}Γ

I
∞∏

m=0

(
1−N(P )−s−m

)
,

where {P0}Γ is taken over Prm+(Γ̃)/Γ and the product
∏I
{P}Γ indicates that {P}Γ

runs through Prm+(Γ)I/Γ. The zeta function Zeven(s) is absolutely convergent for
Re(s) > 1. Moreover it is immediate to see from (2.1) that the logarithmic derivative
of Zeven(s) is given by

(2.2)
Z ′even

Zeven

(s) =
∑

{P}Γ

∞∑
m=1

logN(P )

1−N(P )−m
N(P )−ms +

∑

{P0}Γ

∑

n>0
odd

logN(P0)
2

1 +N(P0)−n
N(P0)

−ns.

In [Ar1] we obtained the resolvent trace formula for the space H−1/4,χ involving the
zeta function Zχ(s) given by

(2.3) Zχ(s) =
∏

{P}Γ∈Prm+(Γ)/Γ

∞∏
m=0

det
(
12 − χ(P )N(P )−s−m

)
.

On the other hand in [Ar3], [Ar4] we computed the resolvent trace formula for
the space Heven

0 and compared the both trace formulas for H−1/4,χ and Heven
0 in an

explicit manner. As an important consequence of this comparison we have the following
fundamental theorem which connects the spectral series with the Selberg zeta functions
concerned.

Theorem 3 Let s′ = 2s− 1/2 and a′ = 2a− 1/2 with Re(s) > 1, Re(a) > 1. Then

SΓ,χ(s, a)−
( 1

2s− 1

Z ′χ
Zχ

(s)− 1

2a− 1

Z ′χ
Zχ

(a)
)

(2.4)

= 4

(
Seven

Γ (s′, a′)−
( 1

2(2s′ − 1)

Z ′even

Zeven

(s′)− 1

2(2a′ − 1)

Z ′even

Zeven

(a′)
))

.
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For the proof we refer to [Ar4].
In (2.4) we expect that the hyperbolic contributions of the both hand sides should

coincide. Therefore we may present the following conjecture.

Conjecture 4 We have

Z ′χ
Zχ

(s) =
Z ′even

Zeven

(2s− 1/2) or eqivalently, Zχ(s)2 = Zeven(2s− 1/2).

Towards the solution of the conjecture it will be necessary to obtain explicit arith-
metic expressions of the zeta functions Zχ(s) and Zeven(2s− 1/2); in particular that of
Zχ(s).

3 Arithmetic forms

For M =

(
a b
c d

)
∈ GL2(Z) (M 6= ±12), we write

M̃ =

(
b (d− a)/2

(d− a)/2 −c
)

and n(M) =
1

β
M̃,

where β = gcd(b, d− a, c) (β is often denoted by β(M)). By a straightforward compu-
tation it is not dificult to see that, for P ∈ GL2(Z),

n(PMP−1) = (detP )−1Pn(M)tP.

Let t := a+ d be the trace of M . The trace of U(M) for M ∈ Γ, t > 2 is given by

(3.1) trU(M) =
1

(t− 2)3/2

∑

λ,µ∈Z/(t−2)Z
e
( 1

t− 2
(λ, µ)M̃

(
λ
µ

))
.

The matrix entries of U(M) have been computed by Skoruppa-Zagier [SZ] in terms of
Gaussian sums. The formula above is easily derived from their results. We note that
this trace depends only on Γ-conjugacy class of M :

trU(P−1MP ) = trU(M) (P ∈ Γ).

Let D range over all positive discriminants and Cpr(D) denote the set of all primitive

half integral symmetric matrices N=

(
n1 n2/2
n2/2 n3

)
with n2

2−4n1n3 = D. Denote by

Cpr the collection of such N ∈ Cpr(D) with D varying in all positive discriminants D.
The modular group Γ acts on Cpr (also on Cpr(D)) in a usual manner by N 7−→ PN tP
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(N ∈ Cpr, P ∈ Γ). Denote by Cpr(D)//Γ (resp. Cpr//Γ) the set of the Γ-equivalence
classes in Cpr(D) (resp. Cpr) and by h(D) the cardinality of this finite set Cpr(D)//Γ;
namely h(D) is the class number of primitive binary integral quadratic forms with

discriminant D. Let εD = t+β
√

D
2

denote the minimal solution of the Pell equation

t2 − β2D = 4 with t, β ∈ Z>0. Moreover we denote by ε0D = t0+β0

√
D

2
the minimal

solution of the Pell equation t20 − β2
0D = −4 with t0, β0 ∈ Z>0 if it exists (in this case

εD = (ε0D)2).
It is known that there exists a bijection from Prm+(Γ) to Cpr:

(3.2) Prm+(Γ) 3 P 7−→ n(P ) ∈ Cpr.

and that it induces a bijective map from the set Prm+(Γ)/Γ of all the Γ-conjugacy

classes in Prm+(Γ) onto Cpr//Γ. For each N=

(
n1 n2/2
n2/2 n3

)
∈ Cpr(D) the opposite

map is given by

N 7−→ P =

(
(t− βn2)/2 βn1

−βn3 (t+ βn2)/2

)
∈ Prm+(Γ).

We define, for each positive discriminant D and a positive integer m,

Cχ,m(D) :=
∑

N∈Cpr(D)//Γ

tr(χ(P )m),

where P corresponds to N by the above bijective map, namely, n(P ) = N . Then we
have another expression of (Z ′χ/Zχ)(s):

Z ′χ
Zχ

(s) =
∑
D>0

∞∑
m=1

Cχ,m(D)
log(ε2D)

1− ε−2m
D

ε−2ms
D ,

where εD =
t+ β

√
D

2
with (t, β) denoting the minimal solution of the Pell equation

t2 − Dβ2 = 4, t, β ∈ Z>0. To obtain this expression we note that tr(χ(Pm)) =
tr(χ(P )m). Since χ(P )m are unitary matrices of size two, the values which tr(χ(P )m)
can take are rather limited. We have tried to compute Cχ,m(D), but at present we
have got only partial results.

Proposition 5 Let D be a positive discriminant with D ≡ 1 mod 4. Assume that

there exists a fundamental unit ε0D =
t0 + β0

√
D

2
(t0, β0 ∈ Z>0) with (t0, β0) giving

the minimal solution of the Pell equation t20 −Dβ2
0 = −4 (namely, N(ε0D) = −1) and
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moreover assume that t0 is odd. For each N ∈ Cpr(D), chosse P ∈ Prm+(Γ) which
corresponds to N by n(P ) = N . Then we have

tr(χ(P )m) = 2 cos
mπ

3
(m ∈ Z>0).

Accordingly,

Cχ,m(D) = 2h(D) cos
mπ

3
.

Proof. Let εD, ε0D, P and N be the same as above. We note that εD = (ε0D)2, P̃ = βN ,
from which we have t− 2 = t20 and β = t0β0. The expression (3.1) implies that

(3.3) trU(P ) =
1

(t− 2)3/2

∏

p | t−2

Jp

where for each prime p dividing t− 2 we set

Jp :=
∑

λ,µ∈Z/peZ
e
( 1

t− 2
(λ, µ)P̃

(
λ
µ

))
=

∑

λ,µ∈Z/peZ
e
(β0

t0
(λ, µ)N

(
λ
µ

))

with pe‖t−2 (this means that pe divides t−2 and pe+1 does not). For each prime p the
function e(x) restricted to Q extends to a continuous function ep(x) on Qp in such a
manner that ep(x) = e(x) for x ∈ Q. Let a prime p divide t− 2. By the assumption on

t0, p is an odd prime. We may assume that N is SL2(Zp)-equivalent to

(
u 0
0 −u−1D

)

with u ∈ Z×p . Then,

Jp =

( ∑

λ mod pe

ep

(β0

t0
uλ2

))( ∑

µ mod pe

ep

(
−β0

t0
u−1Dµ2

))
.

If we write t0 = pf t′0 with (t′0, p) = 1, then e = 2f and

Jp = peGpf

(β0u

t′0

)
Gpf

(
−β0u

−1D

t′0

)
,

where we put, for a ∈ Z×p ,

Gpf (a) =
∑

λ mod pf

ep

(aλ2

pf

)
.

It is well-known and easy to see that

Gpf (a) =

{
pf/2 if f is even,

p(f−1)/2ψp(a)G(ψp) if f is odd,
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where ψp is the non-trivial quadratic character modulo p (ψp is extended to Z×p ) and
G(ψp) is the usual Gaussian sum associated to ψp:

G(ψp) =
∑

x mod p

ψp(x)ep(x).

Using the identity G(ψp)
2 = ψp(−1)p, one can compute Jp in an explicit manner:

Jp =

{
p3e/2 if f is even,

p3e/2ψp(D) if f is odd.

Since t20 − β2
0D = −4, we have ψp(D) = 1. Therefore by (3.3) we conclude that

trU(P ) = 1, namely, trχ(P ) = 1.

Set, for any M ∈ Γ,
ω(M) = detU(M).

Then ω forms a character of Γ. We now borrow some notations and results from [Ar2].

We may assume N=

(
n1 n2/2
n2/2 n3

)
∈ Cpr(D) to be reduced; namely, n1, n3 > 0 and

n2 > n1 + n3. Set

α =
n2 +

√
D

2n1

.

Then N is reduced, if and only if α satisfies the condition

(3.4) α > 1 and 0 < α′ < 1,

which amounts to saying that α has a purely periodic continued fraction expansion:

α = b1 − 1

b2 − 1

...

1

br − 1

b1 − ...

(bj ∈ Z, b1, . . . , br = 2).

This expansion is denoted by

(3.5) α = [[ b1, b2, . . . , br ]]

(for this type of continued fraction expansion and the relationship with quadratic forms
we refer to Zagier [Za]). Here r is called the period of α. Let B denote the Γ-equivalence
class in Cpr(D) represented by N . Then the period r depends only on the class B and
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is denoted by r(B). Let B∗ be the class of Cpr(D) represented by N∗ = −tQNQ with

Q=

( −2 −1
1 1

)
. Then we know in the proof of Proposition 5.1 of [Ar2] that

ω(P ) = ir(B)−r(B∗).

Moreover it is known that if there exists ε0D with norm −1, then r(B) = r(B∗). There-
fore detU(P ) = ω(P ) = 1. This means that U(P ) is GL2(C)-conjugate to some(
eiθ 0
0 e−iθ

)
with θ ∈ R. Then trU(P ) = 2 cos θ = 1, which implies θ = ±π/3 + 2nπ

(n ∈ Z). Thus,

trU(Pm) = tr(U(P )m) = 2 cosmθ = 2 cos
mπ

3
.

We have completed the proof of Proposition 5.

Let Z(s) denote the ordinary Selberg zeta function for Γ:

Z(s) =
∏

{P}Γ∈Prm+(Γ)/Γ

∞∏
m=0

(
1−N(P )−s−m

)
.

It is well-known ([Sa], [He]) and easy to see from the bijection (3.2) that Z(s) has the
following arithmetic expression:

Z(s) =
∏
D>0

∞∏
m=0

(
1− ε

−2(s+m)
D

)h(D)

,

Z ′

Z
(s) =

∑
D>0

∞∑
m=1

h(D)
log(ε2D)

1− ε−2m
D

ε−2ms
D .

For each positive discriminant D let C−pr(D) be the subset of Cpr(D) consisting of

N for which there exists a P ∈ Γ̃ with PN tP = −N . Denote by C−pr the union of
all C−pr(D) with D varying in all positive discriminants. We see easily that for each
D only the case of either C−pr(D) = φ or C−pr(D) = Cpr(D) occurs and moreover that
C−pr(D) = Cpr(D) if and only if ε0D with norm −1 exists.

Therefore one can consider the set C−pr(D)//Γ (or C−pr//Γ) of Γ-equivalence classeis
in C−pr(D) (in C−pr). Then it is easy to show in a similar manner that there exists a

bijection from Prm+(Γ̃) onto C−pr via the map Prm+(Γ) 3 P 7−→ n(P ) ∈ C−pr and that

it induces a bijective map from the set Prm+(Γ̃)/Γ onto C−pr//Γ.
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Consequently by (2.1), (2.2), we have the expression for Zeven(s):

Zeven(s) =
∏
D>0

]
∞∏

m=0

(
1− (−1)mε

−(s+m)
D

)2h(D)

×
∏
D>0

I
∞∏

m=0

(
1− ε

−2(s+m)
D

)h(D)

,

Z ′even

Zeven

(s) =
∑
D>0

∞∑
m=1

2h(D) log εD
1− (εD)−2m

(εD)−2ms +
∑
D>0

] ∑

n>0
odd

2h(D) log εD
1 + (εD)−n

(εD)−ns,

where ] (resp. I) indicates that D runs over all positive discriminants for which ε0D
with norm −1 exist (resp. for which ε0D do not exist).

4 Prime geodesic theorem

It is known originally by Sarnak [Sa] that

(4.1)
∑

{P}Γ
N(P )5X

logN(P ) = X +O(X
3
4
+ε).

and hence that

(4.2)
∑

D>0
εD5X

h(D) log((εD)2) = X2 +O(X
3
2
+ε)

(note that (4.2) is easily derived from (4.1) with the help of the bijection from Prm+(Γ)/Γ

onto Cpr//Γ). The best possible error term in the right hand side of (4.2) is O(X
7
5
+ε)

which is given by Luo-Sarnak [LS].
Similarly by using the Selberg trace formula for the space Heven

0 and by a general
procedure (cf. [Iw], [He]) the following estimate follows:

(4.3)
1

2

( ∑

{P}Γ
N(P )5X

logN(P ) +
∑

{P0}Γ
N(P0)5X

logN(P0)
2

)
= X +O(X

3
4
+ε) (ε > 0),

where the summations indicate that {P}Γ and {P0}Γ run through Prm+(Γ)/Γ and

Prm+(Γ̃)/Γ with the conditions N(P ) 5 X and N(P0) 5 X, respectively. Then by
comparing (4.1) and (4.3) we have

(4.4)
∑

{P0}Γ
N(P0)5X

logN(P0)
2 = X +O(X

3
4
+ε).

Therefore in the arithmetic terminology we have

12



Theorem 6 Assume ε > 0. We have

(4.5)
∑

D>0
ε0D5X

]
h(D) log((ε0D)2) =

X2

2
+O(X

3
2
+ε)

and ∑

D>0
εD5X

I
h(D) log((εD)2) = X2 +O(X

3
2
+ε),

where the second summation indicates that D runs through all positive discriminants
for which fundamental units with norm −1 do not exist.

Proof. The former identity is a direct consequence of (4.4) and the bijectivity of the

map from Prm+(Γ̃)/Γ onto C−pr//Γ, while the latter one is derived from (4.2) and (4.5).
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Skew holomorphic Jacobi forms
of general degree

大阪大学・理学研究科　林田秀一 (Shuichi Hayashida)
Graduate School of Science, Osaka University

Introduction
In the study of modular forms of half integral weight, it is well known that

Kohnen’s plus space (a certain subspace of elliptic modular forms of half in-
tegral weight) of weight “even integer minus 1/2” is isomorphic to the space
of Jacobi forms of index 1 (cf. Eichler-Zagier[3] Theorem 5.4). Moreover,
Skoruppa[14] introduced the notion of skew holomorphic Jacobi forms which
satisfy a certain transformation formula like Jacobi forms but not holomor-
phic functions, and he constructed a linear isomorphism between skew holo-
morphic Jacobi forms of index 1 and Kohnen’s plus space of weight “odd in-
teger minus 1/2” in the case of degree 1. This notion of skew holomorphic Ja-
cobi forms was generalised for higher degree by Arakawa[1]. There are several
works about the Jacobi form of general degree (cf. [1],[2],[8],[10],[11],[15],[18]
etc), but there are few results about skew holomorphic Jacobi forms of gen-
eral degree except Arakawa[1].

The purpose of this article is to investigate skew holomorphic Jacobi
forms of general degree. This article is a summarisation of three papers of
Hayashida[4],[5],[6]. In Section 1 we describe the definition of skew holomor-
phic Jacobi forms following Arakawa[1]. Skew holomorphic Jacobi forms are
not holomorphic functions but vanish under a certain differential operator
∆M which will be defined in Section 1. In Section 2 we give an isomorphism
between plus space of general degree and the space of skew holomorphic Ja-
cobi forms of index 1 of general degree. In Section 3 we construct Klingen
type Eisenstein series of skew holomorphic Jacobi forms. In order to obtain
this construction, we used a certain differential operator ∆M. In Section 4
we give an analogue of the Zharkovskaya’s theorem for Siegel modular forms
of half integral weight.
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1 Skew holomorphic Jacobi forms

We denote Spn(R) the real symplectic group of size 2n. Let Hn denote Siegel
upper half space of degree n, and let Dn,l = Hn ×Mn,l(C).

Skew holomorphic Jacobi forms was first introduced by Skoruppa[14] as
function on D1,1, and he showed the isomorphism between Kohnen’s plus
space and the space of skew holomorphic Jacobi forms of index 1 in the case
of degree 1. This notion of skew holomorphic Jacobi forms was generalised
for higher degree by Arakawa[1]. In this section, we would like to describe
the definition of skew holomorphic Jacobi forms following Arakawa[1]. We
prepare some notations.

Let GJ
n,l be the Jacobi group, GJ

n,l is a subgroup of Spn+l(R) as follows,

GJ
n,l :=








∗ 0 ∗ ∗
∗ 1l ∗ ∗
∗ 0 ∗ ∗
0 0 0 1l


 ∈ Spn+l(R)





We put ΓJ
n,l = GJ

n,l ∩ Spn+l(Z).
We denote the action of Spn(R) on Hn by

M · Z := (AZ +B)(CZ +D)−1

where M = ( A B
C D ) ∈ Spn(R), and Z ∈ Hn.

Let M > 0 be a symmetric half integral matrix of size l. Now we describe
the definition of the skew holomorphic Jacobi forms.

Definition 1 (skew holomorphic Jacobi forms cf. [1]). Let F (τ, z) be
a function on Dn,l, holomorphic on Hn and real analytic on Mn,l(C). We say
F is a skew holomorphic Jacobi form of weight k of index M belongs to ΓJ

n,l,
if F satisfies the following two conditions :

(1) We put FM(Z) := F (τ, z) e(tr(Mτ ′)) for Z =

(
τ z
tz τ ′

)
∈ Hn+l, then

FM satisfies

FM(γ · Z) = det(CZ +D)
k−l| det(CZ +D)|lFM(Z) ,

for every γ = ( A B
C D ) ∈ ΓJ

n,l.

(2) F has the Fourier expansion as follows :

F (τ, z) =
∑

N∈Symn,R∈Mn,l(Z)

C(N,R) e(Nτ − i

2
(4N −RM−1tR)Im τ +t Rz) ,
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where we denote by Symn the set of all half integral symmetric matrices
of size n, and C(N,R) = 0 unless 4N −RM−1tR ≤ 0.

Moreover, if Fourier coefficients satisfy a condition that C(N,R) = 0 unless
4N −RM−1tR < 0, we say F is a skew holomorphic Jacobi cusp form.

We set differential operators δ
δτ

:=
(

1+δs,t

2
δ

δτs,t

)
, δ

δz
:=

(
δ

δzi,j

)
for (τ, z) ∈

Dn,l, where δs,t is the Kronecker’s delta symbol, and δ
δτs,t

:= 1
2

(
δ

δxs,t
− i δ

δys,t

)
,

where xs,t (resp. ys,t) is the real part (resp. the imaginary part) of τs,t. We
define a differential operator

∆M := 8πi
δ

δτ
− δ

δz
M−1t δ

δz
.

We note the following equivalence. If a function F on Dn,l satisfies the
condition (1) of the definition of skew holomorphic Jacobi forms, and if n > 1,
then the condition (2) is equivalent to the following condition

(2’) ∆M F = 0n.

We denote the vector space of skew holomorphic Jacobi forms (resp. skew
holomorphic Jacobi cusp forms) of weight k of index M by Jsk

k,M(ΓJ
n) (resp.

Jsk,cusp
k,M (ΓJ

n)).

2 Isomorphisms between skew holomorphic

Jacobi forms of index 1 and plus spaces

First, we shall describe the definition of Siegel modular forms of half integral
weight.

For positive integer q, we put

Γ
(n)
0 (q) := {M = ( A B

C D ) ∈ Spn(Z) | C ≡ 0 (mod q)}
is the congruence subgroup of the symplectic group Spn(Z).

We define a character ψ on Γ
(n)
0 (4), ψ is given by ψ(M) :=

( −4
det D

)
for

M = ( A B
C D ) ∈ Γ

(n)
0 (4).

We put the standard theta series θn(Z) and put a function j(M,Z) as
follows:

θn(Z) :=
∑

m∈Zn

e(tmZm), (Z ∈ Hn)

j(M,Z) :=
θn(M · Z)

θn(Z)
, (M ∈ Γ

(n)
0 (4), Z ∈ Hn),

3



then this j(M,Z) satisfies

j(M,Z)2 = ψ(M) det(CZ +D) for any M = ( A B
C D ) ∈ Γ

(n)
0 (4) .

Let k be an integer, χ be a Dirichlet character modulo q, and 4|q. A
holomorphic function F (Z) on Hn is said to be a Siegel modular form of

weight k − 1/2 with character χ belongs to Γ
(n)
0 (q) if F satisfies

F (M · Z) = χ(detD)j(M,Z)2k−1F (Z) , for any M = ( A B
C D ) ∈ Γ

(n)
0 (q),

and in the case of n = 1 we need that the function F (Z) is holomorphic at all

cusps of Γ
(1)
0 (q). We denote the set of such functions by Mk−1/2(Γ

(n)
0 (q), χ).

If n = 0 then we denote Mk−1/2(Γ
(0)
0 (q), χ) = C for k > 0. Also, we denote

the set of cusp forms in Mk−1/2(Γ
(n)
0 (q), χ) by Sk−1/2(Γ

(n)
0 (q), χ).

Next, we define a subspace M+
k−1/2(Γ

(n)
0 (4), ψu) of Mk−1/2(Γ

(n)
0 (4), ψu)

(u = 0 or 1) by

M+
k−1/2(Γ

(n)
0 (4), ψu)

:=
{
h(τ) ∈Mk−1/2(Γ

(n)
0 (4), ψu) | the coefficients c(T ) = 0 ,

unless T ≡ −(−1)k+uµtµ mod 4Symn for some µ ∈ Zn
}
.

We also define S+
k−1/2(Γ

(n)
0 (4), ψu) by

S+
k−1/2(Γ

(n)
0 (4), ψu) := M+

k−1/2(Γ
(n)
0 (4), ψu) ∩ Sk−1/2(Γ

(n)
0 (4), ψu) .

We say that M+
k−1/2(Γ

(n)
0 (4), ψu) is the plus space.

Let M > 0 be a half integral symmetric matrix of size l and let R ∈
Mn,l(Z), we put the theta series

ϑR,M(τ, z) =
∑

λ∈Mn,l(Z)

e(tr
(M (

τ [(λ+R(2M)−1)] + 2tz(λ+R(2M)−1)
))

),

where τ [(λ+R(2M)−1)] =t (λ+R(2M)−1)τ(λ+R(2M)−1).
Let F (τ, z) ∈ Jsk

k,M(ΓJ
n), then F satisfies the condition (1) of the definition

of skew holomorphic Jacobi forms, we can see

F (τ, z + τλ+ µ) = e(−tr(M(tλτλ+ 2tλz)))F (τ, z)

for every λ, µ ∈Mn,l(Z). Hence, we have the following equation,

F (τ, z) =
∑

R∈Mn,l(Z)/(Mn,l(Z)(2M))

FR(τ)ϑR,M(τ, z) ,
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where FR(τ) are uniquely determined and FR(−τ) are holomorphic functions
on Hn. If we set F (τ, z) =

∑
N,R′ C(N,R′)e(Nτ − (4N −R′M−1tR′)Im τ +t

R′z), then we can write FR by

FR(τ) =
∑

N∈symn

4N−RM−1tR≤0

C(N,R) e(
1

4
tr(4N −RM−1tR)τ) .

In this section, from here, we consider only the case l = 1, M = 1, and
we put ϑr := ϑr,1.

Let F (τ, z) =
∑

r∈(Z/2Z)n Fr(τ)ϑr(τ, z) ∈ Jsk
k,1(Γ

J
n). We define a holomor-

phic function σ(F )(τ) =
∑

r∈(Z/2Z)n Fr(−4 τ), then we have the following
theorem.

Theorem 1. σ(F ) is an element of M+
k−1/2(Γ

(n)
0 (4), ψk−1). Moreover, the

map σ : Jsk
k,1(Γ

J
n) → M+

k−1/2(Γ
(n)
0 (4), ψk−1) induces the linear isomorphism

over C. The space of skew holomorphic Jacobi cusp forms corresponds with
the space of cusp forms of plus space by this isomorphism. This isomorphism
map σ commutes with Hecke operators of both spaces.

We note that if degree n is odd and integer k is even, then it is easy to
see that Mk−1/2(Γ

(n)
0 (4), ψ) = Jsk

k,1(Γ
J
n) = {0}.

We denote the space of holomorphic Jacobi forms of weight k of index 1 of
degree n by Jk,1(Γ

J
n) (cf. Ibukiyama [8]), then the table of linear isomorphisms

between the plus space and the holomorphic (or skew holomorphic) Jacobi
forms of index 1 is given as follows.

M+
k−1/2(Γ

(n)
0 (4), ψu) ∼=

HHHHHHu
k

even odd

0 Jk,1(Γ
J
n) Jsk

k,1(Γ
J
n)

1 Jsk
k,1(Γ

J
n) Jk,1(Γ

J
n)

3 Klingen type Eisenstein series

We shall construct Klingen type Eisenstein series of skew holomorphic Jacobi
forms. Let r be an integer (0 ≤ r ≤ n). We prepare the following subgroups,

Γ[n,r] :=

{
g =

( A1 0 B1 B2
A3 A4 B3 B4
C1 0 D1 D2
0 0 0 D4

)
∈ Spn(Z) | A1, B1, C1, D1 ∈Mr(Z)

}
,

ΓJ
[n,r],l :=

{(
A 0 B 0
0 1l 0 0
C 0 D 0
0 0 0 1l

) (
1n 0 0 µ
tλ 1l

tµ κ
0 0 1n −λ
0 0 0 1l

)
∈ ΓJ

n,l | ( A B
C D ) ∈ Γ[n,r] ,

λ =
(

λ1
0

) ∈Mn,l(Z) , λ1 ∈Mr,l(Z)
}
.
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Let F (τ1, z1) ∈ Jsk,cusp
k,M (ΓJ

r ) and let k be an integer satisfies k ≡ l mod 2
(l is the size of M). We define a function F ∗ on Dn,l as

F ∗(τ, z) := F (τ1, z1) ,(3.1)

where τ =

(
τ1 τ2
tτ2 τ3

)
, z =

(
z1

z2

)
and (τ1, z1) ∈ Dr,l.

We consider the following function

Esk
n,r(F ; (τ, z)) =

∑

γ∈ΓJ
[n,r],l

\ΓJ
n,l

(F ∗|k,Mγ)(τ, z) , (τ, z) ∈ Dn.l.(3.2)

The above sum does not depend on the choice of the representative elements.
Because F is a cusp form, we can show the fact that there exists a constant
C which satisfies

|F (τ1, z1)| det(Y1)
k
2 e(−tr(Mtβ1(iY1)

−1β1)) < C,

for every (τ1, z1) ∈ Dr,l, where β1 and Y1 are the imaginary part of z1 and τ1
respectively. Hence, by the same calculation as Ziegler[18] Theorem2.5, we
can show the fact that if k > n+ l + r + 1 then Esk

n,r is uniformly absolutely
convergent in the wider sense on Dn,l. It is clear that Esk

n,r(F ; (τ, z)) satisfies
the condition (1) of the definition of skew holomorphic Jacobi forms of weight
k of index M belongs to ΓJ

n

We can show the following equation :

∆M
(
Esk

n,r(F ; (τ, z))
)

= 0n.(3.3)

Because this equation induces the shape of the Fourier expansion of
Esk

n,r(F ; (τ, z)), and by using Shimura correspondence and Köcher principle,
we can show the fact that Esk

n,r(F ; (τ, z)) satisfies the condition (2) of the
definition of skew holomorphic Jacobi forms. Hence, we have the following
theorem.

Theorem 2. Let M > 0 and F ∈ Jsk
k,M(ΓJ

r ). If k > n + l + r + 1 satisfies

k ≡ l mod 2, then Esk
n,r(F ; (τ, z)) is an element of Jsk

k,M(ΓJ
n).

We note that we can obtain the above theorem under the assumption on
M≥ 0 (cf.[4]).

We shall show that the Siegel operator of skew holomorphic Jacobi forms
has same properties as holomorphic Jacobi forms case (cf. Ziegler[18]).

For a function F (τ, z) on Dn,l, we define a function

Φn
r (F )(τ1, z1) := lim

t→+∞
F

((
τ1 0
0 it1n−r

)
, ( z1

0 )
)
, (τ1, z1) ∈ Dn,r.

Then Φn
r (F ) is a function on Dr,l. This Φn

r is called the Siegel operator.
By direct calculation, we have the following proposition.
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Proposition 3. Let F (τ, z) ∈ Jsk
k,M(ΓJ

n) be a skew holomorphic Jacobi form,

then Φn
r (F ) is also a skew holomorphic Jacobi form in Jsk

k,M(ΓJ
r ).

Moreover, we have the following theorem.

Theorem 4. If integer k satisfies k > n+ l + r + 1 and k ≡ l mod 2, then
we have Φn

r (Esk
n,r(F ; (τ, z))) = F (τ1, z1) for every F (τ1, z1) ∈ Jsk,cusp

k,M (ΓJ
r ) .

Hence, the Siegel operator Φn
r induces a surjective map from Jsk

k,M(ΓJ
n) to

Jsk,cusp
k,M (ΓJ

r ).

Now, we imitate some Arakawa’s work[2]. We assume the following con-
dition on M > 0.

(4.1) If M[x] ∈ Z for x ∈ (2M)−1Ml,1(Z), then necessarily, x ∈Ml,1(Z).

By the same argument with Arakawa [2] (Proposition 4.1, Theorem 4.2
of [2]), we deduce the following Proposition 5 and Theorem 6.

Proposition 5. Let F ∈ Jsk
k,M(ΓJ

n). Under the condition (4.1) on M, we

have F ∈ Jsk,cusp
k,M (ΓJ

n) if and only if Φn
n−1(F ) = 0.

Theorem 6. Assume that M satisfies the condition (4.1). Let k be a positive
integer which satisfies k > 2n + l + 1 and k ≡ l mod 2. Then we have
the direct sum decomposition Jsk

k,M(ΓJ
n) =

⊕n
r=0 J

sk,(r)
k,M (ΓJ

n), where J
sk,(r)
k,M =

{Esk
n,r(F ; (τ, z))|F ∈ Jsk,cusp

k,M (ΓJ
r )} .

In section 2 theorem 1, we obtained the isomorphism between the plus
space and the space of skew holomorphic Jacobi forms of index 1. Hence, by
using theorem 6, if k is an odd integer which satisfies k > 2n+2, we can also
obtain a similar decomposition for the plus space of degree n of weight k− 1

2

with trivial character. Namely, under these conditions, we can deduce the
fact that the plus space of weight k − 1

2
is spanned by Klingen-Cohen type

Eisenstein series (which corresponds to the Klingen type Eisenstein series of
skew holomorphic Jacobi form of index 1) and cusp forms.

4 Zharkovskaya’s theorem

In this section, we give an analogue of the Zharkovskaya’s theorem for Siegel
modular forms of half integral weight, and quote a conjecture.

Let q > 0 be an integer divisible by 4. Let F ∈ Mk−1/2(Γ
(n)
0 (q), χ) be an

eigenfunction for the action of a certain Hecke ring. This F has a Fourier
expansion

F (Z) =
∑

N∈Sym∗
n

f(N)e(NZ),

7



where we denote by Sym∗
n the set of all semi positive definite half integral

symmetric matrices of size n. From the definition of Mk−1/2(Γ
(n)
0 (q), χ), it

follows that f(tUNU) = f(N) for every U ∈ SLn(Z).
Here, we describe a result of Zhuravlev[17]. Let λ be a completely multi-

plicative function which grows no faster than some power of argument, and
let N > 0 be a matrix in Sym∗

n.

Theorem 7 (Zhuravlev). When the real part of s is sufficiently large, The
following series has Euler expansion,

∑

M∈SLn(Z)\M+
n (Z)

(det M,q)=1

λ(detM)f(MN tM)

(detM)s+k−3/2
=

∏
p:prime

PF,p(N, λ, p
−s)

QF,p(λ, p−s)
,(4.1)

where we denote by M+
n (Z) all positive determinant matrices in Mn,n(Z), and

PF,p(N, λ, z) is the polynomial of z which degree is at most 2n, QF,p(λ, z) is
the polynomial of z which degree is 2n. Especially QF,p(λ, z) is not depend
on the choice of N . The polynomial QF,p(λ, z) was defined as follows,

QF,p(λ, z) =
n∏

i=0

(1− αi,pχ(p)λ(p)z)(1− α−1
i,pχ(p)λ(p)z),(4.2)

where α±1
i,p are the p-parameters of F .

We denote the Siegel operator by Φ. Oh-Koo-Kim [12] showed the exis-
tence of a commuting relation between Hecke operators and the Siegel op-
erator acting on the Siegel modular forms of half integral weight, and they
showed also the fact that if F ∈ Mk−1/2(Γ

(n)
0 (q), χ) is a Hecke eigen form

then Φ(F ) ∈Mk−1/2(Γ
(n−1)
0 (q), χ) is also a Hecke eigen form.

We put L(s, λ, F ) =
∏

(p,q)=1QF,p(λ, p
−s+k−3/2)−1 (see eq(4.1), eq(4.2)),

then we obtain the following theorem, this is an analogue of the theorem of
Zharkovskaya [16].

Theorem 8. We assume Φ(F ) 6= 0, then we have

L(s, λ, F ) = L1(s− n+ 1, λ, E2k−2n,χ2)L(s, λ,Φ(F )),

where we put

L1(s, λ, E2k−2n,χ2) :=
∏

p,(p,q)=1

(1− λ(p)p−s)−1(1− λ(p)χ(p)2p2k−2n−1−s)−1.

If k > n+ 1 then L1(s, λ, E2k−2n,χ2) is the L-function of Eisenstein series of
degree 1 of weight 2k − 2n with character χ2 twisted by λ.
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Above theorem was first observed by Hayashida-Ibukiyama [7] in the case
of n = 2, λ ≡ 1, and χ ≡ 1. Here, we have the case of higher degree with
character.

Let F ∈Mk−1/2(Γ
(2)
0 (4)) be a Hecke eigen form, and we assume Φ(F ) 6= 0,

then
L(s, F ) = L(s,Φ(F ))L(s, E2k−4),

up to Euler 2-factor. Let f ∈M2k−2(SL(2,Z)) be a Hecke eigen form which

corresponds to Φ(F ) ∈Mk−1/2(Γ
(1)
0 (4)) by Shimura correspondence, then we

have
L(s, F ) = L(s, f)L(s, E2k−4) .

Similar figure seems valid for the case of cusp forms. We quote a following
conjecture from Hayashida-Ibukiyama [7].

Conjecture 1 (cf. [7]). Let k be an integer, and let f ∈ S2k−2(SL(2,Z)),
g ∈ S2k−4(SL(2,Z)). We assume both f and g are normalised Hecke eigen

forms. Then there exits F ∈ S+
k−1/2(Γ

(2)
0 (4)), such that F is a Hecke eigen

form and satisfy
L(s, F ) = L(s, f)L(s− 1, g)

up to Euler 2-factor, and where L(s, f) and L(s, g) are usual L-functions of
f and g respectively.
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Certain series attached to an even number of
elliptic modular forms

Shin-ichiro Mizumoto
Department of Mathematics,
Tokyo Institute of Technology

1 Results

Let n ∈ Z>0, k := (k1, . . . , kn) ∈ (Z>0)
n, m = (m1, . . . , mn) ∈ (Z>0)

n and
s ∈ C. We put

Q
(n)
k (m, s) :=

∫ ∞

0
ts+|k|−n−1dt

·
n∏

j=1

∫ ∞

0
u

kj−2
j e−4πmjujt(

√
ujθ(iuj)− 1)duj ; (1)

here |k| := ∑n
j=1 kj and

θ(z) :=
∞∑

l=−∞
eπil2z

is the Jacobi theta function. The right-hand side of (1) converges absolutely
and locally uniformly for Re(s) > n

2
. It is easy to see

Q
(n)
k (m,σ) > 0 for

n

2
< σ ∈ R.

For w ∈ Z let Mw be the space of holomorphic modular forms of weight w for
SL2(Z) and Sw be the space of cusp forms in Mw. Let fj and gj be elements
of Mkj

such that fj(z)gj(z) is a cusp form for each j = 1, . . . , n. Let

fj(z) =
∞∑

l=0

aj(l)e
2πilz and gj(z) =

∞∑

l=0

bj(l)e
2πilz (2)

be the Fourier expansions. The series we treat here is the following:
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D(s; f1, . . . , fn; g1, . . . , gn)

:=
∑

m=(m1,...,mn)∈(Z>0)n




n∏

j=1

aj(mj)bj(mj)


 Q

(n)
k (m, s). (3)

The right-hand side of (3) converges absolutely and locally uniformly for

Re(s) >
n

2
( max
1≤j≤n

(kj) + 1).

Theorem 1.
(i) The series (3) has a meromorphic continuation to the whole s-plane.
(ii) Let ( , ) be the Petersson inner product. Then the function

n∑

ν=1

∑

1≤i1<...<iν≤n




∏
j 6=i1,...,iν

1≤j≤n

(fj, gj)


 · D(s; fi1 , . . . , fiν ; gi1 , . . . , giν )

is invariant under the substitution s 7→ n− s ; it has possible simple poles at
s = 0 and s = n with residues −∏n

j=1(fj, gj) and
∏n

j=1(fj, gj) respectively,
and is holomorphic elsewhere.

In case where every gj is the Eisenstein series we have

Corollary. Suppose fj ∈ Skj
(j = 1, . . . , n) with Fourier expansions as in

(2). For l ∈ Z>0 put

σν(l) :=
∑

d|l
dν for ν ∈ C.

Then the series

S(s; f1, . . . , fn) :=
∑

m=(m1,...,mn)∈(Z>0)n




n∏

j=1

aj(mj)σkj−1(mj)


 Q

(n)
k (m, s)

has a holomorphic continuation to the whole s-plane and satisfies the func-
tional equation

S(s; f1, . . . , fn) = S(n− s; f1, . . . , fn).
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2 A key to the proof: an integral of Rankin-

Selberg type

We use the following type of Eisenstein series for the Siegel modular group
Γn := Sp2n(Z) whose properties were studied by Kohnen-Skoruppa [2], Ya-
mazaki [5], and Deitmar-Krieg [1]:

E(n)
s (Z) :=

∑

M∈∆n,n−1\Γn

(
det(Im(M〈Z〉))
det(Im(M〈Z〉∗))

)s

. (4)

Here s ∈ C, Z is a variable on Hn, the Siegel upper half space of degree n,

∆n,n−1 :=
{ ( ∗ ∗

0(1,2n−1) ∗
)
∈ Γn

}
,

M runs over a complete set of representatives of ∆n,n−1\Γn; for M =
(

A B
C D

)

with A,B,C,D being n× n blocks ,

M〈Z〉 := (AZ + D)(CZ + D)−1

and M〈Z〉∗ is the upper left (n−1)× (n−1) block of M〈Z〉. We understand
that

det(Im(M〈Z〉∗)) = 1

if n = 1. The right-hand side of (4) converges absolutely and locally uni-
formly for Re(s) > n. Put

ξ(s) := π−
s
2 Γ

(
s

2

)
ζ(s).

By [1][5], the Eisenstein series (4) has meromorphic continuation in s to the
whole s-plane; the function ξ(2s)E(n)

s (Z) is invariant under the substitution
s 7→ n− s and is holomorphic except for the simple poles at s = 0 and s = n
with residues −1/2 and 1/2, respectively.

Theorem 1 follows from the following integral representation:

Theorem 2. For
Fj(z) := fj(z)gj(z)Im(z)kj

we have




· · ·


E(n)

s




z1 0
. . .

0 zn


, F1(z1)


, · · ·


, Fn(zn)



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=
1

2ξ(2s)

n∑

ν=1

∑

1≤i1<...<iν≤n




∏
j 6=i1,...,iν

1≤j≤n

(fj, gj)




·D(s; fi1 , . . . , fiν ; gi1 , . . . , giν ).

Remark. Define a symmetric positive definite matrix

PZ :=
(

1n
tX

0 1n

) (
Y 0
0 Y −1

) (
1n 0
X 1n

)
.

Then

E(n)
s (Z) =

1

2ζ(2s)

∑

h∈Z(2n,1)−{0}
(thPZh)−s for Re(s) > n.

3 Supplementary remarks

(i) Let

ϕj(z) =
∞∑

l=1

cj(l)e
2πilz

be holomorphic primitive cusp forms of weight 1 for Γ0(Nj) with odd charac-
ters χj where Nj ∈ Z>0 and j = 1, . . . , n. Suppose n ≥ 3. Then by Kurokawa
[3, Theorem 5], the Dirichlet series

∞∑

l=1

c1(l) · · · cn(l)l−s

has meromorphic continuation in the region Re(s) > 0 but has the line
Re(s) = 0 as a natural boundary. (Cf. also [4, Theorem 8].) Thus it is
a nontrivial problem to find a series associated with more than two elliptic
modular forms which has analytic continuation to the whole s-plane.
(ii) In case n = 1 we have

D(s; f1; g1) = 2ξ(2s)(4π)1−k1−sΓ(s + k1 − 1)D(s + k1 − 1, f1, g1)

for Re(s) > (k1 + 1)/2, where

D(s, f1, g1) :=
∞∑

m=1

a1(m)b1(m)m−s.

Thus in this case Theorem 1 states nothing but the well-known properties of
the Rankin series D(s, f1, g1).
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(iii) In case n = 2 we have

D(s; f1, f2; g1, g2)

= 26−2|k|π2−|k|(2π)−2s Γ(s)Γ(s + |k| − 2)Γ(s + k1 − 1)Γ(s + k2 − 1)

Γ(2s + |k| − 2)

· ∑

m1,m2∈Z>0

a1(m1)a2(m2)b1(m1)b2(m2)m
1−k1−s
1 m1−k2

2

· ∑

λ1,λ2∈Z>0

λ−2s
1 F

(
s, s + k1 − 1; 2s + |k| − 2; 1− m2λ

2
2

m1λ2
1

)

for Re(s) > max(k1, k2) + 1, where F = 2F1 is the hypergeometric function.

(iv) The function Q
(n)
k (m, s) has another representation:

Q
(n)
k (m, s) = 23n−|k|+1π

n−|k|
2

−s




n∏

j=1

m
1−kj

2
j


 · ∑

λ1,...,λn∈Z>0




n∏

j=1

λ
kj−1
j




·
∫ ∞

0
t2s−1+|k|−n

n∏

j=1

Kkj−1(4
√

πmjλjt)dt

for Re(s) > n/2, where Kν is the modified Bessel function of order ν.
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PRINCIPAL SERIES WHITTAKER FUNCTIONS ON SYMPLECTIC
GROUPS

東大数理　石井 卓 (Taku Ishii)

§1. Class one Whittaker functions

(1.1) Definitions and notation Let G be a semisimple Lie group with finite center
and g its Lie algebra. Fix a maximal compact subgroupK ofG and put k = Lie(K). Let
p be the orthogonal complement of k in g and θ the corresponding Cartan involution.
For a maximal abelian subalgebra a of p and α ∈ a∗, put gα = {X ∈ g | [H,X] =
α(H)X for all H ∈ a} and ∆ = ∆(g, a) the restricted root system. Denoted by ∆+

the positive system in ∆ and Π the set of simple roots. Then we have an Iwasawa
decomposition g = n ⊕ a ⊕ k with n =

∑
α∈∆+ gα. Let G = NAK be the Iwasawa

decomposition corresponding to that of g. We denote by W the Weyl group of the root
system ∆.

Let P0 = MAN be the minimal parabolic subgroup of G with M = ZK(A). For
a linear form ν ∈ a∗C = a∗ ⊗R C, define a character eν on A by eν(a) = exp(ν(log a))
(a ∈ A). We call the induced representation

πν = L2-IndGP0
(1M ⊗ eν+ρ ⊗ 1N)

the class one principal series representation of G. Here ρ = 1
2

∑
α∈∆+ mαα (mα =

dim gα).
Let U(gC) and U(aC) be the universal enveloping algebras of gC and aC, the com-

plexifications of g and a respectively. Set

U(gC)K = {X ∈ U(gC) | Ad(k)X = X for all k ∈ K}.
Let p be the projection U(gC) → U(aC) along the decomposition U(gC) = U(aC) ⊕
(nU(gC) + U(gC)k). Define the automorphism γ of U(aC) by γ(H) = H + ρ(H) for
H ∈ aC. For ν ∈ a∗C, define the algebra homomorphism χν : U(gC)K → C by

χν(z) = ν(γ ◦ p(z))
for z ∈ U(gC)K . Note that χν is trivial on U(g)K ∩ U(g)k and the restriction of χν
to the center Z(gC) of U(gC) coincides with the infinitesimal character of the class
one principal series representation πν . Let η be a unitary character of N . Since
n = [n, n]⊕∑

α∈Π gα, η is determined by the restriction ηα := η|gα (α ∈ Π). The length
|ηα| of ηα is defined as |ηα|2 =

∑
1≤i≤mα

η(Xα,i), where the root vector Xα,j is chosen
as B(Xα,i, θXα,j) = −δi,j (1 ≤ i, j ≤ mα). Here B( , ) is the Killing form on g. In this
article we assume that η is nondegenerate, that is, ηα 6= 0 for all α ∈ Π.

Definition 1.1 Under the above notation, a smooth function w = wν,η on G is called
class one Whittaker function if

1



(i) w(ngk) = η(n)w(g), for all n ∈ N , g ∈ G and k ∈ K,

(ii) Zw = χν(Z)w, for all Z ∈ U(gC)K .

We denote by Wh(ν, η) the space of class one Whittaker functions and Wh(ν, η)mod

the subspace consisting of moderate growth functions.

Remark. Because of the Iwasawa decomposition, w ∈ Wh(ν, η) is determined by its
restriction w|A to A. We call w|A the radial part of w.

(1.2) M and W -Whittaker functions

Theorem 1.2 The dimension of the space Wh(ν, η) is the order of the Weyl group W
and the the dimension of Wh(ν, η)mod is at most one. Moreover the unique (up to
constant) element in Wh(ν, η)mod is given by Jacquet integral :

W (ν, η; g) =

∫

N

a(s−1
0 ng)ν+ρη(n)−1dn.

Here s0 is the longest element in W and g = n(g)a(g)k(g) the Iwasawa decomposition
of g ∈ G.

Hashizume ([3]) gave a basis of Wh(ν, η) and express the Jacquet integral as a linear
combination of the basis functions. Let 〈 , 〉 be the inner product on a∗C induced by
the Killing form B( , ). We denote by L the set of linear functions on aC of the form∑

α∈Π nαα with nα ∈ Z≥0.
For each λ ∈ L, we can define the rational function aλ on a∗C as follows. Put

a0(ν) = 1 and determine aλ for λ ∈ L\{0} by

(1.1) (〈λ, λ〉+ 2〈λ, ν〉)aλ(ν) = 2
∑

α∈Π |ηα|2aλ−2α(ν),

inductively. Here we assumed that 〈λ, λ〉+ 2〈λ, ν〉 6= 0 for all λ ∈ L\{0}.
Definition 1.3 For ν ∈ a∗C and unitary character η of N , define a series M(ν, η; a) on
A by

M(ν, η; a) = aν+ρ
∑

λ∈L
aλ(ν)a

λ (a ∈ A)

and extend it to the function on G by

M(ν, η; g) = η(n(g))M(ν, η; a(g)).

Definition 1.4 We denote by ′a∗C the set of elements ν ∈ a∗C satisfying the following:

(i) 〈λ, λ〉+ 2〈λ, sν〉 6= 0 for all λ ∈ L\{0} and s ∈ W ,

(ii) sν − tν /∈ {∑α∈Πmαα | mα ∈ Z} for all s 6= t ∈ W .

Theorem 1.5 ([3, Theorem 5.4]) Let ν ∈ ′a∗C. Then the set {M(sν, η; g) | s ∈ W}
forms a basis of Wh(ν, η).

We call W (ν, η; g) (resp. M(ν, η; g)) W -Whittaker function (resp. M -Whittaker func-
tion). Let us recall the linear relation between W and M -Whittaker functions.
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Proposition 1.6 ([4, cf. Ch IV]) Let c(ν) be the Harish Chandra c-function. Then

c(ν) :=

∫

N

a(s−1
0 n)ν+ρdn

=
∏

α∈∆+
0

2
mα−m2α

2

( π

〈α, α〉
)mα+m2α

2 Γ(να)Γ(1
2
(να + mα

2
))

Γ(να + mα

2
)Γ(1

2
(να + mα

2
+m2α))

.

Here ∆+
0 = {α ∈ ∆+ | 1

2
α /∈ ∆}.

Definition 1.7 For η ∈ N̂ , ν ∈ a∗C and s ∈ W , we define γ(s; ν, η) as follows. If s = sα
(α ∈ Π), the simple reflection,

γ(s; ν, η) =
( |ηα|

2
√

2〈α, α〉
)2να Γ(1

2
(−να + mα

2
+ 1))Γ(1

2
(−να + mα

2
+m2α))

Γ(1
2
(να + mα

2
+ 1))Γ(1

2
(−να + mα

2
+m2α))

.

For s ∈ W and α ∈ Π such that l(sαs) = l(s) + 1, then

γ(sαs; ν, η) = γ(s; ν, η)γ(sα; sν, η).

Here l(s) means the length of s.

Theorem 1.8 ([3, Theorem 7.8]) If ν ∈ ′a∗C,

W (ν, η; g) =
∑
s∈W

γ(s0s; ν, η)c(s0sν)M(sν, η; g).

Problem : Find explicit formulas of W (ν, η; g) and M(ν, η; g).

Known results (G is real semisimple) :

(1) G is real rank 1 : W (resp. M)-Whittaker functions can be written by modified
K (resp. I)-Bessel functions.

(2) G = SL(n,R) : In case of n = 3, Tahtajan-Vinogradov ([14]) and Bump ([1])
obtained explicit formulas of W and M -Whittaker functions. For general n, Stade
([11]) found a recursive integral formula ofW -Whittaker function and I ([7]) proved
a similar recursive formula of M -Whittaker function conjectured in [13]. When
n = 4, Stade ([12]) also gave a explicit formula of aλ(ν) by solving the recurrence
relation (1.1) and his formula included (terminating) generalized hypergeometric
series 4F3(1) (cf. [7]).

(3) G = Sp(2,R), SOo(2, q)(q ≥ 3) : As for W -Whittaker function on Sp(2,R), Niwa
([9]) obtained the formula (3.5) in section (3.1). In the similar way to Proskurin’s
evaluation of Jacquet integral for G = Sp(2,C) ([10]), I ([5]) found the integral
expression (3.7). The explicit formula (3.4) of M -Whittaker function is also ob-
tained in [5]. These results can be extended to SOo(2, q) in [6] (so(2, 3) ∼= sp(2,R),
so(2, 4) ∼= su(2, 2)).
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Extending the work of Niwa, we consider the problem in case of G = Spn(R) and
SOn,n in this article.

(1.3) Structure theory for Spn(R) and SOn,n We give precise description of the
notation in the above subsections. Let G1 and G2 be algebraic groups over Q defined
as

G1 = SOn,n =

{
g ∈ SL2n

∣∣∣ tg
(

Jn
Jn

)
g =

(
Jn

Jn

)}
,

and

G2 = Spn =

{
g ∈ SL2n

∣∣∣ tg
(

Jn
−Jn

)
g =

(
Jn

−Jn

)}
.

Here Jn =




1

· · ·
1


 (n×n matrix). Hereafter we use the notation in sections (1.1)

and (1.2) with subscript 1 for G1 := G1(R) = SOn,n and 2 for G2 := G2(R) = Spn(R).

< Iwasawa decompositions >

a1 = {diag(a1, . . . , an,−an, . . . ,−a1) | ai ∈ R},
a2 = {diag(t1, . . . , tn,−tn, . . . ,−t1) | ti ∈ R},
A1 = {diag(a1, . . . , an, a

−1
n , . . . , a−1

1 ) | ai > 0},
A2 = {diag(t1, . . . , tn, t

−1
n , . . . , t−1

1 ) | ti > 0},

Ni =





(
n0 ∗
0 Jn

tn−1
0 Jn

)
∈ Gi

∣∣∣n0 =




1 ∗
. . .

0 1







.

< principal series >

ν = (ν1, . . . , νn) ∈ a∗i,C (i = 1, 2),

ρ1 = ρ
(n)
1 = (n− 1, n− 2, . . . , 1, 0), ρ2 = ρ

(n)
2 = (n, n− 1, . . . , 2, 1).

< Weyl groups > W1 = Sn n (Z/2Z)n−1, W2 = Sn n (Z/2Z)n.

< unitary characters >

η1(u) = exp
(
2π
√−1(u1,2 + u2,3 + · · ·+ un−1,n + un−1,n+1)

)
,

η2(u) = exp
(
2π
√−1(u1,2 + u2,3 + · · ·+ un−1,n + un,n+1)

)
,

for u = (uk,l) ∈ Ni.

< ci(ν) and γi(s; ν, η) >

c1(ν) = π
n(n−1)

2

∏
1≤i<j≤n

Γ(
νi−νj

2
)Γ(

νi+νj

2
)

Γ(
νi−νj+1

2
)Γ(

νi+νj+1

2
)
,

c2(ν) =
π

n2

2

2
n
2

∏
1≤i≤n

Γ(νi

2
)

Γ(νi+1
2

)

∏
1≤i<j≤n

Γ(
νi−νj

2
)Γ(

νi+νj

2
)

Γ(
νi−νj+1

2
)Γ(

νi+νj+1

2
)
,
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c1(s0sν)γ1(s0s; ν, η1) = π
n(n−1)

2
+〈ν, ρ1〉 s

[
π〈ν, ρ1〉

∏
1≤i<j≤n Γ(

−νi+νj

2
)Γ(

−νi−νj

2
)
]

∏
1≤i<j≤n Γ(

νi−νj+1

2
)Γ(

νi+νj+1

2
)

,

c2(s0sν)γ2(s0s; ν, η2) = 2−
n
2 π

n2

2
+〈ν, ρ2〉− 1

2

Pn
i=1 νi

· s
[
π〈ν, ρ2〉−

1
2

Pn
i=1 νi

∏
1≤i≤n Γ(−νi

2
)
∏

1≤i<j≤n Γ(
−νi+νj

2
)Γ(

−νi−νj

2
)
]

∏
1≤i≤n Γ(νi+1

2
)
∏

1≤i<j≤n Γ(
νi−νj+1

2
)Γ(

νi+νj+1

2
)

.

§2. Symplectic orthogonal theta lifts and main theorem

(2.1) Weil representation and theta lift Let k be a local field and ψ a nontrivial
character of k. For a finite dimensional k-vector space Z equipped with symplectic
form 〈 , 〉, put

Sp(Z, k) = {g ∈ GL(Z, k) | 〈z1g, z2g〉 = 〈z1, z2〉, ∀z1, z2 ∈ Z}.

Let Z = Z+ + Z− be a polarization, that is, Z± are maximal isotropic subspace of Z.
Let ωψ be the Weil representation of S̃p(Z, k) on S (Z+), the space of Schwartz-Bruhat
functions on Z+. When k is a global field and ψ a nontrivial character on k\A, we can

also define Weil representation ωψ of S̃p(Z,A) on S (Z+
A).

Let k be a global field and X a 2n-dimensional k-vector space of column vectors

with symmetric form ( , ) given by (x, y) = tx

(
Jn

Jn

)
y. Then G1(k) = SOn,n(k)

acts on X from the left and preserves ( , ). Also let Y be a 2n-dimensional k-vector

space of row vectors with symplectic form 〈 , 〉 given by 〈x, y〉 = x

(
Jn

−Jn

)
ty. Then

G2(k) = Spn(k) acts on Y from the right and preserves 〈 , 〉. The space Z := X⊗Y has
a symplectic form ( , ) ⊗ 〈 , 〉 and we have a homomorphism SOn,n(A) × Spn(A) →
Sp(Z,A). Let {e1, . . . , en, e−n, . . . , e−1} be the standard basis of X. Then X+ =
Span{e1, . . . , en} and X− = Span{e−n, . . . , e−1} give a polarization of X. Also take
the standard basis of Y by {ε1, . . . , εn, ε−n, . . . , ε−1} and put Y + = Span{ε1, . . . , εn},
Y − = Span{ε−n, . . . , ε−1}. We choose a polarization of Z by Z± = X⊗Y ± and denote∑n

i=1 xi ⊗ εi ∈ Z+ by (x1, . . . , xn).

For ωψ and φ ∈ S (Z+
A), define the theta series θφψ on G1(A)×G2(A) by

θφψ(g1, g2) =
∑

z∈Z+
k

ωψ(g1, g2)φ(z).

Let σ be an irreducible cuspidal automorphic representation of G1(A). For a cusp
form f ∈ σ, put

F φ
f (g2) =

∫

G1(k)\G1(A)

θφψ(g1, g2)f(g1)dg1.

It is known that F φ
f defines a cusp form on G2(A) and the space Θψ(σ) = 〈F φ

f | f ∈
σ, φ ∈ S (Z+

A)〉 is called the theta lift of σ with respect to ψ.
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(2.2) Whittaker coefficients To describe Whittaker coefficient, we fix unitary char-
acters ψ1 and ψ2 of N1(A) and N2(A) as follows (cf. section (1.3)).

ψ1(u) = ψ(u1,2 + u2,3 + · · ·+ un−1,n + un−1,n+1),

ψ2(u) = ψ(u1,2 + u2,3 + · · ·+ un−1,n + un,n+1)

for u = (uk,l) ∈ Ni(A). We say an irreducible cuspidal representation σi on Gi(A) has
a nontrivial ψ−1

i -Whittaker coefficient, if the integral

Wf (gi) =

∫

Ni(k)\Ni(A)

f(ngi)ψ
−1
i (n)dn

does not vanish for some f ∈ σi. Ginzburg, Rallis and Soudry ([2]) proved the follow-
ing:

Proposition 2.1 ([2, Proposition 3.5]) We assume that the irreducible cuspidal rep-
resentation σ of G1(A) has a nontrivial ψ−1

1 -Whittaker coefficient. Then the theta
lift Θψ(σ) to G2(A) is nontrivial and has a ψ−1

2 -Whittaker coefficient. Moreover, the

ψ−1
2 -Whittaker coefficient of F φ

f ∈ Θψ(σ) is

(2.1) WFφ
f
(g2) =

∫

E(A)\G1(A)

ωψ(g1, g2)φ(u0)Wf (g1)dg1.

Here E is the stabilizer of u0 = (e1, . . . , en−1, en + e−n) ∈ Z+.

If we decompose the right hand side of (2.1) to the local factors, the integral
∫

E(R)\G1(R)

ωψ(g1, g2)φ(u0)W (g1)dg1.

is expected to represent the Whittaker function on Spn(R). Here W is the Whittaker
function on SOn,n. Then, if we take

φ(X) = exp[−π(tr(tXX))],

and compute the integral by using the formulas of Weil representation, we can propose
the following:

Theorem 2.2 For a ∈ A1 and t ∈ A2, put

θ(a, t) = exp
[
−π

{( t21
a2

1

+
a2

1

t22

)
+ · · ·+

( t2n−1

a2
n−1

+
a2
n−1

t2n

)
+

( t2n
a2
n

+ t2na
2
n

)}]
.

Then, for ν ∈ ′a∗1,C ∩ ′a∗2,C,

(2.2)
π−

1
2

Pn
i=1 νi

(2π)
n
2

n∏
i=1

Γ
(νi + 1

2

) · t−ρ2W2(ν; t) =

∫

(R≥0)n

θ(a, t) · a−ρ1W1(ν; a)
n∏
i=1

dai
ai
.

The right hand side of (2.2) represent a Whittaker function, however, to see that it is
just the Whittaker function we want to seek, it seems to need further argument. For
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example, if we use the similar result of [2] from Spn to SOn+1,n+1, we obtain Whittaker
function on SOn+1,n+1 from one on Spn(R) (see (3.11)). Though in this formula, the
parameter of principal series is not general (νn+1 = 0). Then in case of n = 2, Niwa
proved this theorem by checking the right hand side (=(3.5)) satisfy the system of
partial differential equation for Sp2(R)-Whittaker function by using computer. But in
case of general n, the explicit form of differential equation is not known. So we first
prove the lifting of M -Whittaker functions (which also seems to be interesting result)
and by using Theorem 1.7 we establish the lifting of W -Whittaker functions.

(2.3) Lifting ofM-Whittaker functions We first write down the recurrence relation
(1.1) explicitly.

Proposition 2.3 Let

M1(ν; a) = aν+ρ1
∑

m=(m1,...,mn)∈(Z≥0)n

c1,m(ν)
(
2π
a1

a2

)2m1· · ·
(
2π
an−1

an

)2mn−1

(2πan−1an)
2mn

be the radial part of M-Whittaker function on SOn,n. If ν ∈ ′a∗1,C, the coefficients
c1,m(ν) are determined by the following recurrence relation:

[
4
( n∑
i=1

m2
i −

n−2∑
i=1

mimi+1 −mn−2mn

)

+ 2
(n−1∑
i=1

mi(νi − νi+1) +mn(νn−1 + νn)
)]
c1,m(ν) =

n∑
i=1

c1,m−ei
(ν),

(2.3)

with ei = (0, . . . , 1, . . . , 0).

Proposition 2.4 Let

M2(ν; t) = tν+ρ2
∑

k=(k1,...,kn)∈(Z≥0)n

c2,k(ν)
(
2π
t1
t2

)2k1· · ·
(
2π
tn−1

tn

)2kn−1

(2πt2n)
2kn

be the radial part of M-Whittaker function on Spn(R). If ν ∈ ′a∗2,C, the coefficients
c2,k(ν) are determined by the following recurrence relation:

[
4
(n−1∑
i=1

k2
i + 2k2

n −
n−2∑
i=1

kiki+1 − 2kn−1kn

)

+ 2
(n−1∑
i=1

ki(νi − νi+1) + 2knνn

)]
c2,k(ν) =

n−1∑
i=1

c2,k−ei
(ν) + 2c2,k−en(ν).

(2.4)

From the above propositions we can prove the following:

Theorem 2.5 If ν ∈ ′a∗1,C ∩ ′a∗2,C,

c2,k(ν) =
1∏n

i=1(
νi

2
+ 1)ki

7



·
∑

m∈S(k)

(−1)m1+···+mn−1 4
Pn

i=1(mi−ki)
∏n−1

i=1 (−ki+1 − νi+1

2
)mi

· c1,m(ν)

(k1 −m1)! . . . (kn−2 −mn−2)!(kn−1 −mn−1 −mn)!(kn −mn)!
.

Here we use the notation

S(k) =

{
m ∈ Zn

≥0

∣∣∣ 0 ≤ m1 ≤ k1, . . . , 0 ≤ mn−2 ≤ kn−2,
0 ≤ mn−1, mn−1 +mn ≤ kn−1, 0 ≤ mn ≤ kn

}

and (a)n = Γ(a+ n)/Γ(a).

By using this Theorems 2.5 and 1.7, we compute the right hand side of (2.2), then we
can reach the Theorem 2.2 after somewhat complicated but elementary calculus.

§3. Examples of explicit formulas

From now on we adopt the notation W
(n)
1 (ν; a) (resp. W

(n)
2 (ν; t)) for the radial part of

W -Whittaker function on SOn,n (resp. Spn(R)), etc.

(3.1) From SO2,2 to Sp2(R)

Proposition 3.1

(3.1) M
(2)
1 (ν; a) = aν1+1

1 aν22

∑
m1,m2≥0

(πa1/a2)
2m1(πa1a2)

2m2

m1!m2!(
ν1−ν2

2
+ 1)m1(

ν1+ν2
2

+ 1)m2

.

Proposition 3.2 W
(2)
1 (ν; a) has the following expressions.

(3.2) c
(2)
1 a1K ν1−ν2

2

(
2π
a1

a2

)
K ν1+ν2

2
(2πa1a2),

(3.3) c
(2)
1 a1

∫

(R≥0)2
exp

[
−π

{a2
1

t2
+

( t2
a2

2

+a2
2t

2
)
+

( t2
b2

+t2b2
)}]

·bν1
( a1a2b

t2(1 + a2
2b

2)

)ν2 dt
t

db

b
,

with some constant c
(2)
1 .

From the above two propositions, we have the followings:

Proposition 3.3

M
(2)
2 (ν; t) = tν1+2

1 tν2+1
2

∑
m1,m2≥0

3F2

( −m2, −m1 − ν1
2
, m1 + ν1

2
+ 1

ν1
2

+ 1, ν2
2

+ 1

∣∣∣∣ 1

)

· (πt1/t2)
2m1(πt22)

2m2

m1!m2! (
ν1−ν2

2
+ 1)m1(

ν1+ν2
2

+ 1)m2

.

(3.4)

Proposition 3.4 W
(2)
2 (ν; t) has following integral expressions.

c
(2)
2 t21t2

∫

(R≥0)2
exp

[
−π

{( t21
a2

1

+
a2

1

t22

)
+

( t22
a2

2

+ t22a
2
2

)}]

·K ν1−ν2
2

(
2π
a1

a2

)
K ν1+ν2

2
(2πa1a2)

da1da2

a1a2

,

(3.5)
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c
(2)
2 t21t2

∫

(R≥0)4
exp

[
−π

{( t21
a2

1

+
a2

1

t22

)
+

( t22
a2

2

+ t22a
2
2

)
+
a2

1

u2
+

(u2

a2
2

+ a2
2u

2
)

+
(u2

b2
+ u2b2

)}]
· bν1

( a1a2b

u2(1 + a2
2b

2)

)ν2 da1da2

a1a2

du

u

db

b
,

(3.6)

1

4
c
(2)
2 t

2+
ν1
2

1 t
1− 3ν2

2
2

∫

(R≥0)2
K ν1

2

(
2π
t1
t2

√
1 + x+ y

)
K ν2

2

(
2πt22

√
(1 + 1/x)(1 + 1/y)

)

·
( x2y2

1 + x+ y

)ν1
4
(x(1 + x)

y(1 + y)

)ν2
4 dxdy

xy
,

(3.7)

with some constant c
(2)
2 .

Remark. As mentioned before, (3.5) is the result of [9] and (3.7) is of [5]. The
equivalence of these two expressions can be checked by way of (3.6) and slight change
of variables.

(3.2) From SO3,3 to Sp3(R) By virtue of so3,3
∼= sl4(R), we can find the integral

expressions of W
(3)
1 (ν; a) by the result of Stade ([11]) for W -Whittaker functions on

SL(n,R).

Proposition 3.5 W
(3)
1 (ν; a) can be written as follows.

c
(3)
1 a2

1a2

∫

(R≥0)2
K ν1+ν2

2

(
2πa2a3

√
1 + u−2

1

)
K ν1+ν2

2

(
2π
a2

a3

√
1 + u2

2

)

·K ν1+ν2
2

(
2π
a1

a2

√
(1 + u2

1)(1 + u−2
2 )

)
K ν1−ν2

2

(
2π
a1

a2

u1

u2

)

·
( a3

u1u2

)ν3 du1du2

u1u2

,

(3.8)

c
(3)
1 a2

1a2

∫

(R≥0)6
exp

[
−π

{a2
1

t21
+

( t21
a2

2

+
a2

2

t22

)
+

( t22
a2

3

+ a2
3t

2
2

)
+

( t21
b21

+
b21
t22

)

+
( t22
b22

+ t22b
2
2

)
+
b21
s2

+
(s2

b22
+ b22s

2
)

+
(s2

c2
+ s2c2

)}]

·cν1
( b1b2c

s2(1 + b22c
2)

)ν2( a1a2a3b1b2
t21t

2
2(1 + a2

3b
2
2)

)ν3 dt1dt2
t1t2

db1db2
b1b2

ds

s

dc

c
,

(3.9)

with some constant c
(3)
1 .
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Proposition 3.6 W
(3)
2 (ν; t) is of the form

c
(3)
2 t31t

2
2t3

∫

(R≥0)5
K ν1+ν2

2

(
2πa2a3

√
1 + u−2

1

)
K ν1+ν2

2

(
2π
a2

a3

√
1 + u2

2

)

·K ν1+ν2
2

(
2π
a1

a2

√
(1 + u2

1)(1 + u−2
2 )

)
K ν1−ν2

2

(
2π
a1

a2

u1

u2

)

· exp
[
−π

{( t21
a2

1

+
a2

1

t22

)
+

( t22
a2

2

+
a2

2

t23

)
+

( t23
a2

3

+ t23a
2
3

)}]

·
( a3

u1u2

)ν3 du1du2

u1u2

da1da2da3

a1a2a3

,

(3.10)

with some constant c
(3)
2 .

Remark. We also have a formula for M
(3)
2 (ν; t) by using the formula in [12], however,

our result is not satisfactory form now.

(3.3) Conjecture for general n [2, Proposition 2.7] also computed Whittaker co-
efficient of theta lift from Spn to SOn+1,n+1. In view of the result, it seems to hold

a−ρ
(n+1)
1 W

(n+1)
1 ((ν1, . . . , νn, 0); a)

= c

∫

Rn
≥0

θ̃(a, t) · t−ρ(n)
2 W

(n)
2 ((ν1, . . . , νn); t)

n∏
i=1

dti
ti
,

(3.11)

where

θ̃(a, t) = exp
[
−π

{a2
1

t21
+

( t21
a2

1

+
a2

2

t22

)
+ · · ·+

( t2n−1

a2
n−1

+
a2
n

t2n

)
+

( t2n
a2
n+1

+ a2
n+1t

2
n

)}]
.

It may be impossible to extend (ν1, . . . , νn, 0) → (ν1, . . . , νn+1) by adding some terms
containing νn+1 to the integrand, however, we can propose the following conjecture
from the results for n = 2, 3 ((3.3), (3.9)).

Conjecture 3.7 Let b = diag(b1, . . . , bn+1, b
−1
n+1, . . . , b

−1
1 ). Then W

(n+1)
1 ((ν1, . . . , νn+1); b)

has the following expressions.

c bρ
(n+1)
1

∫

(R≥0)2n

θ̃(b, t)θ(t, a) · a−ρ(n)
1 W

(n)
1 ((ν1, . . . , νn); a)

·
( b1 · · · bn+1a1 · · · an

(t1 · · · tn)2(1 + b2n+1a
2
n)

)νn+1
n∏
i=1

dti
ti

dai
ai
,

(3.12)

c bρ
(n+1)
1

∫

(R≥0)n

n−1∏
i=1

Kνn+1

(
2π

bi
bi+1

√(
1 +

a2
i−1

b2i

)(
1 +

b2i+1

a2
i

))

·Kνn+1

(
2πbnbn+1

√(
1 +

a2
n−1

b2n

)(
1 +

a2
n

b2n+1

)(
1 +

1

a2
nb

2
n+1

))

· a−ρ(n)
1 W

(n)
1 ((ν1, . . . , νn); a)

( a2
n + b2n+1

1 + a2
nb

2
n+1

)νn+1
2

n∏
i=1

dai
ai
,

(3.13)

with some constant c.
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THETA CORRESPONDENCE AND REPRESENTATION THEORY

京都大学 総合人間学部 西山 享 (KYO NISHIYAMA)
FACULTY OF IHS, KYOTO UNIVERSITY

SAKYO, KYOTO 606-8501, JAPAN

Abstract. After reviewing the relation between the theta integral (= theta lifting) and
Howe correspondence, we give an example of the preservation of the associated cycles by
the theta lifting (joint work with C.-B. Zhu).

Namely, let (G,G′) be a type I dual pair strictly in the stable range (we assume that
G′ is the smaller member), and π′ a unitary highest weight module of G̃′. Then the
associated cycle of the theta lift π = θ(π′) of π′ can be given as AC(θ(π′)) = θ(AC(π′)),
where the theta lifting of associated cycle is naturally defined using the lifting of nilpotent
orbits. We also give a naive introduction to the basic property of associated cycles and
the lifting of nilpotent orbits.

1. Theta integral

The content of this section is mainly quoted from [10, 11] and [4].
Let F be a number field and A a ring of adeles of F . For simplicity, we consider one

of type I dual pairs defined over F in the following. It is constructed as follows. Take a
vector space

V /F with non-degenerate symmetric bilinear form (, ) = (, )V

V ′ /F with non-degenerate skew-symmetric bilinear form (, )′ = (, )V ′

Then W = V ⊗F V
′ inherits a skew-symmetric form defined by (, )W = (, )V ⊗F (, )V ′ . We

put {
G = O(V ) orthogonal group

G′ = Sp(V ′) symplectic group

They are naturally subgroups of Sp(W ) commuting with each other, which form a type
I dual pair (G,G′) in Sp(W ). We denote by G(A), G′(A) or Sp(W )A, the global adelic
groups. For each place v of F , let Fv be the completion of F at v, and Gv or G′v denotes
the corresponding groups over the local field Fv.
Sp(W )A has a non-trivial double cover Mp(W )A called the metaplectic group. This

group has a distinguished representation called the Weil representation. We do not give
an exact construction of the representation but use an explicit realization. For this, we
refer the readers to [20], [4], [3], [17], et al.

Let W = X ⊕ Y be a complete polarization, and take a character χ of A which is
trivial on F . Then the Weil representation ω = ωχ of Mp(W )A is realized on the Hilbert
space L2(X(A)). It is unitary, and the space of smooth vectors coincides with the space
of Schwartz-Bruhat functions S = S(X(A)) on X(A).

Proceedings of RIMS Workshop on “Automorphic Forms and Representations of Algebraic Groups
over Local Fields”, January 20 – January 24, 2003.
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Let θ be a tempered distribution on S defined by

θ(ϕ) =
∑

ξ∈X(F )

ϕ(ξ) (ϕ ∈ S), (1.1)

which converges absolutely. Then θ is Sp(W )F -invariant distribution, i.e.,

θ(ω(γ)ϕ) = θ(ϕ) (γ ∈ Sp(W )F , ϕ ∈ S).

Note that Sp(W )F is embedded into Mp(W )A as a discrete subgroup. This property

characterizes θ up to constant multiple ([4]). Let G̃(A) denote the inverse image of
G(A) of the covering map Mp(W )A → Sp(W )A. The same notation applies to arbitrary

subgroup of Sp(W )A. For (g, h) ∈ G̃(A)× G̃′(A), we put

θϕ(g, h) = θ(ω(g · h)ϕ) (ϕ ∈ S). (1.2)

Then, appropriate choice of ϕ and G,G′ will give various types of classical theta functions.
Assume that π′ is an automorphic representation realized on a Hilbert space

Hπ′ ⊂ L2(G′(F )\G̃′(A)).

For f ∈ H∞
π′ = (smooth vectors), we define the theta integral by

θf
ϕ(g) =

∫

G′(F )\fG′(A)

θϕ(g, h)f(h)dh. (1.3)

If π′ is a cuspidal representation, then the integral converges and defines a slowly increasing

function on G(F )\G̃(A). In the following (in this section), we assume π′ to be cuspidal.

Formally θf
ϕ gives an automorphic form on G(F )\G̃(A) and one may expect that

{θf
ϕ | f ∈ H∞

π′ , ϕ ∈ S(X(A))}
gives an automorphic representation π of G̃(A) after some completion. Thus we want to
see when the integral

〈θf1
ϕ1
, θf2

ϕ2
〉 =

∫

G(F )\ eG(A)

θf1
ϕ1

(g) θf2
ϕ2(g) dg (1.4)

converges (under some assumption), and gives a non-zero value for some choice of {fi}
and {ϕi}.
Theorem 1.1 (Rallis’ inner product formula). Assume dimV > 2 dimV ′ + 2. Then the
above inner product (1.4) converges absolutely. Moreover, we have

〈θf1
ϕ1
, θf2

ϕ2
〉 =

∫
fG′(A)

〈ω(h)ϕ1, ϕ2〉〈π′(h)f1, f2〉dh

=
∏

v∈P (F )

∫
fG′(Fv)

〈ωv(h)ϕ1 v, ϕ2 v〉〈π′v(h)f1 v, f2 v〉dh

Here, P (F ) denotes the set of all places of F .

Proof. For proof, see [10, Theorem 2.1]. Essentially, the following two ingredients prove
the theorem; (i) Howe’s technique of doubling variables; (ii) Siegel-Weil formula, which
claims that θ-integral coincides with an Eisenstein series. ¤
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Thus we should consider the integral∫
fG′(Fv)

〈ωv(h)ϕ1 v, ϕ2 v〉〈π′v(h)f1 v, f2 v〉dh

at various places v ∈ P (F ). For finite places at which F is not ramified, it is given by
special values of L-functions. In the following sections, we will concentrate on real places.

2. Theta correspondence over reals

From now on, we assume the ground field is R, thus V, V ′ are now considered as vec-
tor spaces over R with symmetric (respectively skew-symmetric) non-degenerate bilinear
form. We also write G = O(V ) and G′ = Sp(V ′), which are real Lie groups. The Weil
representation ω = ωχ is realized on the space of L2-functions L2(X) on a maximal totally
isotropic space X of W .

Let us consider the integral∫
fG′
〈ω(h)ϕ1, ϕ2〉〈π′(h)f1, f2〉dh (ϕi ∈ S(X), fi ∈ H∞

π′ ) (2.1)

for a genuine irreducible unitary representation π′ of G̃′ on a Hilbert space Hπ′ . A rep-

resentation of G̃′ is called genuine if it is not factor through to the representation of
G′, i.e., if it is non-trivial on the kernel of the covering map. Note that π′ is not nec-
essarily automorphic nor cuspidal now, and everything is considered over R. If we put
Φi = ϕi ⊗ fi ∈ S ⊗H∞

π′ , the above formula becomes

(Φ1,Φ2)π′ =

∫

G′
〈(ω ⊗ π′)(h)Φ1,Φ2〉dh. (2.2)

Since ω and π′ are both genuine, ω⊗ π′ factors through to a representation of G′, and we
do not need a cover anymore.

It may be useful to consider this integral for a compact group (or a compact dual pair)
as a toy model. Thus, only in this short paragraph, let us pretend as if G′ was a compact
group and ω was a representation of G′. Then ω decomposes discretely as

ω '
∑⊕

ξ∈cG′
HomG′(ξ, ω)⊗ ξ, hence

ω ⊗ π′ '
∑⊕

ξ∈cG′
HomG′(ξ, ω)⊗ (ξ ⊗ π′).

Then an integral
∫

G′〈(ω ⊗ π′)(h)v1, v2〉dh survives only if ξ ' (π′)∗ for some ξ ∈ Ĝ′

and the collection of (Φ1,Φ2)π′ will give an inner product on the space of multiplicities
HomG′((π

′)∗, ω). In some sense, this is carried over to our present situation.

Now let us return to our original settings in this section. For the convergence of the
integral, the following theorem holds.

Theorem 2.1 (Li [8], [11, Theorem 2.1]). Suppose we are in one of the following two
situations.

(1) The pair (G,G′) is in the stable range, i.e.,

dim(maximal totally isotropic space in V ) ≥ dimV ′. (2.3)

(2) π′ is in the discrete series and dimV ≥ dimV ′.
3



Then the above integral (2.1) converges absolutely for any choice of {ϕi} ⊂ S and {fi} ⊂
H∞

π′ .

Now assume the above (1) or (2) from now on.
Put R = (kernel of ( , )π′), and make a completion of (S⊗H∞

π′ )/R by the inner product
( , )π′ .

H = (completion of (S ⊗H∞
π′ )/R) (2.4)

Since G̃ acts on S ⊗ H∞
π′ which leaves R stable, the resulting Hilbert space H carries a

unitary representation π of G̃ (but still it may be zero). The following theorem is proved
by Li for general type I dual pairs ([9, Proposition 2.4]), and independently by Moeglin
for the pair (O(2p, 2q), Sp(2n,R)).

Theorem 2.2 (Moeglin, Li). (1) If H is not zero, then it carries a genuine unitary

representation (π,H) of G̃, which is the theta lift of (π′)∗ in the sense of Howe ([6]; see
§3) ; π = θ((π′)∗).

(2) If (G,G′) is in the stable range, H is non-zero for any unitary irreducible represen-

tation π′ of G̃, which is genuine.

(3) If π′ is in the discrete series which is “sufficiently regular”, then H is non-zero and
π = Aq(λ) ; a representation with non-zero cohomology defined by Vogan and Zuckerman
([19]).

This theorem tells us that the representation (π,H) of G̃ so-obtained is in correspon-
dence with the dual of (π′,H) in the sense of Howe (one may call it Howe correspondence).
In this sense, the notion of theta lifting and Howe correspondence are almost the same.

In the next section, we briefly review the definition and basic properties of Howe cor-
respondence.

3. Howe correspondence

Let ω be the Weil representation of Mp(W ), and we choose a complete polarization
W = X ⊕ Y . Let Ω = HK be the space of K-finite vectors of ω, where K is a maximal
compact subgroup of Mp(W ). Then Ω is a (G,K)-module, where G is the complexified
Lie algebra of Mp(W ), and Ω is called the Harish-Chandra module of ω.

In this section, we only consider the Harish-Chandra module Ω, and by abuse of no-
tation, we often denote the action of (G,K) by the same letter ω, or simply write it by
module notation. It is well known that Ω can be identified with the space of polynomials
on XC = X ⊗R C. In this realization, K is identified with the determinantal double
cover of the unitary group U(XC), and the action of K is given by the left translation of
polynomials times its determinant, i.e.,

ω(k)f(x) =
√

det(k)f(k−1x) (k ∈ K, f(x) ∈ C[XC], x ∈ XC) (3.1)

Let G = K ⊕ P be the complexified Cartan decomposition along the Lie algebra of the
maximal compact subgroup. Then, the action of K is given by the differential of ω(K),
and the action of P is given by the multiplication of polynomials of degree two (if it is a
root vector of a positive root), or the differentiation by a constant coefficient differential
operator of degree two (if it is a root vector of a negative root). For more detailed
realization, we refer to [5] (or [12], for example).
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Take an irreducible Harish-Chandra module π′ of G̃′, i.e., π′ is a (g′, K̃ ′)-module, where

g′ denotes the complexified Lie algebra of G̃′ and K ′ is a maximal compact subgroup of

G′ (similarly we will denote by g the complexified Lie algebra of G̃ and by K a maximal
compact subgroup of G). Put

H = Hom
(g′,fK′)(Ω, π

′) (morphisms of Harish-Chandra (g′, K̃ ′)-modules), (3.2)

and consider

Ω/N ; N =
⋂

ϕ∈H
Kerϕ.

Then there exists a quasi-simple (g, K̃)-module Ω(π′) of finite length such that

Ω/N ' Ω(π′)⊗ π′

as (g⊕ g′, K̃ × K̃ ′)-modules. Ω(π′) is called Howe’s maximal quotient for π′.

Theorem 3.1 (Howe). If Ω(π′) is not zero, it has a unique irreducible quotient, which is
denoted by θ(π′) and called the theta lift of π′.

In fact, the correspondence π′ ↔ π = θ(π′) is bijective between the genuine irreducible
representations which appear in ω as quotients. Note that π and π′ are in correspondence

if and only if there exists a non-trivial (g⊕ g′, K̃× K̃ ′)-module morphism Ω → π⊗π′. As
a formal convention, we put θ(π′) = 0 if Ω(π′) = 0, i.e., π′ does not appear as a quotient
of ω.

Lemma 3.2. Let us denote by Ω(π′)∗ the K̃-finite dual of Ω(π′). Then we have

Ω(π′)∗ ' Hom
(g′,fK′)(Ω, π

′) eK-finite = H eK .

Proof. Take v∗ ∈ Ω(π′)∗. Then

Ω
proj.−−−→ Ω/N ' Ω(π′)⊗ π′

v∗⊗1−−−→ π′

gives an element of H eK .
Conversely, any f ∈ H eK factors through Ω/N by the definition of N . Thus we get

Ω(π′) ⊗ π′ ' Ω/N
f−→ π′, which is (g′, K̃ ′)-equivariant. Since π′ is irreducible, f :

v ⊗ π′
∼−→ π′ gives a scalar v∗f (v). This gives the inverse map. ¤

Theorem 3.3 (N-Zhu [15]). Assume that (G,G′) is an irreducible type I dual pair strictly

in the stable range. If π′ is a unitary highest weight module for G̃′ (so that G′/K ′ must
be a Hermitian symmetric space), then Ω(π′) is irreducible, hence Ω(π′) = θ(π′) gives the
theta lift.

Remark 3.4. We say that the pair (G,G′) is strictly in the stable range if (G,G′) is in the
following list.

This condition is a little bit stronger than the stable range condition (due to J.-S. Li)
given above. Note that it is ambiguously called “stable range” in [15]. Though the
theorem itself is valid for all the above three pairs, we are only treating Case R in this
note.
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Table 1. The dual pairs strictly in the stable range

the pair (G,G′) strictly stable range condition

Case R : (O(p, q), Sp(2n,R)) 2n < min(p, q)

Case C : (U(p, q), U(m,n)) m+ n ≤ min(p, q)

Case H : (Sp(p, q), O∗(2n)) n ≤ min(p, q)

To give an idea of the proof of this theorem, let us briefly indicate how to compute
K-types of Ω(π′) (which is proved to be θ(π′) afterwards).

Let us remind that V is an indefinite quadratic space over R, and G = O(V ). Let
V = V + ⊕ V − be a decomposition for which{

V + is positive definite p = dimV +,

V − is negative definite q = dimV −.
(3.3)

We denote K± = O(V ±), so that K = K+ × K− gives a maximal compact subgroup
of G. Recall the complete polarization V ′ = X ′ ⊕ Y ′ of the symplectic space V ′. Then
according to the decomposition, we can take a maximal totally isotropic space X as

X = V ⊗ Y ′ = (V + ⊗ Y ′)⊕ (V − ⊗ Y ′). (3.4)

Therefore, the Weil representation ω is realized on the L2-space

L2(X) = L2(V + ⊗ Y ′)⊗ L2(V − ⊗ Y ′).

We note that L2(V ±⊗Y ′) carries the Weil representation for compact dual pairs (K±, G′)
= (O(V ±), Sp(V ′)), whose decomposition is well known by the work of Kashiwara and
Vergne [7]. Up to twisting by a genuine character of the double cover of O(V ±), we have

{
L2(V + ⊗ Y ′) ' ∑

σ1∈O(V +)∧ σ
χ1

1 ⊗ L+(σ1),

L2(V − ⊗ Y ′) ' ∑
σ2∈O(V −)∧ σ

χ2

2 ⊗ L−(σ2),
(3.5)

where L+(σ1) (respectively L−(σ2)) is a unitary highest (respectively lowest) weight mod-

ule of G̃′ = S̃p(V ′), which is genuine; and σχi

i = χi ⊗ σi is a genuine irreducible finite

dimensional representation of the double cover Õ(V ±) obtained from the irreducible rep-
resentation σi ∈ O(V ±)∧ twisted by a certain genuine character χi. Note, however, the

double covers G̃′ differ according to V ± if the parities of p and q are different. The reason
is that the cover is taken in the different metaplectic groups Mp(V ± ⊗ V ′). Similarly,

G̃′ ⊂ Mp(W ) may be different from G̃′ ⊂ Mp(V ± ⊗ V ′). But it is too subtle to denote
the dependence, so we will omit it.

Under the condition that the pair is strictly in the stable range, L+(σ1) is a holomorphic
discrete series, and L−(σ2) is an anti-holomorphic one. This will make our arguments
particularly simple.

Using (3.5), we get

HomfG′(ω, π
′) eK = HomfG′(L

2(V + ⊗ Y ′)⊗ L2(V − ⊗ Y ′), π′) eK

=
∑
σ1,σ2

HomfG′(L
+(σ1)⊗ L−(σ2), π

′)⊗ (σχ1

1 ⊗ σχ2

2 )∗.

6



Since π′ is a unitary highest weight module, the multiplicity

HomfG′(L
+(σ1)⊗ L−(σ2), π

′) ' HomfG′(L
+(σ1), L

−(σ2)
∗ ⊗ π′)

is of finite dimension. Moreover, it can be described in terms of finite dimensional repre-
sentations. Namely, if

{
τ1 is the minimal K̃ ′-type of L+(σ1), and

τ2 is the minimal K̃ ′-type of L−(σ2)
∗,

then the above multiplicity equals to

HomfK′(τ1, τ2 ⊗ (π′
∣∣fK′)).

Thus, by Lemma 3.2, finally we obtain

Ω(π′)
∣∣ eK '

∑

σ1∈O(V +)∧,σ2∈O(V −)∧
HomfK′(τ1, τ2 ⊗ (π′

∣∣fK′))
∗ ⊗ (σχ1

1 ⊗ σχ2

2 ). (3.6)

Since θ(π′) is the unique irreducible quotient of Ω(π′), the multiplicity of K̃-types in θ(π′)
cannot exceed dim HomfK′(τ1, τ2 ⊗ (π′

∣∣fK′))
∗. However, if we choose appropriate K̃-types

in S ⊗H∞
(π′)∗ and its K̃ ′-finite vectors, the theta integral (2.2) converges for such vectors

and gives a non-degenerate inner product. This means that the above multiplicity should
survive after taking the quotient by R = Ker( , )(π′)∗ (cf. (2.4)). This means that the

multiplicity of K̃-types in θ(π′) and Ω(π′) is the same, which proves θ(π′) = Ω(π′).
We summarize the above arguments into

Theorem 3.5 (N-Zhu). Let π′ be a genuine unitary highest weight module of G̃′ and

π = θ(π′) its theta lift. Then the K̃-type decomposition of π is given by

π
∣∣ eK '

∑

σ1∈O(V +)∧,σ2∈O(V −)∧
HomfK′(τ1, τ2 ⊗ (π′

∣∣fK′))
∗ ⊗ (σχ1

1 ⊗ σχ2

2 ).

The multiplicities in the above decomposition formula is efficiently computable. See
[12] for example.

4. Associated Cycle

Let (π,X) be a Harish-Chandra (g, K) module, where g is the complexified Lie algebra
of G and K is a maximal compact subgroup. For simplicity, we assume that X is quasi-
simple, i.e., the center Z(g) of the enveloping algebra U(g) acts on X as scalars.

Take a finite dimensional generating space X0 ⊂ X, which is K-stable. Let {Un(g)}∞n=0

be the standard filtration of the enveloping algebra U(g). We define a filtration of X as
Xn = Un(g)X0, which is K-stable. Moreover, it satisfies Um(g)Xn = Xn+m. If a filtration
satisfies this condition for sufficiently large n and arbitrary m ≥ 0, it is called good. Thus
{Xn}∞n=0 is a K-stable good filtration of X. Let

gr X =
∑⊕

n≥0

Xn/Xn−1 (X−1 = 0) (4.1)

be the associated graded module of grU(g) = S(g) (the symmetric algebra of g).
7



In general, let M be a finitely generated module over a Noetherian ring A. (In our
present case, we take A = S(g) and M = gr X.) Let {Pi}l

i=1 be the set of all the minimal
prime ideals containing the annihilator ideal AnnM = {a ∈ A | aM = 0}. Clearly,

SuppM := Spec(AnnM) =
⋃l

i=1
Spec(A/Pi) (4.2)

gives an irreducible decomposition of SuppM . In addition to this, we associate a multi-
plicity mi = m(M,Pi) with each irreducible component Spec(A/Pi), where mi is defined
as the length of APi

-module MPi
. Here APi

or MPi
denotes the localization at Pi. Note

that MPi
is an Artinian APi

-module, so that the multiplicity is a positive integer. The
associated cycle AC(M) of M is defined to be a formal sum

AC(M) =
∑l

i=1
mi · Spec(A/Pi). (4.3)

IfM is a coherent sheaf over SpecA corresponding toM , then the support ofM is SuppM
above, and the usual notion of characteristic cycle Ch(M) coincides with AC(M).

Let us return to the S(g)-module gr X. Let g = k ⊕ p be a Cartan decomposition,
and we identify S(g) = C[g] via Killing form, so that m-SpecS(g) ' g, where m-SpecA
denotes the set of maximum spectrum of A.

Theorem 4.1 (Vogan [18]). The associated cycle AC(gr X) does not depend on the choice
of the generating space X0. We denote it by AC(X). Then AC(X) is a finite union of the
closure of KC-nilpotent orbits in p with multiplicity.

AC(X) =
l∑

i=1

mi · [Oi] (Oi : KC-nilpotent orbit in p) (4.4)

We call Supp(gr X) = ∪iOi the associated variety of X, and denote it by AV(X).

Proof. We skip the proof of independency of AC(X) from the choice of the KC-stable
generating space.

Since the filtration {Xn}∞n=0 is K-stable, the action of k = Lie(K)C kills gr X. Thus, in
fact, gr X is an S(g/k)-module. This means the support of gr X is contained in p ' (g/k)∗.
Moreover, there is an action of KC on Supp(gr X) induced by KC-module structure of
gr X, hence AV(X) is a union of KC-orbits.

Since X is assumed to be quasi-simple, gr Z(g) = S(g)G acts on gr X trivially. Thus the
invariants of positive degree S(g)G

+ kills gr X. By the result of Kostant, it is known that
S(g)G

+ generates a prime ideal, which is an annihilator ideal of the nilpotent variety. Thus
Supp(gr X) = AV(X) is contained in the nilpotent variety. ¤

We give some examples of associated cycles here.

Example 4.2. If τ is a finite dimensional representation of G, its associated cycle is
supported on the point {0}. The multiplicity is given by the dimension dim τ .

Example 4.3 (Yamashita, N-Ochiai-Taniguchi). We will give the associated cycles of
unitary highest/lowest weight modules. For details, we refer the readers to [13].

First we describe certain nilpotent orbits. Let (G,G′) = (O(p, q), Sp(2n,R)) be our type
I dual pair. A choice of a maximal compact subgroup K ′ ⊂ G′ determines a complexified
Cartan decomposition g′ = k′ ⊕ p′. Since G′ = Sp(V ′) is a Hermitian symmetric type,
there is a K ′

C-stable decomposition p′ = p′+ ⊕ p′−. One can identify p′+ = Symn(C) (the
8



space of symmetric matrices of order n), where n = 1
2
dimV ′ is the real rank of G′. The

action of K ′
C ' GLn(C) is the usual one; gX tg (g ∈ GLn(C), X ∈ Symn(C)). Then p′± is

contained in the nilpotent variety, and the nilpotent K ′
C-orbits in p′± is classified by the

rank of symmetric matrices. We denote the nilpotent orbit in p′+ of rank k by Ok. In
particular, O0 = {0} is the trivial orbit, and On = {A ∈ Symn(C) | detA 6= 0} is dense
open in p′+.

Let us recall the decomposition (3.5). Thus unitary highest weight modules L+(σ) are
parametrized by irreducible finite dimensional representations σ ∈ O(V +)∧ for various
positive definite quadratic space V +. Here (only in this example), we do not assume any
condition between the dimensions of V ± and V ′. Therefore, L+(σ) need not be in holo-
morphic discrete series, but it can be an arbitrary unitary highest weight representation
including singular unitary highest weight modules.

The associated cycle of L+(σ) (σ ∈ O(V +)∧) is given by

AC(L+(σ)) =

{
dimσ · [Op] if p = dimV + ≤ n

dimσO(p−n) · [On] if p = dimV + > n
(4.5)

Here O(p−n) is embedded into O(p) diagonally, and σO(p−n) denotes O(p−n)-invariants
in σ. Note that On = p′+.

By a result of Yamashita ([21]), the multiplicity of AC(L+(σ)) is also interpreted as the
dimension of the space of generalized Whittaker vectors. This is one of the motivation to
calculate associated cycles.

5. Theta lift of associated cycles

First we recall the notion of the lifting of nilpotent orbits for symmetric pairs [14]:

G′ = Sp(2n,R) −→ G = O(p, q),

N (p′) ⊃ O′ −→ O ⊂ N (p),

where for a subset s ⊂ g we denote the set of nilpotent elements in s by N (s). We always
assume that the pair (G,G′) is strictly in the stable range, which amounts to assume that
2n < min(p, q).

Now W = Rp,q ⊗ R2n has a complex structure such that the imaginary part of the
standard Hermitian form gives our symplectic form. With this complex structure, we
consider W as a complex vector space:

W = Mp+q,n(C) =

{(
A
B

)
| A ∈Mp,n(C), B ∈Mq,n(C)

}
= Mp,n(C)⊕Mq,n(C).

Then the action of KC = O(p,C)×O(q,C) and K ′
C = GLn(C) on W can be given as

(
kA tg
hBg−1

)
;

(
A
B

)
∈ W, (k, h) ∈ O(p,C)×O(q,C), g ∈ GLn(C).

9



We fix a Cartan decomposition g = k⊕ p (resp. g′ = k′ ⊕ p′) as

g = o(p+ q,C) =

(
Altp(C) 0

0 Altq(C)

)
⊕

(
0 Mp,q(C)

tMp,q(C) 0

)
= k⊕ p,

g′ = sp(2n,C) =

(
Mn(C) 0

0 − tMn(C)

)
⊕

(
0 Symn(C)

Symn(C) 0

)
= k′ ⊕ p′.

Thus, we can identify p = Mp,q(C) and p′ = p′+ ⊕ p′− = Symn(C) ⊕ Symn(C). To define
the lifting, we consider the following double fibration map

¡
¡

¡ª

@
@

@R

W = Mp,n ⊕Mq,n

ϕ ψ

p = Mp,q Symn⊕ Symn = p′

where the moment maps ϕ and ψ are explicitly given by

(A,B) ∈Mp,n ⊕Mq,n = W,
{
ϕ(A,B) = A tB ∈Mp,q = p,

ψ(A,B) = ( tAA, tBB) ∈ Symn⊕ Symn = p′.

These maps are equivariant quotient maps onto their images. For example, ϕ is a quotient
map by GLn(C) onto its image (rank ≤ n matrices in Mp,q(C)), and it is KC-equivariant.
Note that ψ is surjective by our assumption that the pair is strictly in the stable range.

The following theorem is established in [14]. It is also obtained by Ohta [16] and
Daszkiewicz-Kraśkiewicz-Przebinda [1] independently.

Theorem 5.1. Take a nilpotent K ′
C-orbit O′ in p′. The push-down of the inverse image

ϕ(ψ−1(O′)) of the closure of O′ is equal to the closure of a nilpotent KC-orbit O. This
gives a one-to-one correspondence from the set of nilpotent K ′

C-orbits in p′ to the set of
nilpotent KC-orbits in p.

We write this correspondence as O = θ(O′), and call it the theta lift of O′. For
associated cycles we can extend the theta lifting by

θ(
∑

i
mi[O′

i]) =
∑

i
mi[θ(O′

i)]. (5.1)

We can now state our main theorem.

Theorem 5.2 (N-Zhu). Let (G,G′) be a reductive dual pair of type I. We assume that the
pair is strictly in the stable range with G′ the smaller member, and that G′ is of Hermitian

type (see Table 1 in §3). Let π′ be a genuine unitary highest weight representation of G̃′

which appears in the Howe correspondence of a compact dual pair. Then the associated
cycle is preserved by the theta lifting.

θ(AC(π′)) = AC(θ(π′)) (5.2)
10



More precisely, if the associated cycle of π′ is given by AC(π′) = mπ′ [O′], then AC(θ(π′)) =

mπ′ [θ(O′)] with the same multiplicity.

Some remarks are in order.
First, for the pairs (O(p, q), Sp(2n,R)) and (U(p, q), U(m,n)), all the unitary highest

weight module of G̃′ appears in the Howe correspondence for some compact dual pairs.
This is proved in [7]. However, for the pair (Sp(p, q), O∗(2n)), there are small exception.
See [2].

Second, AC(π′) is well-understood; AV(π′) is irreducible, and the multiplicity mπ′ can
be given by the dimension of certain subspace of representations of compact groups. See
Example 4.3.

Third, if π′ is a singular unitary highest weight representation, the formula of AC(π′) is
also interpreted as the preservation of the associated cycle under the theta lifting. In fact,
π′ is the theta lift of a finite dimensional representation in the stable range. However, if
π′ is not singular, we can see that the associated cycle is no longer preserved by the theta
lifting. Thus the assumption of the stable range condition is necessary.

For the proof of this theorem, we refer to [15].
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[20] André Weil. Sur certains groupes d’opérateurs unitaires. Acta Math., 111:143–211, 1964.
[21] Hiroshi Yamashita. Cayley transform and generalized Whittaker models for irreducible highest weight
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This is an extract from a preprint with the same title. The full proofs are contained
in that. Here we write only the major results. The numbering of the statement are the
same as the original full paper. Some statements in the original are skipped.

Introduction

The study of Whittaker models of algebraic groups over local fields has already some
history. The Jacquet integral is named after the investigation of H.Jacquet [7]. Multi-
plicity free theorem by J.Shalika for quasi-split groups, was later enhanced for the case
of the real field by N.Wallach. For redutive groups over the real field, this theme was
investigated by M.Hashizume [5], B.Kostant, D. Vogan, H.Matsumoto, and the joint
work of R.Goodman and N.Wallach [4].

More specifically GL(n,R), explicit expressions for class 1 Whittaker functions are
obtained, firstly for n = 3 by D.Bump [2]. The main contributor for the case of general
n seems to be E.Stade. Other related results will be find in the references of the papers
of him ([9],[10]).

Let us explain the outline of this paper. The purpose of the master thesis [1] refered
above is to investigate the Whittaker functions belonging to the non-spherical principal
series representations of SL(3,R). The minimal K-type of such representations is 3-
dimensional. So we have to consider vector-valued functions. The main results are,
firstly, to obtain the holonomic system of the A-radial part of such Whittaker functions
with minimal K-type explicitly (§4), and secondly to have 6 formal solutions (§5,
Theorem (5.5)), which are considered as examples of confluent hypergeometric series
of two variables. We also have integral expressions of these 6 solutions(§5, Theorem
(5.6)). In the subsequent section, the Jacquet integral (so to say, the primary Whittaker
function) is written as a sum of these 6 secondary Whittaker functions (§6-8).

1 Preliminaries. Basic terminology

1.1 Whittaker model

Given an irreducible admissible representation (π,H) of G = SL(3,R), we consider
its model or realization in the space of Whittaker functions. This means, for a non-
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degenerate unitary character ψ of a maximal unipotent subgroup N = {



1 ∗ ∗
0 1 ∗
0 0 1


 ∈

G} of G defined by

ψ(




1 x12 x13

1 x23

1


) = exp{2π√−1(c1x12 + c2x23)}

with c1, c2 ∈ R being non-zero, we consider a smooth induction C∞-IndG
N(ψ) to G, and

the space of intertwining operators of smooth G-modules

HomG(H∞, C∞-IndG
N(ψ))

with H∞ the subspace consisting of C∞-vectors in H. Or more algebraically speaking,
we might consider the corresponding space in the context of (g, K)-modules (with
g = Lie(G), K = SO(3)):

Hom(g,K)(H∞, C∞-IndG
N(ψ)).

1.2 Principal series representations

Let P0 be a minimal parabolic subgroup of G given by the upper triangular matri-
ces in G, and P0 = MAN be a Langlands decomposition of P0 with M = K ∩
{diagonals in G}, A = expa, with

a = {diag(t1, t2, t3)|ti ∈ R, t1 + t2 + t3 = 0}.

In order to define a principal series representation with respect to the minimal
parabolic subgroup P0 of G, we firstly fix a character σ of the finite abelian group
M of type (2, 2) and a linear form ν ∈ a∗ ⊗R C = HomR(a,C). For such data, we
can define a representation σ ⊗ eν of MA, and extend this to P0 by the identification
P0/N ∼= MA. Then we set

πσ,ν = L2-IndG
P0

(σ ⊗ eν+ρ ⊗ 1N).

Here ν(diag(t1, t2, t3)) =
∑3

i=1 νiti with νi ∈ C and ρ is the half-sum of positive roots
of (g, a) for P0, given as follows. For i < j (1 ≤ i, j ≤ 3), we put ηij(a) = ai/aj for
a = diag(a1, a2, a3) (a1a2a3 = 1). Then we have a2ρ =

∏
i<j ai/aj = a2

1/a
2
3 = a4

1a
2
2 by

definition. Hence aρ = a2
1a2.

Here the characters σj of M are identified as follows. The group M consisting of 4
elements is a finite abelian group of (2, 2) type, and its elements except for the unity
is given by the matrices

m1 =




1 0 0
0 −1 0
0 0 −1


 ,m2 =



−1 0 0
0 1 0
0 0 −1


 ,m3 =



−1 0 0
0 −1 0
0 0 1


 .

Since M is commutative, all the irreducible unitary representations of it is 1-
dimensional. For any σ ∈ M̂ , we have σ2 = 1. Therefore the set M̂ consisting of

2



4 characters {σj : j = 0, 1, 2, 3}, where each σj, except for the trivial character σ0, is
specified by the following table of values at the elements mi.

m1 m2 m3

σ1 1 -1 -1
σ2 -1 1 -1
σ3 -1 -1 1

Proposition (1.1) (i) If σ is the trivial character of M , the representation πσ,ν is
spherical or class 1, i.e., it has a (unique) K-invariant vector in the representation
space Hσ,ν.
(ii) If σ is not trivial, then the minimal K-type of the restriction πσ,ν |K to K is a 3-
dimensional representation of K = SO(3), which is isomorphic to the unique standard
one (τ2, V2). The multiplicity of this minimal K-type is one:

dimC HomK(τ2, Hσ,ν) = 1,

namely there is a unique non-zero K-homomorphism

ι : (τ2, V2) → (πσ,ν |K , Hσ,ν)

up to constant multiple.

2 Representations of K = SO(3)

2.1 The spinor covering

To describe the finite dimensional irreducible representations of SO(3), the simplest
way seems to utilize the double covering s : SU(2) = Spin(3) → SO(3), which is
realized as follows.

The Hamilton quaternion algebra H is realized in M2(C) by

H = {
(
a b
−b̄ ā

)
∈M2(C)|a, b ∈ C}.

Then SU(2) is the subgroup of the multiplicative group consisting of quaternions with
reduced norm 1, i.e.,

SU(2) = {x ∈ H| detx = 1}.
Let P = {x ∈ H|trx = 0} be the 3-dimensional real Euclidean space consisting of pure
quaternions. Then for each x ∈ SU(2), the map

p ∈ P 7→ x · p · x−1 ∈ P

preserve the Euclid norm p 7→ det p and the orientation, hence we have a homomor-
phism

s : SU(2) → SO(P, det) = SO(3),

which is surjective, since the range is a connected group. The kernel of this homomor-
phism is given by {±12}.
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By the derivation of s ds : su(2) → so(3), the standard generators:

u1 =

(√−1 0
0 −√−1

)
, u2 =

(
0 1
−1 0

)
, u3 =

(
0

√−1√−1 0

)

are mapped to 2K1, 2K2, 2K3 with

K1 =




0 0 0
0 0 −1
0 1 0


 , K2 =




0 0 1
0 0 0
−1 0 0


 , K3 =




0 −1 0
1 0 0
0 0 0


 ∈ k,

respectively. Here k is the Lie algebra of K.

2.2 Representations of SU(2)

The set of equivalence classes of the finite dimensional continuous representations of
SU(2) is exhaused by the symmetric tensor products τl (l = 0, 1, . . . , ) of the standard
representation. These are realized as follows.

Let Vl be the subspace consisting of homogeneous polynomials of two variables x, y

in the polynomial ring C[x, y]. For g ∈ SU(2) with g−1 =

(
a b
−b̄ ā

)
, and f(x, y) ∈ Vl

we set
τl(g)f(x, y) := f(ax+ by,−b̄x+ āy).

Passing to the Lie algebra Lie(SU(2)) = su(2), the derivation of τl, denoted by the same
symbol, is described as follows by using the standard basis {vk = xkyl−k (0 ≤ k ≤ l)}
and the standard generators

u1 =

(√−1 0
0 −√−1

)
, u2 =

(
0 1
−1 0

)
, u3 =

(
0

√−1√−1 0

)
.

Namely we have

τl(u1)vk =
√−1(l − 2k)vk, τl(X+)vk = (l − k)vk+1, τl(X−)vk = −k · vk−1.

Here we put X+ = 1
2
(u2 +

√−1u3), X− = 1
2
(u2 −

√−1u3).
The condition that τl defines a representation of SO(3) by passing to the quotient

with respect s : SU(2) → SO(3) is that τl(−12) = (−1)l = +1, i.e., l is even. Therefore
the dimension of Vl, l + 1 is odd in this case.

The representation τ2 of SU(2) is equivalent to the spinor homomorphism. Hence
passing to the quotient, τ2 is equivalent to the tautological representation SO(3) →
GL(3,C).

2.3 Irreducible components of τ2 ⊗ τ4 and τ2 ⊗ Adp

For our later use, we want to specify the standard basis of the unique irreducible
constituent τ2 in the tensor product τ2 ⊗ τ4.
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Lemma (2.1) Let {vi (i = 0, 1, 2)} and {wj (0 ≤ j ≤ 4)} be the standard basis of
(τ2, V2) and (τ4, V4), respectively. Then the elements

v′0 = v0 ⊗ w2 − 2v1 ⊗ w1 + v2 ⊗ w0,
v′1 = v0 ⊗ w3 − 2v1 ⊗ w2 + v2 ⊗ w1,
v′2 = v0 ⊗ w4 − 2v1 ⊗ w3 + v2 ⊗ w2

define a set of standard basis in τ2 ⊂ τ2 ⊗ τ4, which is unique up to a common scalar
multiple.

2.4 The K-module isomorphism betwenn pC and V4

We denote by pC the complexification of the orthogonal complement p of k with respect
to the Killing form, on which the group K acts via the adjont action Adp. We denote
by Eij the matrix unit with 1 at (i, j)-th entry and 0 at other entries. Then Eii and
Eij + Eji are considered as elements in p. We set Hij = Eii − Ejj for i 6= j.

Lemma (2.2) Via the unique isomorphism V4 and pC as K-modules we have the
identification

w0 = −2{H23 −
√−1(E23 + E32)},

w1 =
√−1{(E12 + E21)−

√−1(E13 + E31)},
w2 = 2

3
(H12 +H13),

w3 =
√−1{(E12 + E21) +

√−1(E13 + E31)},
w4 = −2{H23 +

√−1(E23 + E32)}.

3 Principal series (g, K)-modules

3.1 The case of the class one principal series

3.1.1 The Capelli elements

A set of generators for the center Z(g) of the universal enveloping algebra U(g) of
g = sl3 is obtained as Capelli elements, because sl3 is of type A2.

Let

E ′
ii = Eii − 1

3
(

3∑
a=1

Eaa), E
′
ij = Eij (i 6= j).

Then E ′
ij ∈ g. Define a matrix C of size 3 with entries in g by

C =



E ′

11 E ′
12 E ′

13

E ′
21 E ′

22 E ′
23

E ′
31 E ′

32 E ′
33


− diag(−1, 0, 1).

Then for
A = (Aij)1≤i,j≤3 = x · 13 − C ∈M3(g[x]) ⊂M3(U(g)[x]),

we define its vertical determinant by

det ↓ (A) =
∑

σ∈S3

sgn(σ)A1σ(1)A2σ(2)A3σ(3).
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Then it is written in the form x3 +Cp2x−Cp3 ∈ U(g)[x] with some elements Cp2 and
Cp3 in Z(g).

Proposition (3.1) The set {Cp2, Cp3} is a system of independent generators of Z(g).
Here are explicit formulae of Cp2 and Cp3:

Cp2 = (E ′
11 − 1)E ′

22 + E ′
22(E

′
33 + 1) + (E ′

11 − 1)(E ′
33 + 1)

−E23E32 − E13E31 − E12E21,

Cp3 = (E ′
11 − 1)E ′

22(E
′
33 + 1) + E12E23E31 + E13E21E32

−(E ′
11 − 1)E23E32 − E13E

′
22E31 − E12E21(E

′
33 + 1).

Eigenvalues of Cp2, Cp3

We compute the value Cp2f0(e) and Cp3f0(e). Let S2(a, b, c) = ab + bc + ca and
S3(a, b, c) = abc be the elementary symmetric functions of three variables of degree 2
and 3, respectively. Then we have the following.

Proposition (3.2) The infinitesimal character of πσ0,ν is given by

Cp2f0 = S2(
1

3
(2ν1 − ν2),

1

3
(2ν2 − ν1),

1

3
(ν1 + ν2))f0

and

Cp3f0 = S3(
1

3
(2ν1 − ν2),

1

3
(2ν2 − ν1),

1

3
(ν1 + ν2))f0.

3.2 (g, K)-module structure of non-spherical principal series
at the minimal K-type

3.2.1 Construction of K-equivariant differential operators

Lemma (3.3) Let {fi (i = 0, 1, 2)} be the set of the standard basis of the minimal
K-type τ ⊂ πσ,ν of a non-spherical principal series representation πσ,ν = π. Define
another three C∞-elements {ϕi (i = 0, 1, 2)} by the formulae:

ϕ0 = 2
3
π(2E11 − E22 − E33)f0

−2
√−1π(E12 + E21 −

√−1(E13 + E31))f1

−2π(E12 + E21 −
√−1(E23 + E32))f2,

ϕ1 =
√−1π(E12 + E21 +

√−1(E13 + E31))f0

−4
3
π(2E11 − E22 − E33)f1

+
√−1π(E12 + E21 −

√−1(E13 + E31))f2,
ϕ2 = −2π(E22 − E33 +

√−1(E23 + E32))f0

−2
√−1π(E12 + E21) +

√−1(E13 + E31))f1

+2
3
π(2E11 − E22 − E33)f2.

Then (ϕ0, ϕ1, ϕ2) is a constant multiple of (f0, f1, f2).
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3.2.2 Computation of eigenvalues

The previous lemma tells that there exist a scalar λ(σ, ν) depending on σ and ν such
that ϕi = λ(σ, ν)fi (i = 0, 1, 2). We determine this eigenvalue λ(σ, ν) by using explicit
models of the principal series πσ,ν .

To do this, we have to find functions in

L2-IndK
M(σi) = L2

M,σi
(K) = {f ∈ L2(K)|f(mk) = σ(m)f(k) for all m ∈M,k ∈ K}

corresponding to the standard basis in the minimal K-type for each i.
In the larger space L2(K), the τ2-isotypic component is generated by the 9 matrix

elements sij(k) (1 ≤ i, j ≤ 3) of the tautological representation

k ∈ K 7→ S(k) = (sab(k))1≤a,b≤3 ∈ SO(3).

It is directly confirmed that sib(k) (b = 0, 1, 2) belong to the subspace L2
M,σi

(K) for
each i.

Diagonalizing the action of u1, we find that si1 corresponds to v1 for each i. And
finally we find that the standard basis is given by

v0 =
√−1(si2 −

√−1si3), v1 = si1, and v2 =
√−1(si2 +

√−1si3).

We need the values of these standard functions fa(k) = va (a = 0, 1, 2) at the identity
e ∈ K.

Lemma (3.4) The values of the standard functions at e ∈ K is given as follows.

1. If σ = σ1, (f0(e), f1(e), f2(e)) = (0, 1, 0).

2. If σ = σ2, (f0(e), f1(e), f2(e)) = (
√−1, 0,

√−1).

3. If σ = σ3, (f0(e), f1(e), f2(e)) = (1, 0,−1).

Now we can proceed to the compuation of the value λ(σi, ν).

Lemma (3.5)

λ(σ1, ν) = −4

3
(2ν1 − ν2), λ(σ2, ν) =

4

3
(ν1 − 2ν2), λ(σ3, ν) =

4

3
(ν1 + ν2).

Summing up the lemmata in this section, we have the following.

Proposition (3.6) Let {fi (i = 0, 1, 2)} be the set of the standard basis of the minimal
K-type τ ⊂ πσ,ν of a non-spherical principal series representation πσ,ν = π. Define
another three C∞-elements {ϕi (i = 0, 1, 2)} by the formulae:

ϕ0 = 2
3
π(H12 +H13)f0

−2
√−1π(E12 + E21 −

√−1(E13 + E31))f1

−2π(H23 −
√−1(2E23 + 1

2
u1)f2,

ϕ1 =
√−1π(E12 + E21 +

√−1(E13 + E31))f0

−4
3
π(H12 +H13)f1

+
√−1π(E12 + E21 −

√−1(E13 + E31))f2,
ϕ2 = −2π(H23 +

√−1(2E23 + 1
2
u1)f0

−2
√−1π(E12 + E21) +

√−1(E13 + E31))f1

+2
3
π(H12 +H13)f2.
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Then we have
(ϕ0, ϕ1, ϕ2) = λ(σi, ν)(f0, f1, f2)

with eigenvalue λ(σi, ν) given by

λ(σ1, ν) = −4

3
(2ν1 − ν2), λ(σ2, ν) =

4

3
(ν1 − 2ν2), λ(σ3, ν) =

4

3
(ν1 + ν2).

In the next section, we consider the Whittaker realization of the equation of the
above proposition. Then we need the following Iwasawa decomposition of standard
elements of g.

Lemma (3.7) We have the following decompostion of standard generators of g with
respect to the Iwasawa decomposition g = n + a + k. For Hij ∈ a we have

Hij = 0 +Hij + 0.

Since Eij + Eji = 2Eij − (Eij − Eji), we have

E12+E21 = 2E12+0+K3, E13+E31 = 2E13+0+(−K2), E23+E23 = 2E23+0+K1.

4 The holonomic system for the A-radial part of

the principal series Whittaker functions

4.1 The case of the class one principal series

Let I be a non-zero Whittaker functional from the class one principal series πσ0,ν

to C∞-IndG
N(ψ). Let F be the restriction of the image I(f0) of the K-fixed vector

f0 to A. We write here the holonomic system for F with respect to the variables
y1 = η12(a) = a1/a2, y2 = η23(a) = a2/a3 = a1/a

2
2.

Proposition (4.1) Put F (y1, y2) = y1y2G(y1, y2) (note aρ = y1y2). Then G(y1, y2)
satisfies the partial differential eqautions:

∆2G =
1

3
(ν2

1 + ν2
2 − ν1ν2)G

and

{∂1(∂1 − ∂2)∂2 + 4π2c22y
2
2∂1 − 4π2c21y

2
1∂2}G = − 1

27
(2ν1 − ν2)(2ν2 − ν1)(ν1 + ν2)G.

Here ∂i is the Euler operator yi
∂
∂yi

for i = 1, 2. and we write

∆2 = (∂2
1 + ∂2

2 − ∂1∂2)− 4π2(c21y
2
1 + c22y

2
2).

Remark From these equations for the monodromy exponents α1, α2 at the origin y1 =
0, y2 = 0, we have an equality of sets of complex numbers:

{α1,−α1 + α2,−α2} = {1

3
(2ν1 − ν2),

1

3
(2ν2 − ν1),−1

3
(ν1 + ν2)}.
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4.2 The holonomic system for the A-radial part of non-spherical
Whittaker functions

Let I be a non-zero Whittaker functional from the principal series πσi,ν . For the set
{fi|(i = 0, 1, 2)} of standard functions, we put Fi = I(fi).

Theorem (4.4) Let F (a) = t(F0(a), F1(a), F2(a)) = (y1y2)
t(G0(y), G1(y), G2(y)) be

the vector of the A-radial part of the standard Whittaker functions with minimal K-type
of the principal series representation πσ,ν with non-trivial σ = σi. Then it satisfies the
following partial differential equations:

(i):




∂1 4πc1y1 ∂1 − 2∂2 − 4πc2y2

−2πc1y1 −2∂1 −2πc1y1

∂1 − 2∂2 + 4πc2y2 4πc1y1 ∂1






G0(y)
G1(y)
G2(y)


 =

1

2
λi



G0(y)
G1(y)
G2(y)


 ,

(ii):

∆2 ·13 ·


G0(y)
G1(y)
G2(y)


−2πc2y2



G0(y)

0
−G2(y)


+2πc1y1




G1(y)
1
2
(G0(y) +G2(y))

G1(y)


 =

1

3
µ



G0(y)
G1(y)
G2(y)


 .

Moreover the eigenvalues λi and µ depending on the representation πσ,ν are given by





λ1 = −4
3
(2ν1 − ν2) (σ = σ1)

λ2 = 4
3
(ν1 − 2ν2) (σ = σ2)

λ3 = 4
3
(ν1 + ν2) (σ = σ3)

and µ = ν2
1 + ν2

2 − ν1ν2.

Remark We can write the differential equations (i) and (ii) of the above Theorem as

(i): D1G = λiG (ii): D2G = µG,

with Di (i = 1, 2) 3 by 3 matrix-valued differential operators. Then we have

D1 · D2 −D2 · D1 = 0.

4.3 The equations via the tautological basis

Let k ∈ K 7→ S(k) = (sij(k))1≤i,j≤3 be the tautological representation of K = SO(3).
Let I ∈ Homg,K(πσi,ν , IndG

N(ψ)) be a Whittaker functional and define function Tij on
A by

I(sij)|A = y1y2Tij(y) (1 ≤ i, j,≤ 3).

Then 

G0

G1

G2


 =




0
√−1 1

1 0 0
0
√−1 −1






Ti1

Ti2

Ti3


 .
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Then for each i, the equation (i) of the above theorem is transformed to



−∂1 −2π
√−1c1y1 0

−2π
√−1c1y1 ∂1 − ∂2 −2π

√−1c2y2

0 −2π
√−1c2y2 ∂2






Ti1

Ti2

Ti3


 =

1

2
λi



Ti1

Ti2

Ti3


 ,

and the equation (ii) to

∆2 · 13 +




0 2π
√−1c1y1 0

−2π
√−1c1y1 0 2π

√−1c2y2

0 −2π
√−1c2y2 0









Ti1

Ti2

Ti3


 =

1

3
µ



Ti1

Ti2

Ti3


 .

5 Power series solutions at the origin

We determine 6 linearly independent formal power series at the origin (y1, y2) = (0, 0)
for generic parameter ν in this section. These formal solutions converges because the
singularity at the origin is a regular singularity. These solutions do not have exponential
decay at infinity, different from the unique ‘good’ solution given by Jacquet integral.
We refer to these solutions as secondary Whittaker functions sometimes.

5.1 The case of the class one principal series

This case is more or less discussed in the paper of Bump [2], up to some difference of
notations. We omit its explicit formula.

An integral expression of this power series solution was found by Stade ([9, Lemma
3.10], [11, Theorem 2]) as an analogue of an integral formula for Jacquet integral by
Vinogradov and Takhadzhyan [12]. The same as non-spherical case discussed later, we
let {e1, e2, e3} be a permutation of the three complex numbers {−1

3
(2ν1−ν2),−1

3
(2ν2−

ν1),
1
3
(ν1 + ν2)} = {1

4
λ1,

1
4
λ2,

1
4
λ3}

Theorem (5.2) For Re(e2 − e1) > 2,

Φ(y1, y2) = Γ( e2−e1

2
+ 1)Γ( e3−e1

2
+ 1)Γ( e2−e3

2
+ 1)(πc1y1)

e3
2 (πc2y2)

− e3
2 (πc1)

e1(πc2)
−e2

· 1

2π
√−1

∫

|u|=1

I e2−e1
2

(2πc1y1

√
1 + 1/u)I e2−e1

2
(2πc2y2

√
1 + u)u−

3
4
e3
du

u
.

5.2 The case of the non-spherical principal series

In this case also, the holonomic system obtained in Theorem (4.4) has regular singu-
larities at the origin (y1, y2) = (0, 0) with rank 6, i.e., the order of the Weyl group
of SL(3,R), for generic values of parameter ν. We determine the characteristic in-
dices and the convergent formal power series solutions at y = 0. Here to abridge the
notation, we write the set of variables (y1, y2) as y collectively.

By inspection we find that it is convenient to introduce scalar functions Φi(y1, y2) (i =
0, 1, 2) by

F (y) = y1y2G(y) = y1y2{Φ0(y)




0
1
0


 + Φ1(y)




1
0
1


 + Φ2(y)




1
0
−1


}.
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5.3 The holonomic system for Φi(y)

Now we can rewrite the holonomic system for Gi to that for Φi.

Proposition (5.3) The holonomic system in Theorem (4.4) is equivalent to the fol-
lowing system for Φi = Φi(y1, y2) (i = 0, 1, 2).

(1) (i) [∂1 + 1
4
λi]Φ0 + (2πc1y1)Φ1 = 0,

(ii) [∂1 − ∂2 − 1
4
λi]Φ1 + (2πc1y1)Φ0 + (2πc2y2)Φ2 = 0,

(iii) [∂2 − 1
4
λi]Φ2 − (2πc2y2)Φ1 = 0,

(2) (i) [∆2 − 1
3
µ]Φ0 + (2πc1y1)Φ1 = 0,

(ii) [∆2 − 1
3
µ]Φ1 + (2πc1y1)Φ0 − (2πc2y2)Φ2 = 0,

(iii) [∆2 − 1
3
µ]Φ2 − (2πc2y2)Φ1 = 0.

5.4 The characteristic indices at the origin (y1, y2) = (0, 0) and
the recurrence formulae.

Let
Φk(y) = y−e1

1 ye2
2

∑
n1,n2≥0

ck;n1,n2(πc1y1)
n1(πc2y2)

n2 , (k = 0, 1, 2)

be a system of formal power series solutions at the origin y = 0.
Now we can determine the 6 pairs (−e1, e2) of characteristic indices at the origin,

and the corresponding initial values conditions for F or Φi. the system at the origin and
to determine the first coefficients Moreover we have the recurrence relations between
the coefficients.

Lemma (5.4) When σ = σi for i = 1, 2 or 3, we have the following :

(1) The characteristic indices take the six values :

(−e1, e2) = (−1
4
λk,

1
4
λl) (1 ≤ k 6= l ≤ 3).

(2) For each case, the set of first coefficients, or the initial values at the origin are
given as follows :

(i) If (−e1, e2) = (−1
4
λi,

1
4
λk) (k 6= i),

(ye1
1 y

−e2
2 G)(0, 0) =




0
1
0


 , i.e., (ye1

1 y
−e2
2 Φ0)(0, 0) = 1, and (ye1

1 y
−e2
2 Φj)(0, 0) =

0 for other j.

(ii) If (−e1, e2) = (−1
4
λk,

1
4
λl) (k 6= i, l 6= i, k 6= l),

(ye1
1 y

−e2
2 G)(0, 0) =




1
0
1


 , i.e., (ye1

1 y
−e2
2 Φ1)(0, 0) = 1, and (ye1

1 y
−e2
2 Φj)(0, 0) =

0 for other j.
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(iii) If (−e1, e2) = (−1
4
λk,

1
4
λi) (k 6= i),

(ye1
1 y

−e2
2 G)(0, 0) =




1
0
−1


, i.e., (ye1

1 y
−e2
2 Φ2)(0, 0) = 1, and (ye1

1 y
−e2
2 Φj)(0, 0) =

0 for other j.

(3) We have the following recurrence relations for the coefficients:

(i) (n1 − e1 + 1
4
λi)c0;n1,n2 + 2c1;n1−1,n2 = 0;

(ii) (n1 − n2 − e1 − e2 − 1
4
λi)c1;n1,n2 + 2c0;n1−1,n2 + 2c2;n1,n2−1 = 0;

(iii) (n2 + e2 − 1
4
λi)c2;n1,n2 − 2c1;n1,n2−1 = 0.

5.5 Power series solutions at the origin

Now we can show the following formulae for the power series solutions.

Theorem (5.5) Assume that 1
4
(λk − λl) 6∈ Z. Then we have the following.

(I) When σ = σ1 we have the following six independent solutions.

t(Φ1,I
0 ,Φ1,I

1 ,Φ1,I
2 ) = y

−λ1
4

1 y
λ2
4

2

·




∑
m1,m2≥0

(λ2−λ1

8
+ 1

2
)m1+m2

(λ2−λ1

8
+ 1

2
)m1(

λ2−λ1

8
+ 1

2
)m2

· (πc1y1)
2m1(πc2y2)

2m2

m1!m2!(
λ3−λ1

8
+ 1

2
)m1(

λ2−λ3

8
+ 1)m2

−
∑

m1,m2≥0

(λ2−λ1

8
+ 1

2
)m1+m2+1

(λ2−λ1

8
+ 1

2
)m1+1(

λ2−λ1

8
+ 1

2
)m2

· (πc1y1)
2m1+1(πc2y2)

2m2

m1!m2!(
λ3−λ1

8
+ 1

2
)m1+1(

λ2−λ3

8
+ 1)m2

−
∑

m1,m2≥0

(λ2−λ1

8
+ 1

2
)m1+m2+1

(λ2−λ1

8
+ 1

2
)m1+1(

λ2−λ1

8
+ 1

2
)m2+1

· (πc1y1)
2m1+1(πc2y2)

2m2+1

m1!m2!(
λ3−λ1

8
+ 1

2
)m1+1(

λ2−λ3

8
+ 1)m2




,

t(Φ1,III
0 ,Φ1,III

1 ,Φ1,III
2 ) = y

−λ2
4

1 y
λ3
4

2

·




∑
m1,m2≥0

(λ3−λ2

8
+ 1)m1+m2

(λ3−λ2

8
+ 1)m1(

λ3−λ2

8
+ 1)m2

· (πc1y1)
2m1+1(πc2y2)

2m2

m1!m2!(
λ1−λ2

8
+ 1

2
)m1+1(

λ3−λ1

8
+ 1

2
)m2

−
∑

m1,m2≥0

(λ3−λ2

8
+ 1)m1+m2

(λ3−λ2

8
+ 1)m1(

λ3−λ2

8
+ 1)m2

· (πc1y1)
2m1(πc2y2)

2m2

m1!m2!(
λ1−λ2

8
+ 1

2
)m1(

λ3−λ1

8
+ 1

2
)m2

−
∑

m1,m2≥0

(λ3−λ2

8
+ 1)m1+m2

(λ3−λ2

8
+ 1)m1(

λ3−λ2

8
+ 1)m2

· (πc1y1)
2m1(πc2y2)

2m2+1

m1!m2!(
λ1−λ2

8
+ 1

2
)m1(

λ3−λ1

8
+ 1

2
)m2+1




,

t(Φ1,V
0 ,Φ1,V

1 ,Φ1,V
2 ) = y

−λ2
4

1 y
λ1
4

2

·




−
∑

m1,m2≥0

(λ1−λ2

8
+ 1

2
)m1+m2+1

(λ1−λ2

8
+ 1

2
)m1+1(

λ1−λ2

8
+ 1

2
)m2+1

· (πc1y1)
2m1+1(πc2y2)

2m2+1

m1!m2!(
λ3−λ2

8
+ 1)m1(

λ1−λ3

8
+ 1

2
)m2+1

∑
m1,m2≥0

(λ1−λ2

8
+ 1

2
)m1+m2+1

(λ1−λ2

8
+ 1

2
)m1(

λ1−λ2

8
+ 1

2
)m2+1

· (πc1y1)
2m1(πc2y2)

2m2+1

m1!m2!(
λ3−λ2

8
+ 1)m1(

λ1−λ3

8
+ 1

2
)m2+1

∑
m1,m2≥0

(λ1−λ2

8
+ 1

2
)m1+m2

(λ1−λ2

8
+ 1

2
)m1(

λ1−λ2

8
+ 1

2
)m2

· (πc1y1)
2m1(πc2y2)

2m2

m1!m2!(
λ3−λ2

8
+ 1)m1(

λ1−λ3

8
+ 1

2
)m2




,
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and other three solutions Φ1,II
i ,Φ1,IV

i and Φ1,V I
i are given by exchanging the role of λ2

and λ3 in the expression for Φ1,I
i ,Φ1,III

i and Φ1,V
i , respectively.

(II) When σ = σ2, exchange λ1 and λ2 in the part (I).
(III) When σ = σ3, exchange λ1 and λ3 in the part (I).

5.6 Integral representations of the secondary Whittaker func-
tions

In this subsection, we rewrite the power series solutions of the previous subsection by
integral expressions.

Theorem (5.6) (I) When σ = σ1 we have

t(Φ1,I
0 ,Φ1,I

1 ,Φ1,I
2 ) = (πc1y1)

λ3
8

+ 1
2 (πc2y2)

−λ3
8

+ 1
2

·(2π√−1)−1Γ(λ2−λ1

8
+ 1

2
)Γ(λ3−λ1

8
+ 1

2
)Γ(λ2−λ3

8
+ 1)(πc1)

λ1
4 (πc2)

−λ2
4

·




∫

|u|=1

Iλ2−λ1
8

− 1
2

(2πc1y1

√
1 + 1/u)Iλ2−λ1

8
− 1

2

(2πc2y2

√
1 + u)u−

3
16

λ3+ 1
4
du

u

(−1)

∫

|u|=1

Iλ2−λ1
8

+ 1
2

(2πc1y1

√
1 + 1/u)Iλ2−λ1

8
− 1

2

(2πc2y2

√
1 + u)u−

3
16

λ3− 1
4 (1 + u)

1
2
du

u

(−1)

∫

|u|=1

Iλ2−λ1
8

+ 1
2

(2πc1y1

√
1 + 1/u)Iλ2−λ1

8
+ 1

2

(2πc2y2

√
1 + u)u−

3
16

λ3− 1
4
du

u




for Re(λ2−λ1

8
) > 3

2
,

t(Φ1,III
0 ,Φ1,III

1 ,Φ1,III
2 ) = (πc1y1)

λ1
8 (πc2y2)

−λ1
8

·(2π√−1)−1Γ(λ1−λ2

8
+ 1

2
)Γ(λ3−λ1

8
+ 1

2
)Γ(λ3−λ2

8
+ 1)(πc1)

λ2
4 (πc2)

−λ3
4

·




(πc1y1)

∫

|u|=1

Iλ3−λ2
8

(2πc1y1

√
1 + 1/u)Iλ3−λ2

8

(2πc2y2

√
1 + u)u−

3
16

λ3− 1
2
du

u

(−1)

∫

|u|=1

[
πc1y1

√
1 + 1/u Iλ3−λ2

8
−1

(2πc1y1

√
1 + 1/u) + (λ1−λ3

8
+ 1

2
)

·Iλ3−λ2
8

(2πc1y1

√
1 + 1/u)

]
Iλ3−λ2

8

(2πc2y2

√
1 + u)u−

3
16

λ3− 1
2
du

u

(−1)(πc2y2)

∫

|u|=1

Iλ3−λ2
8

(2πc1y1

√
1 + 1/u)Iλ3−λ2

8

(2πc2y2

√
1 + u)u−

3
16

λ3+ 1
2
du

u




for Re(λ3−λ2

8
) > 1,

t(Φ1,V
0 ,Φ1,V

1 ,Φ1,V
2 ) = (πc1y1)

λ3
8

+ 1
2 (πc2y2)

−λ3
8

+ 1
2

·(2π√−1)−1Γ(λ1−λ2

8
+ 1

2
)Γ(λ1−λ3

8
+ 1

2
)Γ(λ3−λ2

8
+ 1)(πc1)

λ2
4 (πc2)

−λ1
4

·




(−1)

∫

|u|=1

Iλ1−λ2
8

+ 1
2

(2πc1y1

√
1 + 1/u)Iλ1−λ2

8
+ 1

2

(2πc2y2

√
1 + u)u−

3
16

λ3+ 1
4
du

u∫

|u|=1

Iλ1−λ2
8

− 1
2

(2πc1y1

√
1 + 1/u)Iλ1−λ2

8
+ 1

2

(2πc2y2

√
1 + u)u−

3
16

λ3− 1
4 (1 + u)

1
2
du

u∫

|u|=1

Iλ1−λ2
8

− 1
2

(2πc1y1

√
1 + 1/u)Iλ1−λ2

8
− 1

2

(2πc2y2

√
1 + u)u−

3
16

λ3− 1
4
du

u



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for Re(λ1−λ2

8
) > 3

2
.

To have the integral expression for Φ1,II
i ,Φ1,IV

i and Φ1,V I
i , we have to exchange the role

of λ2 and λ3 in the expression for Φ1,I
i ,Φ1,III

i and Φ1,V
i , respectively.

(II) When σ = σ2, exchange λ1 and λ2 in (I).
(III) When σ = σ3, exchange λ1 and λ3 in (I).

6 Evaluation of Jacquet integrals

We give explicit descriptions of Jacquet integrals for non-spherical principal series
Whittaker functions here. These are similar to the class one case ([12]).

6.1 Jacquet integrals

Let us denote by g = n(g)a(g)k(g) the Iwasawa decomposition of g ∈ G. We define

Jacquet integral Jij for σi ∈ M̂ (1 ≤ i, j ≤ 3) as

Jij(g) =

∫

N

ψ(n)−1a(s−1
0 ng)sij(k(s

−1
0 ng))dn

for 1 ≤ j ≤ 3. Here

s0 =




−1
−1

−1




the longest element in the Weyl group of SL(3,R) and sij(k) is the element of the
tautological representation of K (cf. [4, (7.1)]).

Since

v0 =
√−1(si2 −

√−1si3), v1 = si1, v2 =
√−1(si2 +

√−1si3)

(§3.2.2) and
Φ0 = G1, 2Φ1 = G0 +G2, 2Φ2 = G0 −G2,

(§5.2) the vector of integrals t(Ji1,
√−1Ji2, Ji3) has the same K-type as t(Φ0,Φ1,Φ2).

For an element a ∈ A, we use the coordinates (y1, y2) = (a1/a2, a1a
2
2). In the Iwasawa

decomposition of the element s−1
0 na its A-part a(s−1

0 na) is given by

a(s−1
0 na) =

(
y

1
3
1 y

2
3
2√

∆1

,

(
y2

y1

) 1
3
√

∆1

∆2

)

with
∆1 = y2

1y
2
2 + y2

1n
2
2 + (n1n2 − n3)

2, ∆2 = y2
1y

2
2 + y2

2n
2
1 + n2

3.

Under the symbol above

Jij(y) = y
(2ν1−ν2)/3+1
1 y

(ν1+ν2)/3+1
2

·
∫

R3

∆
(ν2−ν1−1)/2
1 ∆

(−ν2−1)/2
2 kij exp

(−2π
√−1(c1n1 + c2n2)

)
dn1dn2dn3.

Here (kij)1≤i,j≤3 = k(s−1
0 na).
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6.2 Integral representations of Jacquet integrals

To write down our results, we use the following notation.

Notation.

K(α, β, γ, δ ; y) := 4π
3
2 (π|c1|)

λ3
4 (π|c2|)−

λ1
4 (y1y2)(π|c1|y1)

λ2
8 (π|c2|y2)

−λ2
8

·
∫ ∞

0

Kλ3−λ1
8

+α
(2π|c1|y1

√
1 + 1/v)Kλ3−λ1

8
+β

(2π|c2|y2

√
1 + v) v−

3
16

λ2+γ(1 + v)δ dv

v

with Kν(z) the K-Bessel function.

6.2.1 The case of the class one principal series

In the case of class one, the Jacquet integral J0(y) is
Theorem (6.2) ([12]) For Re(λ2 − λ1) > 0, Re(λ3 − λ2) > 0,

J0(y) =
1

Γ(λ2−λ1

8
+ 1

2
)Γ(λ3−λ2

8
+ 1

2
)Γ(λ3−λ1

8
+ 1

2
)
K(0, 0, 0, 0 ; y).

6.2.2 The case of the non-spherical principal series

Theorem (6.3) For Re(λ2 − λ1) > 0, Re(λ3 − λ2) > 0, the Jacquet integrals Jij can
be written as follows.



J11(y)
J12(y)
J13(y)


 =

(π|c1|) 1
2 (π|c2|) 1

2 (π|c1|y1)
1
2 (π|c2|y2)

1
2

Γ(λ2−λ1

8
+ 1)Γ(λ3−λ2

8
+ 1

2
)Γ(λ3−λ1

8
+ 1)

·



ε1ε2K(−1
2
,−1

2
, 1

4
, 0 ; y)

−√−1 ε2K(1
2
,−1

2
,−1

4
, 1

2
; y)

−K(1
2
, 1

2
,−1

4
, 0 ; y)


 ,



J21(y)
J22(y)
J23(y)


 =

1

Γ(λ2−λ1

8
+ 1)Γ(λ3−λ2

8
+ 1)Γ(λ3−λ1

8
+ 1

2
)
·


−√−1 ε1K(0, 0,−1

2
, 0 ; y)

−K(0, 0, 1
2
,−1 ; y)√−1 ε2K(0, 0, 1

2
, 0 ; y)


 ,



J31(y)
J32(y)
J33(y)


 =

(π|c1|) 1
2 (π|c2|) 1

2 (π|c1|y1)
1
2 (π|c2|y2)

1
2

Γ(λ2−λ1

8
+ 1

2
)Γ(λ3−λ2

8
+ 1)Γ(λ3−λ1

8
+ 1)

·



−K(1
2
, 1

2
, 1

4
, 0 ; y)√−1 ε1K(−1

2
, 1

2
,−1

4
, 1

2
; y)

ε1ε2K(−1
2
,−1

2
,−1

4
, 0 ; y)


 .

Here εi (i = 1, 2) means 1 if ci > 0 and −1 if ci < 0.

7 Integral expression of Mellin-Barnes type

As in [9], we consider the Mellin-Barnes integral expression for Jij(y) to find linear
relations between Jacquet integrals Jij and power series solutions Φi,∗

k . We discuss only
the non-spherical case.

Lemma (7.1) For p, q ∈ C,

(π|c1|y1)
p(π|c2|y2)

q

∫ ∞

0

Kα(2π|c1|y1

√
1 + 1/v)Kβ(2π|c2|y2

√
1 + v) vγ(1 + v)δ dv

v

=
1

24(2π
√−1)2

∫ ρ1+
√−1∞

ρ1−
√−1∞

∫ ρ2+
√−1∞

ρ2−
√−1∞

V0(s1, s2)(π|c1|y1)
−s1(π|c2|y2)

−s2ds1ds2,
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with

V0(s1, s2) =
Γ( s1+p+α

2
)Γ( s1+p−α

2
)Γ( s1+p+2γ

2
)Γ( s2+q+β

2
)Γ( s2+q−β

2
)Γ( s2+q−2γ−2δ

2
)

Γ( s1+s2+p+q
2

− δ)
.

Here the lines of integration are taken as to the right of all poles of the integrand.

Proposition (7.2) Let

M(a1, a2, a3 ; b1, b2, b3 ; c ; y)

=
1

(2π
√−1)2

∫ ρ1+
√−1∞

ρ1−
√−1∞

∫ ρ2+
√−1∞

ρ2−
√−1∞

V (s1, s2)(π|c1|y1)
−s1(π|c2|y2)

−s2ds1ds2,

with

V (s1, s2) =
Γ( s1+a1−λ1

2
)Γ( s1+a2−λ2

2
)Γ( s1+a3−λ3

2
)Γ( s1+b1+λ1

2
)Γ( s1+b2+λ2

2
)Γ( s1+b3+λ3

2
)

Γ( s1+s2+c
2

)
.

Here the lines of integration are taken as to the right of all poles of the integrand. Then


J11(y)
J12(y)
J13(y)


 =

π
3
2 (π|c1|)

λ3
4 (π|c2|)−

λ1
4 y1y2

4 Γ(λ2−λ1

8
+ 1)Γ(λ3−λ2

8
+ 1

2
)Γ(λ3−λ1

8
+ 1)

·



ε1ε2M(0, 1, 1 ; 1, 0, 0 ; 1 ; y)
−√−1 ε2M(1, 0, 0 ; 1, 0, 0 ; 0 ; y)

−M(1, 0, 0 ; 0, 1, 1 ; 1 ; y)


 ,



J21(y)
J22(y)
J23(y)


 =

π
3
2 (π|c1|)

λ3
4 (π|c2|)−

λ1
4 y1y2

4 Γ(λ2−λ1

8
+ 1)Γ(λ3−λ2

8
+ 1)Γ(λ3−λ1

8
+ 1

2
)
·


−√−1 ε1M(1, 0, 1 ; 0, 1, 0 ; 1 ; y)

−M(0, 1, 0 ; 0, 1, 0 ; 0 ; y)√−1 ε2M(0, 1, 0 ; 1, 0, 1 ; 1 ; y)


 ,



J31(y)
J32(y)
J33(y)


 =

π
3
2 (π|c1|)

λ3
4 (π|c2|)−

λ1
4 y1y2

4 Γ(λ2−λ1

8
+ 1

2
)Γ(λ3−λ2

8
+ 1)Γ(λ3−λ1

8
+ 1)

·



−M(1, 1, 0 ; 0, 0, 1 ; 1 ; y)√−1 ε1M(0, 0, 1 ; 0, 0, 1 ; 0 ; y)
ε1ε2M(0, 0, 1 ; 1, 1, 0 ; 1 ; y)


 .

Proof. It is obvious from Lemma (7.1). 2

Remark. In view of this proposition, we can see the following symmetry for Jij with
respect to the parameter (λ1, λ2, λ3). This is natural but is not immediately seen from
the formulae for Jij (Theorem 6.3). We denote

J̃i(λ1, λ2, λ3) =

(
π

3
2 (π|c1|)

λ3
4 (π|c2|)−

λ1
4 y1y2

Γ(λ2−λ1

8
+ pi)Γ(λ3−λ2

8
+ qi)Γ(λ3−λ1

8
+ ri)

)−1
t(Ji1(y), Ji2(y), Ji3(y))

with (pi, qi, ri) = (1, 1
2
, 1) (i = 1), (1, 1, 1

2
) (i = 2), (1

2
, 1, 1) (i = 3). Then

J̃2(λ1, λ2, λ3) = (−√−1) ε2J̃1(λ2, λ1, λ3), J̃3(λ1, λ2, λ3) = −ε1ε2J̃1(λ3, λ2, λ1).

8 Relation between Jacquet integrals and power se-

ries solutions.

We omit the case of the class one principal series here, which is discussed by other
people. In the same way of [9] for class one case, we move the lines of Mellin-Barnes
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integral expression in Proposition (7.2) to the left and sum up the residues at the poles.
Then we obtain the following.

Theorem (8.2)

t(J11(y), J12(y), J13(y)) =
π

3
2 (π|c1|)

λ3
4 (π|c2|)−

λ1
4 y1y2

4 Γ(λ2−λ1

8
+ 1)Γ(λ3−λ2

8
+ 1

2
)Γ(λ3−λ1

8
+ 1)

·
[
ε1ε2(π|c1|)−

λ1
4 (π|c2|)

λ2
4 Γ(λ1−λ2

8
+ 1

2
)Γ(λ1−λ3

8
+ 1

2
)Γ(λ3−λ2

8
) t(Φ1,I

0 ,Φ1,I
1 ,Φ1,I

2 )

+ε1ε2(π|c1|)−
λ1
4 (π|c2|)

λ3
4 Γ(λ1−λ3

8
+ 1

2
)Γ(λ1−λ2

8
+ 1

2
)Γ(λ2−λ3

8
) t(Φ1,II

0 ,Φ1,II
1 ,Φ1,II

2 )

−ε2(π|c1|)−
λ2
4 (π|c2|)

λ3
4 Γ(λ2−λ1

8
+ 1

2
)Γ(λ1−λ3

8
+ 1

2
)Γ(λ2−λ3

8
) t(Φ1,III

0 ,Φ1,III
1 ,Φ1,III

2 )

−ε2(π|c1|)−
λ3
4 (π|c2|)

λ2
4 Γ(λ3−λ1

8
+ 1

2
)Γ(λ1−λ2

8
+ 1

2
)Γ(λ3−λ2

8
) t(Φ1,IV

0 ,Φ1,IV
1 ,Φ1,IV

2 )

−(π|c1|)−
λ2
4 (π|c2|)

λ1
4 Γ(λ2−λ1

8
+ 1

2
)Γ(λ3−λ1

8
+ 1

2
)Γ(λ2−λ3

8
) t(Φ1,V

0 ,Φ1,V
1 ,Φ1,V

2 )

−(π|c1|)−
λ3
4 (π|c2|)

λ1
4 Γ(λ3−λ1

8
+ 1

2
)Γ(λ2−λ1

8
+ 1

2
)Γ(λ3−λ2

8
) t(Φ1,V I

0 ,Φ1,V I
1 ,Φ1,V I

2 )
]
,

t(J21(y), J22(y), J23(y)) =
−√−1π

3
2 (π|c1|)

λ3
4 (π|c2|)−

λ1
4 y1y2

4 Γ(λ2−λ1

8
+ 1)Γ(λ3−λ2

8
+ 1)Γ(λ3−λ1

8
+ 1

2
)

·
[
ε1(π|c1|)−

λ2
4 (π|c2|)

λ1
4 Γ(λ2−λ1

8
+ 1

2
)Γ(λ2−λ3

8
+ 1

2
)Γ(λ3−λ1

8
) t(Φ2,I

0 ,Φ2,I
1 ,Φ2,I

2 )

+ε1(π|c1|)−
λ2
4 (π|c2|)

λ3
4 Γ(λ2−λ3

8
+ 1

2
)Γ(λ2−λ1

8
+ 1

2
)Γ(λ1−λ3

8
) t(Φ2,II

0 ,Φ2,II
1 ,Φ2,II

2 )

−(π|c1|)−
λ1
4 (π|c2|)

λ3
4 Γ(λ1−λ2

8
+ 1

2
)Γ(λ2−λ3

8
+ 1

2
)Γ(λ1−λ3

8
) t(Φ2,III

0 ,Φ2,III
1 ,Φ2,III

2 )

−(π|c1|)−
λ3
4 (π|c2|)

λ1
4 Γ(λ3−λ2

8
+ 1

2
)Γ(λ2−λ1

8
+ 1

2
)Γ(λ3−λ1

8
) t(Φ2,IV

0 ,Φ2,IV
1 ,Φ2,IV

2 )

−ε2(π|c1|)
−λ1

4 (π|c2|)
λ2
4 Γ(λ1−λ2

8
+ 1

2
)Γ(λ3−λ2

8
+ 1

2
)Γ(λ1−λ3

8
) t(Φ2,V

0 ,Φ2,V
1 ,Φ2,V

2 )

−ε2(π|c1|)−
λ3
4 (π|c2|)

λ2
4 Γ(λ3−λ2

8
+ 1

2
)Γ(λ1−λ2

8
+ 1

2
)Γ(λ3−λ1

8
) t(Φ2,V I

0 ,Φ2,V I
1 ,Φ2,V I

2 )
]
,

t(J31(y), J32(y), J33(y)) =
−π 3

2 (π|c1|)
λ3
4 (π|c2|)−

λ1
4 y1y2

4 Γ(λ2−λ1

8
+ 1

2
)Γ(λ3−λ2

8
+ 1)Γ(λ3−λ1

8
+ 1)

·
[
(π|c1|)−

λ3
4 (π|c2|)

λ2
4 Γ(λ3−λ1

8
+ 1

2
)Γ(λ3−λ2

8
+ 1

2
)Γ(λ2−λ1

8
) t(Φ3,I

0 ,Φ3,I
1 ,Φ3,I

2 )

+(π|c1|)−
λ3
4 (π|c2|)

λ1
4 Γ(λ3−λ2

8
+ 1

2
)Γ(λ3−λ1

8
+ 1

2
)Γ(λ1−λ2

8
) t(Φ3,II

0 ,Φ3,II
1 ,Φ3,II

2 )

−ε1(π|c1|)−
λ2
4 (π|c2|)

λ1
4 Γ(λ1−λ3

8
+ 1

2
)Γ(λ3−λ2

8
+ 1

2
)Γ(λ1−λ2

8
) t(Φ3,III

0 ,Φ3,III
1 ,Φ3,III

2 )

−ε1(π|c1|)−
λ1
4 (π|c2|)

λ2
4 Γ(λ2−λ3

8
+ 1

2
)Γ(λ3−λ1

8
+ 1

2
)Γ(λ2−λ1

8
) t(Φ3,IV

0 ,Φ3,IV
1 ,Φ3,IV

2 )

−ε1ε2(π|c1|)−
λ2
4 (π|c2|)

λ3
4 Γ(λ1−λ3

8
+ 1

2
)Γ(λ2−λ3

8
+ 1

2
)Γ(λ1−λ2

8
) t(Φ3,V

0 ,Φ3,V
1 ,Φ3,V

2 )

−ε1ε2(π|c1|)−
λ1
4 (π|c2|)

λ3
4 Γ(λ2−λ3

8
+ 1

2
)Γ(λ1−λ3

8
+ 1

2
)Γ(λ2−λ1

8
) t(Φ3,V I

0 ,Φ3,V I
1 ,Φ3,V I

2 )
]
.
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Fractional Weights and non-congruence subgroups

Richard Hill

March 23, 2003

Abstract

This note reviews the connection between the existence of fractional weight au-
tomorphic forms on real Lie groups, and the existence of non-congruence subgroups.
It is intended to explain the simple results which are rarely even stated, and to avoid
the complicated question of precisely where and why the congruence subgroup prop-
erty fails. As a consequence, a new method is presented, for obtaining congruences
between Eisenstein series and cusp forms in half-integral weight.

Let G be a (real) connected Lie group with a connected cyclic cover

1 → µn → G̃ → G → 1.

Here µn denotes the group of n-th roots of unity in C. Suppose we have an arithmetic
subgroup Γ ⊂ G. We shall discuss the following questions:

does Γ lift to a subgroup of G̃?

does Γ have a subgroup of finite index which lifts to G̃?

Example. Suppose the group G is SL2(R). The fundamental group of G is Z, and so
for every n ∈ N there is a unique connected n-fold cover. For simplicity we shall assume
that the arithmetic subgroup Γ is torsion-free.

A. If Γ has cusps then Γ is a free group. Therefore Γ lifts to every cover of G.

B. If Γ is cocompact then Peterson showed (see [7]) that Γ lifts to the n-fold cover if
and only if n is a factor of the Euler characteristic χ(Γ). In particular for every n
there is a Γ which lifts.

Very roughly speaking, Peterson’s theorem is proved as follows. One finds a generator
σ ∈ H2(G,Z) corresponding to the universal cover of G. A subgroup Γ lifts to the n-fold
cover if and only if the image of σ in H2(Γ,Z) ∼= Z is a multiple of n. The image of σ
in H2(G,R) is represented by an invariant 2-form on the upper half-plane. This 2-form
turns out to be the Euler form. To find the image of σ in H2(Γ,Z) ∼= Z one integrates
the 2-form over a fundamental domain for Γ. Hence by the Gauss-Bonnet theorem the
image of σ in H2(Γ,Z) is χ(Γ). This implies the result.
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1 Fractional weight multiplier systems

Let C1 denote the groups of complex numbers with absolute value 1. Suppose w : G×G →
µn is a 2-cocycle representing the group extension G̃. By a weight w multiplier system on
Γ, we shall mean a function χ : Γ → C1 such that

χ(γ1γ2) = w(γ1, γ2)χ(γ1)χ(γ2).

In other words the image of w in Z2(Γ,C1) is the coboundary ∂χ. If an arithmetic
subgroup Γ lifts to G̃ then such a χ exists on Γ. We shall now prove a converse to this:

Proposition 1 If there is a weight w multiplier system on an arithmetic subgroup Γ ⊂ G
then there is an arithmetic subgroup Γ0 ⊂ Γ which lifts to G̃.

Proof. Suppose first that rkR(G) ≥ 2. In this case it is known (see [11]) that the
commutator subgroup Γ′ has finite index in Γ. From the exact sequence

1 → µn → C1 n→ C1 → 1

we obtain a long exact sequence containing:

H1(Γ,C1) → H2(Γ, µn) → H2(Γ,C1).

The image of w in H2(Γ,C1) is trivial, so w is the image of an element ϕ ∈ H1(Γ,C1).
However ϕ : Γ → C1 is just a character. Let Γ0 = ker(ϕ). It follows that the restriction
of w to Γ0 is trivial, so Γ0 lifts to G̃. Since Γ0 ⊃ Γ′, it follows that Γ0 is an arithmetic
subgroup of G.

The above argument fails when rkRG = 1 since Γ/Γ′ is often infinite in this case.
However since Γ is finitely generated, Γ/Γ′ is a finitely generated abelian group, and so is
of the form F ⊕ Zr, where F is a finite abelian group. We extend our sequence one step
to the left to give:

H1(Γ,C1)
×n→ H1(Γ,C1) → H2(Γ, µn) → H2(Γ,C1).

This gives:
0 → H1(Γ,C1)/n → H2(Γ, µn) → H2(Γ,C1).

Note that we have

H1(Γ,C1)/n = Hom(F ⊕ Zr,C1)/n = Hom(F,C1)/n.

This implies
0 → Hom(F,C1)/n → H2(Γ, µn) → H2(Γ,C1).

We may therefore choose ϕ : F ⊕ Zr → C1 to be trivial on Zr. Hence ker(ϕ) again has
finite index in Γ and the result follows as before. 2

2 A trivial case

Suppose for a moment that the covering group G̃ is a linear group. In this case there
is always some arithmetic subgroup Γ0 of G which lifts to G̃. To see this, choose any
arithmetic subgroup Γ of G and let Γ̃ be the preimage of Γ in G̃. Each element of the
kernel µn is in Γ̃. For each of these elements apart from the identity, we can choose a
congruence subgroup of Γ̃ not containing that element. Hence the intersection Γ0 of all
these congruence subgroups is a congruence subgroup with trivial intersection with µn.
Thus Γ0 is a lift to G̃ of a congruence subgroup of Γ.
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3 A reformulation

In view of the above remark, it makes sense to assume that the group G is an (alge-
braically) simply connected linear group and that the covering group G̃ is non-linear. We
shall make this restriction from now on.

In order to fix notation, we shall recall the definition of an arithmetic subgroup of the
Lie group G. Suppose k is a totally real field with real places v1, . . . , vr and let G/k be an
algebraic group such that

(i) G(kv1) is isomorphic to G, and

(ii) G(kvi
) is compact for i = 2, . . . , r.

We shall write G(O) for the projection of G(O) onto G. By an arithmetic subgroup of G
we mean a subgroup of G commensurable with some G(O). As usual we let k∞ = k⊗QR.

Proposition 2 Let G/R and G/k be as above.

(i) Every topological cover G̃(k∞) of G(k∞) is of the form

G̃⊕ G(kv2)⊕ . . .⊕ G(kvr),

for some unique cover G̃ → G.

(ii) An arithmetic subgroup Γ lifts from G(k∞) to G̃(k∞) if and only if its projection in
G lifts to G̃.

Proof. Part (ii) is immediate from (i). To prove (i), we must show that for i > 1, the
compact group G(kvi

) is (topologically) simply connected. Note that G(kvi
) is a compact

real form of G(C) = G(C), and is hence a maximal compact subgroup of G(C). By the
Iwasawa decomposition of G(C), we know that G(C) is homotopic to G(kvi

). However as
G/R is (algebraically) simply connected, we know that G(C) is simply connected. 2

4 Metaplectic covers

Let G be a linear algebraic group over an algebraic number field k. We shall write A for
the adèle ring of k. Let A be a finite Abelian group. By a metaplectic extension of G by
A, we shall mean a topological central extension:

1 → A → G̃(A) → G(A) → 1
↖ ↑

G(k)
,

which splits on the subgroup G(k) of k-rational points of G. Suppose we have such

an extension and let G̃(k∞) be the pre-image of G(k∞) in ˜G(A). We therefore have an
extension of Lie groups:

1 → A → G̃(k∞) → G(k∞) → 1.

We shall show that this extension splits on a congruence subgroup of G(k∞).
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To see this we let Af denote the ring of finite adèles of k. As the map pr : G̃(Af ) →
G(Af ) is a topological covering, there is a neighbourhood U1 of the identity in G(Af ) such
that pr−1(U1) is a disjoint union of homeomorphic copies of U1. We may therefore choose
a continuous section τ : U1 → Û1, where Û1 is the copy of U1 which contains the identity
element of G̃(Af ). Now define for α, β ∈ U1, σ(α, β) = τ(α)τ(β)τ(αβ)−1. Clearly σ is
continuous on U1 × U1 and has values in A. Furthermore σ(1, 1) is the identity element
of A. Hence there is a neighbourhood U2 of the identity in G(Af ) such that σ is trivial
on U2 × U2. Now choose U3 ⊂ U2 to be a compact open subgroup of G(Af ). On U3 the
section τ satisfies τ(αβ) = τ(α)τ(β) and so the extension splits on U3. Restricting the
metaplectic extension we obtain:

1 → A → G̃(k∞) o τ(U3) → G(k∞)⊕ U3 → 1 .

(Remark: it is widely believed that the local factors of metaplectic groups always com-
mute. This belief is false; some counterexamples are described in [8].) As U3 commutes
with G(k∞), it follows that the action of τ(U3) by conjugation on G̃(k∞) is trivial in a
neighbourhood of the identity of G̃(k∞). Therefore τ(U3) acts by permuting the connected
components of G̃(k∞). It follows that there is a subgroup U4 of finite index in U3, such
that τ(U4) commutes with G̃(k∞). We therefore have

1 → A → G̃(k∞)⊕ τ(U4) → G(k∞)⊕ U4 → 1 .

Now consider the congruence subgroup:

Γ = G(k) ∩
(
G(k∞)⊕ U4

)
.

As the metaplectic extension splits on G(k), we have by restriction:

1 → A → G̃(k∞)⊕ τ(U4) → G(k∞)⊕ U4 → 1
↖ ↑

Γ
.

Factoring out by U4 and τ(U4) in the above diagram, we obtain as required:

1 → A → G̃(k∞) → G(k∞) → 1
↖ ↑

Γ
.

2

5 The congruence subgroup property

Let G/k be an absolutely simple and (algebraically) simply connected algebraic group over
an algebraic number field k. We shall abbreviate k∞ = k ⊗Q R. Assume also that G(k∞)
is not topologically simply connected. The group G will be said to satisfy the congruence
subgroup property if every arithmetic subgroup of G(k) is a congruence subgroup.

The question of whether congruence subgroups exist or not has been reformulated by
Serre as follows. By the strong approximation theorem, we have

G(Af ) = lim
←(Γcongruence)

G(k)/Γ.
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Now define
Ĝ(Af ) = lim

←(Γarithmetic)
G(k)/Γ.

There is a surjective map Ĝ(Af ) → G(Af ). The kernel C(G) of this map is called the
congruence kernel. The congruence kernel is trivial if and only if all arithmetic subgroups
are congruence subgroups. Serre has conjectured ([15]), that C(G) is a finite subgroup of

the centre of Ĝ(Af ) if and only if rkR(G(k∞)) ≥ 2. Serre’s conjecture in known for most
groups of real rank ≥ 2. In particular the conjecture is known for all isotropic groups
apart from groups of type 2E6,1.

If Serre’s conjecture holds for G of real rank ≥ 2, then our assumption that G(k∞) is
not simply connected implies that

C(G) ∼= Hom(G(k)′/G(k)′,C1),

where G(k)′ is the commutator subgroup of G(k) and G(k)′ is its closure with respect
to the subspace topology on G(k) induced from G(Af ). In particular, if G(k) is perfect
then C(G) is trivial. Furthermore the triviality of C(G) would follow from a conjecture of
Platonov and Margulis (see [14]). This Conjecture is known in most cases. More precisely
we have:

Theorem 1 (Congruence Subgroup Property) Suppose G/k is absolutely simple and
(algebraically) simply connected, but G(k∞) is not topologically simply connected. Sup-
pose also that

∑
v|∞ rkvG ≥ 2. If either G/k is isotropic but not of type 2E6,1, or G/k is

anisotropic but not of type, E6 or 3,6D4, and not an outer form of type 2An then G satisfies
the congruence subgroup property

The results and conjectures referred to above are more fully described in the useful
survey [14].

6 A partial converse

We shall now prove a partial converse of the result of §4.

Theorem 2 Let let G/k be absolutely simple and simply connected. Suppose there is a
topological central extension

1 → A → G̃(k∞) → G(k∞) → 1,

which splits on some arithmetic subgroup Γ0. If G satisfies the congruence subgroup prop-
erty then this extension is the restriction to G(k∞) of a metaplectic extension of G.

Remark 1 In fact with some extra work one could replace the condition that all arith-
metic subgroups are congruence subgroups by the weaker condition that the congruence
kernel is finite. However, since G(k∞) is not topologically simply connected, it is conjec-
tured that C(G) is either infinite or trivial.

Remark 2 The theorem is essentially due to Deligne ([4]). Deligne makes the assumption
that G(k) is perfect, which is slightly stronger than the congruence subgroup property here.
However the assumptions are at least conjecturally equivalent.
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Proof. By the strong approximation theorem, G(k) is a dense subgroup of G(Af ). We
may therefore identify

G(Af ) = lim
←

G(k)/Γ,

where the limit is taken over the congruence subgroups, or equivalently over the arithmetic
subgroups. We also define

G̃(Af ) = lim
←

G̃(k)/τ(Γ),

where G̃(k) is the preimage of G(k) in G̃(k∞); Γ ranges over congruence subgroups of Γ0

and τ : Γ0 → G̃(k∞) is the splitting of the extension on Γ0. For the moment we shall
assume that G̃(A(S)) is a group.

The canonical projections G̃(k)/τ(Γ) → G(k)/Γ induce a projection G̃(A(S)) → G(A(S)).
As G̃(A(S)) is a completion of G̃(k) it follows that we have a commutative diagramme:

1 → A → G̃(k∞) → G(k∞) → 1
|| ↑ ↑

1 → A → G̃(k) → G(k) → 1
|| ↓ ↓

1 → A → G̃(Af ) → G(Af ) → 1.

Finally we define

G̃(A) =
(
G̃(k∞)⊕ G̃(Af )

)
/∆,

where ∆ = {(a, a) : a ∈ A}. As (A⊕ A)/∆ ∼= A, we have a central extension:

1 → A → G̃(A) → G(A) → 1.

The restriction of this extension to G(k∞) is our original extension. It remains show that
this extension is metaplectic.

Choose any section s : G(k) → G̃(k) and define t : G(k) →
(
G̃(k)⊕ G̃(k)

)
/∆ by

t(α) = (s(α), s(α))∆. As the extensions are central we have s(α)s(β)s(αβ)−1 ∈ A. Hence
t(α)t(β)t(αβ)−1 ∈ ∆, so t is a homomorphism. This proves the theorem apart from the
assertion that G̃(A(S)) is actually a group. 2

Remark 3 As the above theorem fails for the group SL2/Q, and we have not yet used the

congruence subgroup property, we may deduce that in this case the completion S̃L2(Af ) is
not a group.

6.1 A remark on profinite limits

Suppose G is an abstract group and we have a directed system F of subgroups Γ ⊂ G.
We shall call F normal if for every g ∈ G and every Γ ∈ F the subgroup g−1Γg contains
an element of F. If F is a normal filtration then the profinite limit

Ḡ = lim
←Γ∈F

G/Γ.

is a group (with the group operation continuous and compatible with the canonical map
G → Ḡ).
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To complete the proof of the above theorem we must show that the system of subgroups

F = {τ(Γ) : Γ is a congruence subgroup of Γ0}
is normal in G̃(k). Choose any g̃ ∈ G̃(k) and any congruence subgroup Γ ⊆ Γ0. Let g be
the projection of g̃ in G(k). We define a section τ g : Γg → G̃(k) by τ g(g−1γg) = g̃−1τ(γ)g̃.
Clearly the image of τ g is (τ(Γ))g̃.

The intersection Γ∩Γg is a congruence subgroup. Furthermore on Γ∩Γg we have two
splittings τ and τ g. As our extension is central we easily verify that

τ g(γ) = ϕ(γ)τ(γ), γ ∈ Γ ∩ Γg,

where ϕ : Γ ∩ Γg → A is a homomorphism. Finally let Γ1 = ker ϕ. As A is finite, Γ1

is an arithmetic subgroup of Γ0. Hence, by the congruence subgroup property, Γ1 is a
congruence subgroup. The sections τ and τ g coincide on Γ1. Therefore τ(Γ1) ⊆ τ g(Γg̃) =
τ(Γ)g̃. 2

6.2 The classification of metaplectic extensions.

The above theorem is useful because the mataplectic extensions of absolutely simple, sim-
ply connected groups have been classified. For such a group G one defined the metaplectic
kernel M(G) to be the kernel of the restriction

H2(G(A),C1) → H2(G(k),C1).

This group is conjectured to be isomorphic to the Pontryagin dual of the group of roots
on unity in the base field k. This conjecture is proved in almost all cases (see [13]). Thus
if G(k) is not topologically simply connected then (in almost all cases) the metaplectic
kernel has order 2. As a consequence we obtain the following.

Theorem 3 Let G/R be absolutely simple and simply connected and let G̃ → G be a
connected n-fold cyclic cover. Let Γ be a congruence subgroup of G such that every sub-
group of finite index in Γ is a congruence subgroup. Furthermore, in the case that G is a
special unitary group, assume that the construction of Γ does not involve is a non-abelian
division algebra. If Γ lifts to G̃ then n ≤ 2.

Proof. The special unitary case we have excluded is the only case in which the meta-
plectic kernel is not known. Let σ ∈ H2(G,µn) correspond to the extension. As the
extension is part of a metaplectic extension, we know that the image of σ in H2(G,C1)
has order at most 2. However we have an exact sequence

H1(G,C1) → H2(G,µn) → H2(G,C1).

As G is perfect, it follows that σ has order at most 2 in H2(G,µn). 2

7 Examples

The descriptions of fundamental groups of Sp2n, SU and SO given below are taken from
[16]. The results for Spin(p, q) may be found in [6].
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7.1 Symplectic groups

The symplectic group Sp2r(R) of rank r is absolutely simple and algebraically simply
connected. However it’s topological fundamental group is Z. Hence Sp2r(R) has an n-fold
cover for every n ∈ N. If r = 1 then Sp2r(R) = SL2(R) and it follows from Peterson’s
result that all fractional weights occur. However if r ≥ 2, then we only have forms of
half-integral weight. This was pointed out in [4].

7.2 Spin groups

Let p ≥ q ≥ 1. The spin group Spin(p, q) has rank q. The group Spin(2, 2) is isomorphic
to SL2(R)⊕ SL2(R), so is not absolutely simple.

If p ≥ q ≥ 3 then the topological fundamental group of Spin(p, q) is µ2, so we have
only a double cover of Spin(p, q).

For p ≥ 3 the group Spin(p, 2) is absolutely simple and simply connected. The funda-
mental group is Z, so this group has an n-fold cover for every n. The congruence subgroup
property holds in this case. Hence we have only half-integral weight forms on Spin(p, 2).

7.3 Orthogonal groups

Let p ≥ q ≥ 1. The special orthogonal group SO(p, q) has rank q. The group has two
connected components. Let O+(p, q) denote the connected component of the identity. For
p ≥ 3 the fundamental group of O+(p, 2)o is Z/2⊕ Z.

The group Spin(p, 2) is the double cover of O+(p, 2)o corresponding to the infinite

cyclic subgroup of Z⊕ Z/2 generated by (1, 1). Thus the unique double cover S̃pin(p, 2)
of Spin(p, 2) is the cover of O+(p, 2) corresponding to the subgroup generated by (2, 0).

This shows that S̃pin(p, 2) is a Z/2⊕ Z/2-cover of O+(p, 2) (rather than a Z/4-cover).
If we had a form of fractional weight on O+(p, 2), then we could pull the form back to

a fractional weight on Spin(p, 2). However this form would be a function on S̃pin(p, 2).
Hence the original form would have to be of half-integral weight.

7.4 Congruences between modular forms

We shall end by pointing out a consequence of the above result using Borcherds products.
Recall that a nearly holomorphic modular form for SL2(Z) is a holomorphic function f(q)
on the upper half-plane, which has the usual transformation behaviour, but which may
have a pole at ∞. In other words the Fourier expansion is allowed a finite number of
negative terms:

f(q) =
∑

nÀ−∞
bnq

n.

Let f be a nearly holomorphic form of weight 1 − l/2, normalized so that bn ∈ Z for all
n < 0. Corresponding to such an f there is an automorphic form Ψ on SO(2, l)o given
by a Borcherds product (see [2],[3]). The weight of Ψ is b0/2. As we know that there are
only half-integral weight forms on SO(2, l)o (l ≥ 3), we deduce the following:

Corollary 1 Let f(q) =
∑

bnq
n be a nearly holomorphic form on SL2(Z) negative weight.

If bn ∈ Z for n < 0 then b0 ∈ Z.
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For a nearly holomorphic form f , we shall call the negative part of its Fourier expansion
the principal part. The following result is proved in [3].

Theorem 4 Let b−1, . . . , b−n ∈ C. There is a nearly holomorphic form of (integral)
weight 2 − k and principal part b−1q

−1 + . . . + b−nq
−n if and only if for every weight k

cusp form f(q) =
∑

aiq
i, we have

n∑
i=1

aib−i = 0.

If such a nearly holomorphic form exists then its constant term is given by

b0 =
n∑

i=1

cibi,

where E(q) = 1 +
∑∞

i=1 ciq
i is the weight k Eisenstein series, normalized so as to have

constant term 1.

Using this characterization, we may reformulate our corollary as follows.

Corollary 2 Let E be the (integral) weight k level 1 Eisenstein series normalized so that
the coefficients are integers with no common factor. Then there is a cusp form f such
that the coefficients of f are congruent to those of E modulo the constant term of E.

The above result can be obtained by much more elementary methods; in fact it follows
immediately from the fact that E4 and E6 have constant term 1. One can however obtain
a similar result for the vector-valued, half-integral weight forms studied in [3] in the same
way. Such congruences have been proved for scalar valued forms of weight 3

2
and prime

level in [10]. However as far a I know for general half-integral weight, this is a new result.
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Standard L-functions attached to
vector valued Siegel modular forms

Noritomo Kozima (Tokyo Institute of Techonology)

In this report, we study the analytic continuation of standard L-functions
attached to vector valued Siegel modular forms. In Section 1, we define
vector valued Siegel modular forms and standard L-functions. In Section 2,
we describe the results in special cases and tools to prove. In Section 3, we
describe one of the tools the differential operator generalized by Ibukiyama,
and construct the operator explicity in the cases. In Section 4, we consider
in general case.

§1. Vector valued Siegel modular forms and standard L- functions

Let n be a positive integer. Let

Hn := {Z ∈ M(n,C) | Z = tZ, Im(Z) > 0}
be the Siegel upper half space of degree n, and

Γn := Sp(n,Z) := {γ ∈ GL(2n,Z) | tγJγ = J}

the Siegel modular group of degree n, where J :=

(
0 1n

−1n 0

)
. Let (ρ, Vρ)

be an irreducible rational representation of GL(n,C) on a finite-dimensional
complex vector space Vρ such that the highest weight of ρ is (λ1, λ2, . . . , λn) ∈
Zn with λ1 ≥ λ2 ≥ . . . ≥ λn. Furthermore, we fix an inner product 〈·, ·〉 on
Vρ such that

〈ρ(g)v, w〉 = 〈v, ρ(tg)w〉 for g ∈ GL(n,C), v, w ∈ Vρ.

A C∞-function f : Hn → Vρ is called a Vρ-valued C∞-modular form of
type ρ if it satisfies

ρ(CZ + D) f(Z) = f((AZ + B)(CZ + D)−1) for all

(
A B
C D

)
∈ Γn.
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The space of all such functions is denoted by M∞
ρ . The space of Vρ-valued

Siegel modular forms of type ρ is defined by

Mρ := {f ∈ M∞
ρ | f is holomorphic on Hn (and its cusps)},

and the space of cuspforms by

Sρ :=

{
f ∈ Mρ

∣∣∣ lim
λ→∞

f(

(
Z 0
0 iλ

)
) = 0 for all Z ∈ Hn−1

}
.

Let Hn be the Hecke algebra for (Γn, G
+Sp(n,Q)) over C, where

G+Sp(n,Q) :=
{
g ∈ GL(2n,Q)

∣∣∣ tgJg = rJ with some r > 0
}

.

Then Hn has the following structure

Hn =
⊗′

p:prime
Hn

p , Hn
p ' C[X±1

0 , . . . , X±1
n ]W .

Here Hn
p is the Hecke algebra for (Γn, G

+Sp(n,Q)∩GL(2n,Z[1/p])) over C,
and W is the group generated by w1, . . ., wn and permutations in X1, . . .,
Xn, where w1, . . ., wn are automorphisms on C[X±1

0 , . . . , X±1
n ] defined by

wj(Xi) :=





X0Xj if i = 0,
Xi if i 6= j,
X−1

i if i = j.

Suppose f is an eigenform, i.e., a non-zero common eigenfunction of the
Hecke algebra Hn. For T ∈ Hn, let λ(T ) be the eigenvalue on f of T . Then
for any prime number p, we determine (α0(p), . . . , αn(p)) ∈ (C×)n+1 such
that it gives the homomorphism

λ : Hn
p ' C[X±1

0 , . . . , X±1
n ]W

Xj 7→αj(p)−−−−−→ C,

where Xj 7→ αj(p) means substituting αj(p) into Xj (j = 0, . . ., n). The
numbers α0(p), . . ., αn(p) are called the Satake p-parameters of f . Then we
define the standard L- function attached to f by

L(s, f, St) :=
∏

p:prime



(1− p−s)

n∏

j=1

(1− αj(p)p−s)(1− αj(p)−1p−s)





−1

.

The right-hand side converges absolutely and locally uniformly for Re(s)
sufficiently large.
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§2. Problem and results

Problem. (Langlands [6])

The standard L-function L(s, f, St) has meromorphic continuation to the
whole s-plane and satisfies a functional equation.

More precisely, we expect the following:

Conjecture. (Takayanagi [9])

We put
Λ(s, f, St) := Γρ(s) L(s, f, St),

where

Γρ(s) := ΓR(s + ε)
n∏

j=1

ΓC(s + λj − j)

with

ΓR(s) := π−s/2Γ
(

s

2

)
, ΓC(s) := 2(2π)−sΓ(s),

and

ε :=

{
0 if n even,
1 if n odd.

Then Λ(s, f, St) satisfies the functional equation

Λ(s, f, St) = Λ(1− s, f, St).

We assume that k is a positive even integer and f is a cuspform.
For ρ = detk, this conjecture was solved by Andrianov and Kalinin [1],

and Böcherer [2], and for ρ = detk⊗ syml and ρ = detk⊗ altn−1 was solved
by Takayanagi [9], [10].

Result.

We proved the conjecture in the following two cases:

Case 1. ρ = detk⊗ altl (the highest weight (k + 1, . . . , k + 1︸ ︷︷ ︸
l

, k, . . . , k︸ ︷︷ ︸
n−l

)).

Case 2. the highest weight of ρ is (k + 2, k + 1, . . . , k + 1︸ ︷︷ ︸
l−2

, k, . . . , k︸ ︷︷ ︸
n−l+1

).

To prove the above result, we use the non-holomorphic Eisenstein series
and the differential operator generalized by Ibukiyama [4].
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First, for Z ∈ Hn and a complex number s, we define the Eisenstein series
En

k (Z, s) by

En
k (Z, s) := det(Im(Z))s

∑

(C,D)

det(CZ + D)−k |det(CZ + D)|−2s ,

where (C, D) runs over a complete system of representatives of{(
A B
C D

)
∈ Γn

∣∣∣ C = 0

}
\Γn. Then En

k (Z, s) converges absolutely and lo-

cally uniformly for k +2 Re(s) > n+1. Furthermore the following properties
are known:

(i) The Eisenstein series En
k (Z, s) has meromorphic continuation to the

whole s-plane and satisfies a functional equation. (Langlands [7],
Kalinin [5] and Mizumoto [8])

(ii) Any partial derivative (in the entries of Z and Z) of the Eisenstein
series En

k (Z, s) is slowly increasing (locally uniformly in s). (Mizumoto
[8])

Next, we introduce the differential operator D which sends the Eisenstein
series to the tensor product of two Vρ-valued Siegel modular forms. Using

Garrett decomposition [3], we compute (DE2n
k )

((
Z 0
0 W

)
, s

)
. Taking the

Petersson inner product of f and (DE2n
k )

((
Z 0
0 W

)
, s

)
in the variable W ,

we obtain the integral representation of the standard L-function L(s, f, St),
i.e.,
(
f, (DE2n

k )
((

−Z 0
0 ∗

)
, s

))
= (Γ-factor) ·L(2s + k−n, f, St) · (ι−1(f))(Z).

Using the properties (i) and (ii) of the Eisenstein series, we prove the con-
jecture.

In the above cases, we can construct the differential operator explicitly
and compute the integral representation of the standard L-function.

§3. Differential operator

In this section, we describe the differential operator generalized Ibuki-
yama and in the above cases we construct the operator explicitly.
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Let (ρ′j, Vj) (j = 1, 2) be irreducible rational representations of GL(n,C)
such that ρ′1 is equivalent to ρ′2.

We assume k ≥ n, and put ρj := detk⊗ρ′j.
If a polynomial P

P : M(n, 2k;C)×M(n, 2k;C) → V1 ⊗ V2

satisfies

(C1) P (a1X1, a2X2) = ρ′(a1)⊗ ρ′(a2) P (X1, X2) for all a1, a2 ∈ GL(n,C),

(C2) P (X1g, X2g) = P (X1, X2) for all g ∈ O(2k)

(C3) P (X1, X2) is pluri-harmonic for each X1, X2,

then there exists a polynomial Q

Q : sym(2n,C) → V1 ⊗ V2

such that

P (X1, X2) = Q(

(
X1

X2

)
t
(

X1

X2

)
).

Here O(2k) is the orthogonal group of degree 2k, and sym(2n,C) the set of
all C-valued symmetric matrices of size 2n. And for j = 1, 2, let Xj = (x(j)

µν )
be variables, then P is called pluri- harmonic for Xj if

2k∑

κ=1

∂

∂x
(j)
µκ

∂

∂x
(j)
νκ

P = 0 for all µ, ν.

We define the differential operator D by

D := Q(∂),

where

∂ :=

(
1 + δij

2

∂

∂zij

)

1≤i,j≤2n

, Z = (zij)1≤i,j≤2n ∈ H2n.

Here δij is the Kronecker’s delta. Then

Theorem. (Ibukiyama)

If f is a C∞-modular form (resp. a Siegel modular form) of degree 2n
and type detk, then

(Df)(

(
Z 0
0 W

)
) ∈ M∞

ρ1
⊗M∞

ρ2
(resp. Mρ1 ⊗Mρ2).
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In the above cases, we construct the differential operators explicitly.
First we write (ρ′j, Vj) (j = 1, 2) explicity. We put

W1 := Ce1 ⊕ · · · ⊕Cen, W2 := Cen+1 ⊕ · · · ⊕Ce2n.

Let l be an even integer. Let T l(Wj) be the l-th tensor product of Wj, i.e.,

T l(Wj) := Wj ⊗ · · · ⊗Wj︸ ︷︷ ︸
l

,

and ρ′j the standard representation of GL(n,C) on T l(Wj). Let cj be the
Young symmetrizer of (λ′1, . . . , λ

′
n) on T l(Wj) such that λ′1 ≥ . . . ≥ λ′n and

λ′1 + · · ·+λ′n = l. In Case 1, (λ′1, . . . , λ
′
n) = (1, . . . , 1︸ ︷︷ ︸

l

, 0, . . . , 0︸ ︷︷ ︸
n−l

), and in Case 2,

(λ′1, . . . , λ
′
n) = (2, 1, . . . , 1︸ ︷︷ ︸

l−2

, 0, . . . , 0︸ ︷︷ ︸
n−l+1

). We put Vj := cj(T
l(Wj)). Then (ρ′, Vj)

is an irreducible representation of GL(n,C).

On the other hand, let e
(α)
i (i = 1, . . ., 2n, α = 1, . . ., l) be indeterminants.

And for a symmetric matrix A of size 2n and positive integers α, β (1 ≤
α, β ≤ l), we define

Aαβ := (e
(α)
1 , . . . , e(α)

n , 0, . . . , 0) A t(e
(β)
1 , . . . , e(β)

n , 0, . . . , 0),

Aα
β := (e

(α)
1 , . . . , e(α)

n , 0, . . . , 0) A t(0, . . . , 0, e
(β)
n+1, . . . , e

(β)
2n ),

Aαβ := (0, . . . , 0, e
(α)
n+1, . . . , e

(α)
2n ) A t(0, . . . , 0, e

(β)
n+1, . . . , e

(β)
2n ).

We consider a product

Aα1α2 . . . Aα2ν−1α2νAβ1β2 . . . Aβ2ν−1β2νA
α2ν+1

β2ν+1
. . . Aαl

βl

with {α1, . . . , αl} = {β1, . . . , βl} = {1, . . . , l}. Then this product is

∑
1≤rj≤n

n+1≤sj≤2n

(coefficient) e(1)
r1

. . . e(l)
rl

e(1)
s1

. . . e(l)
sl

.

Now we identify e(1)
r1

. . . e(l)
rl

e(1)
s1

. . . e(l)
sl

with er1 ⊗ . . . ⊗ erl
⊗ es1 ⊗ . . . ⊗ esl

∈
T l(W1)⊗ T l(W2). Then this product belongs to T l(W1)⊗ T l(W2).

We call a linear combination of such products a “homogeneous polyno-
mial” of A. If Q : sym(2n,C) → V1 ⊗ V2 is “homogeneous polynomial”, then

Q(

(
X1

X2

)
t
(

X1

X2

)
) satisfies (C1), (C2). Therefore if Q(

(
X1

X2

)
t
(

X1

X2

)
)

6



is pluri- harmonic for each X1, X2, then we obtain the differential operator
D.

We put S :=

(
X1

X2

)
t
(

X1

X2

)
. Then in Case 1,

c1c2S
1
1 . . . Sl

l

is pluri-harmonic for each X1, X2, and in Case 2,

c1c2(S
1
1 . . . Sl

l −
l

2(2k − (l − 2))
S12S12S

3
3 . . . Sl

l)

is pluri-harmonic for each X1, X2. Therefore we can compute (DE2n
k )

((
Z 0
0 W

)
, s

)
. And we obtain the integral representation of the standard

L-function L(s, f, St).

§4. Supplement

In general case, there exist three difficulties in proving the conjecture,
i.e.,

(i) to construct the differential operator D explicitly,

(ii) to compute (DE2n
k )

((
Z 0
0 W

)
, s

)
,

(iii) to compute the Petersson inner product

(
f, (DE2n

k )
((

−Z 0
0 ∗

)
, s

))
.

However, if we cannot construct the differential operator explicitly, the
following holds:

Proposition 1.

If Q(S) is a “homogeneous polynomial” of S :=

(
X1

X2

)
t
(

X1

X2

)
and

pluri-harmonic for each X1, X2, then there exists a “homogeneous polyno-
mial” P(X, s) of X such that

D(δ−k |δ|−2s εs)|Z=Z0 = (δ−k |δ|−2s εs · P(∆− E, s))|Z=Z0 .
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Here for

(
A B
C D

)
∈ Γ2n and Z ∈ H2n, we put δ := det(CZ + D), ε :=

det(Im(Z)), ∆ := (CZ + D)−1C, and E :=
1

2i
(Im(Z))−1. And we put

Z0 :=

(
Z 0
0 W

)
.

For example, in Case 1, the “homogeneous polynomial” P(X, s) is

P(X, s) = c1c2

l∏

j=1

(
−k − s +

j − 1

2

)
X1

1 . . . X l
l ,

and in Case 2,

P(X, s) = c1c2

l−1∏

j=1

(
−k − s +

j − 1

2

)

×
{(
−k − s− 1

2
+

l

2(2k − (l − 2))

)
X1

1X
2
2 . . . X l

l

+
ls

2(2k − (l − 2))
X12X12X

3
3 . . . X l

l

}
.

Furthermore, using the “homogeneous polynomial” P(X, s), we obtain
the following:

Proposition 2.

Under the assumption of Proposition 1, the Petersson inner product(
f, (DE2n

k )
((

−Z 0
0 ∗

)
, s

))
is equal to

(Γ-factor) · L(2s + k − n, f, St)

× 1

〈v, v〉
〈∫

Sn

〈ρ2(1n − SS) ι(v),P(R, s)〉 det(1n − SS)s−n−1 dS, v
〉

×(ι−1(f))(Z),

where v ∈ V1,

Sn := {S ∈ M(n,C) | S = tS, 1n − SS > 0},

R := − 1

2i

(
S −2i 1n

−2i 1n 22S(1n − SS)−1

)
,

and ι : V1 → V2 is the isomorphism defined by ι(ej) = en+j for j = 1, . . ., n.

8



And if

1

〈v, v〉
〈∫

Sn

〈ρ2(1n − SS) ι(v),P(R, s)〉 det(1n − SS)s−n−1 dS, v
〉

is equal to

(constant)×
n∏

j=1

Γ(2s + k − n + λj − j)

Γ(2s + 2k + 1− 2j)
,

then the conjecture holds.
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Spherical functions on certain spherical homogeneous
spaces over p-adic fields

Yumiko Hironaka∗

§0 Introduction.

Throughout this paper, let k be a p-adic field. Let G be an algebraic group defined over
k, G = G(k), K a special good maximal bounded subgroup of G, X a G-homogeneous
affine algebraic variety defined over k, and X = X(k). We write the action of G on X
by (g, x) 7−→ g ? x. Denote by C∞(K\X) the set of left K-invariant C-valued functions
on X. The Hecke algebra H(G,K) acts on C∞(K\X) from the left by the convolution
product, which we write (f, Ψ) 7−→ f ∗Ψ. A nonzero function Ψ ∈ C∞(K\X) is called a
spherical function if it is an H(G,K)-common eigenfunction, which means, there exists
a C-algebra map λ : H(G,K) −→ C satisfying

f ∗Ψ = λ(f)Ψ for f ∈ H(G,K).

Spherical functions are very interesting objects to investigate. The explicit expressions
of spherical functions on p-adic groups have been given by I.G.Macdonald [Mac]. Later
on, W.Casselman has reformulated them by representation theoretical method ([Cas]),
for which there is an interpretative article written by P.Cartier([Car]). W. Casselman
and J.Shalika carried forward this method to obtain explicit expressions of Whittaker
functions associated to p-adic reductive group ([CasS]).

F.Sato and the author have investigated spherical functions on certain symmetric
spaces; the space of alternating forms ([HS1]) and the spaces of hermitian and symmetric
forms ([H1]-[H3]). In these cases, spherical functions can be regarded as generating
functions of local densities of representations of forms by forms of the same kind. Hence,
as an application, explicit formulas of local densities have been given( [HS1], [HS2], [H3],
[H4]).

In a similar method to [CasS], S. Kato has announced explicit expressions for spherical
functions on certain spherical homogeneous spaces obtained by general linear groups([K2]),
and S.Kato, A.Murase and T.Sugano have obtained explicit expressions for Whittaker-
Shintani functions (spherical functions ) of certain spherical homogeneous spaces ob-
tained by special orthogonal groups([KMS]). For the spaces which they investigated, the

∗ Department of Mathematics, School of Education, Waseda University, Tokyo 169-8050 Japan
e-mail address: hironaka@edu.waseda.ac.jp
A full version of this paper will be appear in elsewhere.
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space of spherical functions attached to each Satake parameter, in other words, corre-
sponding to each eigenvalue, is of dimension 1.

On the other hand, in a similar method to [Cas], the author has given an expression
of spherical functions of certain spherical homogeneous spaces for which the dimension
of the space of spherical functions is not necessarily one ([H3, Proposition 1.9] ), and
applied it to the space of unramified hermitian forms and given the explicit expression of
spherical functions (the dimension is 2n according to the size n of forms). This result has
also used by K.Takano and S.Kato to give an explicit expression of spherical functions
for the space GL(n, k′)/GL(n, k), where k′ is an unramified quadratic extension of k. In
this case the space of spherical functions has dimension one([Tak]).

In the following, we investigate spherical functions on the following space:

G = Sp2 × (Sp1)
2, X = Sp2,

where (Sp1)
2 is imbedded into Sp2 and the action is given by

g̃ ? x = g1x
tg2, for g̃ = (g1, g2) ∈ Sp2 × (Sp1)

2, x ∈ Sp2,

(for the precise definition, see the beginning of Section 1). This X is a spherical homo-
geneous G-space, which means X has a Zariski open orbit for a Borel subgroup B of G,
and X is not a G-symmetric space.

For this case, we will use the same result in [H3] in order to obtain a explicit formula of
spherical functions. The space of spherical functions attached to each Satake parameter
is of dimension 4. In [KMS], SO(n) × SO(n − 1)-space SO(n) is considered, which is
spherical and has an open Borel orbit over k for every n, and the case when n = 5
is isogeneous to the present case. But there seems to have no direct correspondence
between respective explicit formulas of spherical functions. Finally, Sp2n× (Spn)2-space
Sp2n is no longer spherical for n ≥ 2.

We shall give a brief summary of our results. Taking a set {di | 1 ≤ i ≤ 4} of ba-
sic relative B-invariants (cf. (1.5)) and characters χ of k×/(k×)2, we construct typical
spherical functions (cf. (1.6))

ω(x; χ; s) =
∫

K
χ(

4∏

i=1

di(k ? x))
4∏

i=1

|di(k ? x)|si dk, (x ∈ X, s ∈ C4),

where | | is the absolute value on k and dk is the Haar measure on K, and the integral
of the right hand side is absolutely convergent if Re(si) ≥ 0 (1 ≤ i ≤ 4) and analytically
continued to a rational function in qs1 , . . . , qs4 , where q is the residual number of k. We
introduce a new variable z related to s by

z1 = s1 + s2 + s3 + s4 + 2, z2 = s3 + s4 + 1,
z3 = s1 + s3 + 1, z4 = s2 + s3 + 1,

and write ω(x; χ; z) in stead of ω(x; χ; s).
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These ω(x; χ; z) areH(G,K)-common eigenfunctions correspond to the sameC-algebra
homomorphism λz : H(G,K) −→ C, which gives the Satake transform

λz : H(G,K)
∼−→ C[q±z1 , q±z2 , q±z3 , q±z4 ]W (Proposition 1.1),

where W is the Weyl group of G.
Under the assumption that k has odd residual characteristic, our main results are the

following.
[1] To give a complete se of representatives of K-orbits in X (Theorem 1).
[2] For each χ, to give a rational function Fχ(z) for whichFχ(z) · ω(x; χ; z) belongs to

C[q±
z1
2 , q±

z2
2 , q±

z3
2 , q±

z4
2 ] and W -invariant (Theorem 2).

[3] To give an explicit formula for ω(x; χ; z) (Theorem 3).
[4] Employing spherical functions as kernel function, we give an H(G,K)-module iso-

morphism (spherical transform)

S(K\X)
∼−→

(
C[q±z1 , q±z2 , q±z3 , q±z4 ]W ⊕

4∏

i=1

(q
zi
2 + q−

zi
2 ) · C[q±z1 , q±z2 , q±z3 , q±z4 ]W

)2

.

Especially, S(K\X) is a free H(G,K)-module of rank 4, and we give a free basis (The-
orem 4).

[5] Eigenvalues for spherical functions are parametrized by z ∈
(
C/2π

√−1
log q

Z
)4

/W . The

space of spherical functions on X corresponding to z ∈ C4 has dimension 4 and a basis
is given explicitly (Theorem 5).

Professor S. Böcherer has suggested to the author the significance of the investigation
of this space Sp2 from the view point of its relation to the global Gross-Prasad conjecture
for SO(5) (cf. [GR]). The explicit Hecke module structure of the Schwartz space of it
would be helpful for the question whether the vanishing of the period integral on spherical
vectors implies the vanishing of the period integral on the full modular representation
space. The author would like to express her gratitude to him for these useful discussion.

Notation: Throughout this paper, we denote by k a nonarchimedian local field of
characteristic 0. Denote by O the ring of integers in k, p the maximal ideal in O, π a
fixed prime element of k, q the cardinality of O/p and | | the normalized absolute value
on k. For convenience of notation, we understand |0|s = 0 for s ∈ C with Re(s) > 0.
For an algebraic set Y defined over k, we use the corresponding letter Y for the set of
k-rational points Y(k).

As usual, we denote by C, R, Q, Z and N, respectively, the complex number field,
the real number field, the rational number field, and the set of natural numbers.
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§1 The spherical homogeneous space Sp2.

Set

Spn =
{
x ∈ GL2n

∣∣∣ txJnx = Jn

}
, Jn =

(
1n

−1n

)
, (1.1)

and let G = Sp2 × (Sp1)
2 and we embed (Sp1)

2 = (SL2)
2 into Sp2 by

(

(
a b
c d

)
,

(
e f
g h

)
) 7−→




a b
e f

c d
g h


 .

Hereafter, we understand empty places in matrices mean 0-entries.
Take X = Sp2, and consider the action of G on X defined by

g̃ ? x = g1x
tg2, g̃ = (g1, g2) ∈ G, x ∈ X.

We set the Borel subgroup B = B1 × B2 of G by

B1 =




∗ ∗
0 ∗ ∗

0
∗ 0
∗ ∗


 ⊂ Sp2, B2 =




∗ 0
∗ 0

∗ ∗
∗ ∗


 ⊂ (Sp1)

2. (1.2)

Let us write an element b ∈ B as

b = (




∗ ∗
∗

b1 0
c b2







1
1

x1 x2

x2 x3

0
1

1


 ,




1
1

y1

y2

1
1







b3

b4

∗
∗


),

where the entries at marked ∗ are automatically determined. Then the left invariant
Haar measure on B(k) is given by

db =
|b3| |b4|
|b1| |b2|2

· |db1| |db2| |dc| |dx1| |dx2| |dx3| |db3| |db4| |dy1| |dy2| (1.3)

and the modulus character δ ( d(bb′) = δ−1(b′)db) is δ(b) = |b1|−4 |b2|−2 |b3|−2 |b4|−2.
Let W = W1×W2 be the Weyl group of G with respect to the maximal torus consisting

of diagonal matrices in G, which is isomorphic to (C2¤< (C2)
2) × (C2)

2, and we fix
generators {wi | 1 ≤ i ≤ 4} of W by their action on the maximal torus

wi : (b1, b2, b3, b4) 7−→





(b2, b1, b3, b4) if i = 1
(b1, b

−1
2 , b3, b4) if i = 2

(b1, b2, b
−1
3 , b4) if i = 3

(b1, b2, b3, b
−1
4 ) if i = 4.

(1.4)
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A set of basic relative B-invariants and corresponding characters of B is given as

follows. Let x =

(
A B
C D

)
∈ X with 2 by 2 matrices A,B,C and D and we write

A =

(
A1 A2

A3 A4

)
∈ M2 for simplicity. Set

d1(x) = C1, φ1(b) = b1b3

d2(x) = C2, φ2(b) = b1b4

d3(x) = det C = C1C4 − C2C3, φ3(b) = b1b2b3b4

d4(x) = (det C (C−1D))3 = C1D3 − C3D1, φ4(b) = b1b2,

(1.5)

then {di | 1 ≤ i ≤ 4} forms a basis for relative B-invariants and X(B) =< φi | 1 ≤
i ≤ 4 > becomes the group of rational characters of B which corresponds to relative
B-invariants.

Let K = G(O) and H(G,K) be the Hecke algebra of G = G(k) with respect to K.

We consider the following integral. For x ∈ X, s ∈ C4 and a character χ of k×
/

(k×)2,

ω(x; s; χ) =
∫

K
χ(

4∏

i=1

di(k ? x))
4∏

i=1

|di(k ? x)|si dk, (1.6)

where dk is the normalized Haar measure on K. The right hand of (1.6) is absolutely
convergent for Re(si) ≥ 0 (1 ≤ i ≤ 4) and analytically continued to rational functions in
qs1 , . . . , qs4 , which is a H(G,K)-common eigenfunction with respect to the convolution
product (cf. [H3, Remark 1.1, Proposition 1.1 ] ).

It is convenient to introduce a new variable z which is related to s as follows




z1 = s1 + s2 + s3 + s4 + 2

z2 = s3 + s4 + 1

z3 = s1 + s3 + 1

z4 = s2 + s3 + 1,





s1 = 1
2
(z1 − z2 + z3 − z4 − 1)

s2 = 1
2
(z1 − z2 − z3 + z4 − 1)

s3 = 1
2
(−z1 + z2 + z3 + z4 − 1)

s4 = 1
2
(z1 + z2 − z3 − z4 − 1),

(1.7)

and we write also
ω(x; χ; s) = ω(x; χ; z),

if there is no danger of confusion. It is easy to see

4∏

i=1

|di(bg ? x)|si = (ξδ
1
2 )(b) ·

4∏

i=1

|di(g ? x)|si , (b ∈ B, g ∈ G, x ∈ X),

where

ξ(b) = |b1|s1+s2+s3+s4+2 |b2|s3+s4+1 |b3|s1+s3+1 |b4|s2+s3+1 = |b1|z1 |b2|z2 |b3|z3 |b4|z4

5



for b = (



∗ ∗
0

b1

b2


 ,




b3

b4
0

∗ ∗


) ∈ B. The Weyl group W acts on the set

{z1, z2, z3, z4} through its action on the character ξ of B, and we have

wi(z1, z2, z3, z4) =





(z2, z1, z3, z4) for i = 1
(z1,−z2, z3, z4) for i = 2
(z1, z2,−z3, z4) for i = 3
(z1, z2, z3,−z4) for i = 4.

(1.8)

The following statements can be calculated directly, though they are a special case of
Satake transform of algebraic groups [Si] and spherical functions on homogeneous spaces
[H3, Proposition 1.1].

Proposition 1.1 For every f ∈ H(G,K), let

f̃(z) =
∫

G
f(g)ξ−1δ

1
2 (p(g))dg,

where dg is the Haar measure on G normalized by
∫

K
dg = 1 and g = p(g)k ∈ G = BK.

Then, by the map f 7−→ f̃(z), we have

H(G,K) ∼= C[qz1 + q−z1 + qz2 + q−z2 , (qz1 + q−z1)(qz2 + q−z2), qz3 + q−z3 , qz4 + q−z4 ],

and for every f ∈ H(G,K)

(f ∗ ω( ; χ; z))(x) = f̃(z) · ω(x; χ; z) (x ∈ X).

We recall the Bruhat decomposition of X = Sp2

X =
⊔

w∈W1

B1wB1, (1.9)

where W1 is the Weyl group of Sp2 and the symbol t means disjoint union. It is easy
to see that

B1 =
⊔

s,t

Es,tBS, with BS = tB2, Es,t =




1 s
1

st t
t
1
−s 1


 ,

where s, t runs over the algebraic closure k of k, so we get for each w ∈ W1 that

B1wB1 =
⋃

s,t

B1wEs,tBS =
⋃

s,t

B ? wEs,t . (1.10)
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Set

w0 =




1
1

−1
−1


 ( = w2w1w2w1 ∈ W ).

The following Proposition tells us that our space is spherical homogeneous.

Proposition 1.2 The set

Y =

{
x ∈ X

∣∣∣∣∣
4∏

i=1

di(x) 6= 0

}

is an open B-orbit over the algebraic closure of k

Y = B ? x0 with x0 =




1 0
1 1

−1 1
0 −1

−1 1
1 0


 (= w0E−1,−1).

Further, the B-orbit decomposition of the set of k-rational points in Y is given by

Y(k) =
⊔

u∈k×/(k×)2
Yu,

where

Yu =

{
x ∈ X

∣∣∣∣∣
4∏

i=1

di(x) ≡ u mod (k×)2

}
3 w0E−1,−u =




0
1 0
1 1

−1 1
0 −1

−u u
u 0


 .

Remark. By Proposition 1.2 and the injectivity of Poisson integral (cf. [K1]), we see
that ω(x; χ; z) is not identically zero for generic z and linearly independent for characters
χ. Indeed, we will see that the space of spherical functions has dimension 4 and we give
a basis by modifying ω(x; χ; z) for various χ (cf. Theorem 5 in Section 5).

Before closing this section, we confirm the assumption (A2) of [H3]. Denote by H the
stabilizer Gx0 of x0 in G and consider the action of B×H on G by

(b, h) ∗ g = bgh−1 (b, h) ∈ B×H, g ∈ G,

then X ∼= G/H as G-sets. Further, we see that BH = (B×H) ∗ 1 is an open orbit in G
and G is decomposed into a finite number of B×H-orbits.

For g ∈ G, denote by B(g) the image of the stabilizer (B × H)g by the projection
B×H −→ B. Then we have

Lemma 1.3 For each g ∈ G, g /∈ BH, there exists a rational character in X(B) which
is nontrivial on B(g).
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§2 Cartan decomposition

Hereafter we assume that k has odd residual characteristic. In this section we consider
“Cartan decomposition” of X, that is we give a complete set of representatives of K-
orbits in X.

To state the result, we introduce some notation: Let

Λ =
{

(λ1, λ2, λ3, λ4) ∈ Z4 ∪ (
1

2
+ Z)4

∣∣∣∣ λ1 ≥ λ2 ≥ 0, λ3 ≥ 0, λ4 ≥ 0
}

,

Λ∗ = {λ ∈ Λ | λ1 > λ2 > 0, λ3 > 0, λ4 > 0} , (2.1)

and for λ ∈ Λ and ξ ∈ O× set

π(λ;ξ) =




−πλ1+λ3

ξπλ2+λ3 −πλ2+λ4

π−λ1−λ3 ξπ−λ1−λ4

π−λ2−λ4

ξπ−λ1+λ3 π−λ1+λ4

π−λ2+λ3




=




πλ1

πλ2

π−λ1

π−λ2







−1
ξ −1

1 ξ
1

ξ 1
1







π−λ3

π−λ4

πλ3

πλ4




Then our main result is the following.

Theorem 1 Let

R̃ =

{
π(λ;ξ)

∣∣∣∣∣
λ ∈ Λ, ξ ∈ O×/(O×)2

ξ = 1 unless λ ∈ Λ∗

}
,

then R̃ makes a complete set of representatives of K-orbits in X.

In order to prove Theorem 1, we first construct another complete set of representatives.
We introduce some more notation. Set K1 = Sp2(O) and K2 = (Sp1(O))2(⊂ K1), then
it suffices to consider the representatives of double cosets in the space K1\X/K2. Set

T(x,y,z,w) =




x−1 −x−1y−1z
y−1

x
z y





 12

w
w

12




=




x−1 −x−1y−1z
y−1

−x−1y−1zw x−1w
y−1w

x
z y




and for a, b, c, d ∈ Z and ε ∈ O×, set

A(a,b) = T(πa,πb,0,0), B(a,b,c) = T(πa,πb,πc,0),

C(a,b,d) = T(πa,πb,0,πd), D(a,b,c,d;ε) = T(πa,πb,επc,πd).
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Proposition 2.1 The set R =
4⊔

i=1

Ri is a complete set of representatives of K\X, where

R1 =
{
A(a,b)

∣∣∣ a ≥ 0, b ≥ 0
}

, R2 =
{
B(a,b,c)

∣∣∣ a > c ≥ 0, b ≥ 0
}

,

R3 =

{
C(a,b,d)

∣∣∣∣∣
a > 0, b > 0, a + b > d ≥ 0
a ≥ b if d = 0

}
,

R4 =

{
D(a,b,c,d;ε)

∣∣∣∣∣
a > c, b + c > d, b + d > c, c + d > b

ε ∈ O×
/

(O×)2

}
.

Remark 2.1. (1) One proves that every K-orbit has a representative in the set R by
Lemmas 2.2 and 2.3. It is possible but tedious to show directly that there occurs no
K-equivalence within R, so we take another way.

We will see (in Corollary 5.3) that spherical functions ω(x, χ, z) take different values
at each element of R, by using their explicit formulas. Since spherical functions are
K-invariant function, it means that each element in R belongs to the different K-orbit
in X, and we see that R is a complete set of representatives of K-orbit of X. Thus we
establish Proposition 2.1.

(2) The set R4 corresponds bijectively to the set

R̃∗ =
{
π(λ;ξ)

∣∣∣ λ ∈ Λ∗, ξ ∈ O×/(O×)2
}

. (2.2)

(3) In a direct calculation, the assumption on the residual characteristic is needed
only for the proof that there occurs no K-equivalence within R4. For the even residual
characteristic case, we have to choose a suitable subset within R4 (or within R̃∗).

Lemma 2.2 Set R′ = R1 ∪R2 ∪R′
3 ∪R′

4 with

R′
3 =

{
C(a,b,d)

∣∣∣ a ≥ 0, b ≥ 0, d ≥ 0
}

,

R′
4 =

{
D(a,b,c,d;ε)

∣∣∣ a > c ≥ 0, b ≥ 0, d ≥ 0, ε ∈ O×/
(O×)2

}
.

Then every K-orbit in X has a representative in R′.

Lemma 2.3 Because of the following relations, one can replace R′
3 and R′

4 by R3 and
R4, respectively.

C(a,b,d) ∼K A(a,b) if d ≥ a + b. (2.3)

C(a,0,d) ∼K B(a,0,d). (2.4)

C(0,b,d) ∼K B(b−d,d,0) if b ≥ d. (2.5)

C(a,b,0) ∼K C(b,a,0). (2.6)

D(a,b,c,d;ε) ∼K B(a,b,d) if d ≥ b + c. (2.7)

D(a,b,c,d;ε) ∼K C(c,a+b−c,d) if b ≥ c + d. (2.8)

D(a,b,c,d;ε) ∼K C(a,b,d) if c ≥ b + d. (2.9)
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Now we make each element of R correspond systematically to an element in R̃. Set

D̃(a,b,c,d;x) =

(
0 −12

12 0

)
·D(a,b,c,d;ε) =




0
−πa 0
−επc −πb

π−a −επ−a−b+c

0 π−b

−επ−a−b+c+d π−a+d

π−b+d 0


 ,

then
π(λ;ξ) = D̃(a,b,c,d;ε)

for

a = λ1 + λ3, b = λ2 + λ4, c = λ2 + λ3, d = λ3 + λ4,

λ1 =
2a + b− c− d

2
, λ2 =

b + c− d

2
, λ3 =

−b + c + d

2
, λ4 =

b− c + d

2
,

ε = −ξ.

Then R corresponds bijectively to R̃, in particular R4 corresponds to R̃∗.

§3 Functional equations and rationality of spherical

functions

The functional equations for ω(x; z; χ) and ω(x; z; wi(χ)) for wi ∈ W, 1 ≤ i ≤ 4 can
be obtained by taking suitable parabolic subgroup Pi containing B and prehomogeneous
space (Pi × GL1,X × M2,1), for the details see [H5, §3]. Then we have the following
theorem, which gives us some information on the location of poles and zeros of spherical
functions.

Theorem 2 For each character χ of k×/(k×)2, set

Fχ(z) = Gχ(z)
/

G(z),

where

G(z) = (1− q−z1+z2−1)(1− q−z1−z2−1)
4∏

i=1

(1− q−zi−1),

Gχ(z) =





{(+−−−)(−+ +−)(−+−+)(−+−−)(−−++)(−−+−)
× (−−−+)(−−−−)}ε if χ(O×) = 1 and χ(π) = ε

q−
3z1+z2+z3+z4

2 if χ(O×) 6= 1,

and
(ε1ε2ε3ε4)ε = 1− εq

1
2
(ε1z1+ε2z2+ε3z3+ε4z4−1) (εi = +,−, ε = 1,−1).

Then Fχ(z) · ω(x; z; χ) belongs to C[q±
z1
2 , q±

z2
2 , q±

z3
2 , q±

z4
2 ] and is invariant under the

action of the Weyl group W of G.
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§4 Explicit expressions of spherical functions

In this section we give explicit expressions of spherical functions ω(x; χ; z) for each ele-
ment in R̃ following the method of [H3, §1]. Since spherical functions are K-invariant,
it is enough to give such formulas for the representatives of K\X. In Section 2, we have
given a set R̃ of representatives of K\X and left the proof that there is no K-equivalence
within R̃, which will be proved through the explicit formula ω(x; χ; z) in Corollary 5.5.

Set

P(x; χ; z) =
∫

U
χ(

4∏

i=1

di(u ? x))
4∏

i=1

|di(u ? x)|si du, (4.1)

where the variable z ∈ C4 is related to s ∈ C4 by (1.7), U is the Iwahori subgroup of G

compatible with B and du is the Haar measure on U normalized by
∫

U
du = 1. The right

hand side of (4.1) is absolutely convergent for Re(si) ≥ 0 (1 ≤ i ≤ 4) and analytically
continued to a rational function in qs1 , . . . , qs4 .

Applying [H3, Proposition 1.9] to our case, we have the following.

Proposition 4.1 Let G(z) and Gχ(z) be as in Theorem 2, and set

H(z) = (1− q−z1+z2)(1− q−z1−z2) ·
4∏

i=1

(1− q−zi),

where the variable z ∈ C4 is related to s ∈ C4 by (1.7). Then we have

ω(x; χ; z) =
1

(1 + q−1)4(1 + q−2)
· G(z)

Gχ(z)
· ∑

σ∈W

σ

(
Gχ(z)

H(z)
· P(x; χ; z)

)
.

We set
R̃+ =

{
π(λ;ξ)

∣∣∣ λ ∈ Λ, ξ ∈ O×/(O×)2
}

,

and calculate P(x; χ; z) for x ∈ R̃+.

Proposition 4.2 For π(λ;ξ) ∈ R̃+, we have

P(π(λ;ξ); χ; z) = χ(ξ)χ(π)2λ1q−‖λ‖−λ1 · q<λ,z>,

where ‖λ‖ =
∑4

i=1 λi and < λ, z >=
∑4

i=1 λizi.

The following Proposition is an easy consequence of Propositions 4.1 and 4.2.

Proposition 4.3 Let χ be nontrivial on O× and x ∈ X be K-equivalent to some element
in R̃ \R̃∗. Then ω(x; χ; z) = 0.
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For an element σ of the Weyl group W , we set ε(σ) = 1 (resp. −1) if σ is expressed
by a product of even (resp. odd) numbers of {w1, w2, w3, w4}.

By Proposions 4.1, 4.2 and 4.3, we obtain our main results on explicit expressions of
spherical functions.

Theorem 3 For each λ ∈ Λ, ξ ∈ O× and character χ of k×
/

(k×)2, set

cλ,ξ,χ(z) =
χ(ξ)χ(π)2λ1q−‖λ‖−λ1

(1 + q−1)4(1 + q−2)
· G(z)

Gχ(z)
· 1

H0(z)
,

where G(z)
/

Gχ(z) = Fχ(z)−1 is given in Theorem 2 and

H0(z) = (qz1 − qz2)(1− q−z1−z2) ·
4∏

i=1

(q
zi
2 − q

−zi
2 )

(
= q

3z1+z2+z3+z4
2 ·H(z)

)
;

so if χ is nontrivial on O×, G(z)
/

Gχ(z)H0(z) coincides with the c-function G(z)
/

H(z)
of G. Then the explicit formulas of spherical functions are given in the following.

(i) If χ is trivial on O×, we have

ω(π(λ,ξ); χ; z) = cλ,1,χ(z) · ∑

σ∈W

ε(σ) · σ
(
Gχ(z) · q<λ̃,z>

)
,

where λ̃ = (λ1 + 3
2
, λ2 + 1

2
, λ3 + 1

2
, λ4 + 1

2
)(∈ Λ∗).

(ii) Let χ be nontrivial on O×. Then ω(π(λ;ξ); χ; z) = 0 unless λ ∈ Λ∗, and if λ ∈ Λ∗,
we have

ω(π(λ;ξ); χ; z)

= cλ,ξ,χ(z) ·
((

qλ1z1 − q−λ1z1

) (
qλ2z2 − q−λ2z2

)
−

(
qλ2z1 − q−λ2z1

) (
qλ1z2 − q−λ1z2

))

× ∏

i=3,4

(
qλizi − q−λizi

)
.

§5 Spherical Fourier transform

Let S(K\X) be set of K-invariant Schwartz-Bruhat functions on X:

S(K\X) = {ϕ ∈ C∞(K\X) | compactly supported} ,

and we introduce the spherical transform on S(K\X) in the following. Set

Ψ1(x; z) = F1(z) · ω(x; 1; z), Ψ2(x; z) = Fχ∗(z) · ω(x; χ∗; z),
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where 1 is the trivial character and χ∗ is the character for which χ∗(π) = 1 and χ∗(ε) =(
ε
p

)
for ε ∈ O×, and Fχ(z) is the function defined in Theorem 2. By Theorem 2, we

know that Ψi(x; z), i = 1, 2 belong to

C[q±
z1
2 , q±

z2
2 , q±

z3
2 , q±

z4
2 ]W (= C0, say).

On the other hand, as we saw in Proposition 1.1, H(G,K) is isomorphic to C0 by Satake
isomorphism.

Now we define the spherical Fourier transform on S(K\X) for i = 1, 2

Fi : S(K\X) −→ C[q±
z1
2 , q±

z2
2 , q±

z3
2 , q±

z4
2 ]W (= C0, say)

ϕ 7−→ Fi(ϕ)(z)

by

Fi(ϕ)(z) =
∫

X
ϕ(x) ·Ψi(x; z)dx,

where dx is the normalized G-invariant measure on X. Since Fi satisfies for every
f ∈ H(G,K)

Fi(f ∗ ϕ)(z) =
˜̌
f (z) · Fi(ϕ)(z), f̌(g) = f(g−1),

Fi is an H(G,K)-module homomorphism, i = 1, 2.

Let us recall the sets Λ and Λ∗ defined in the beginning of Section 2. Set Λ0 = Λ \Λ∗.
For λ ∈ Λ, denote by ϕλ the characteristic function of the K-orbit containing π(λ;1) and
by ϕλ∗ the characteristic function of the K-orbit containing π(λ;ξ) for ξ ∈ O×, ξ /∈ (O×)2.
Then S(K\X) is generated by {ϕλ | λ ∈ Λ0} ∪ {ϕλ, ϕλ∗ | λ ∈ Λ∗}.

For simplicity, we set

η(z) =
4∏

i=1

(
q

zi
2 + q−

zi
2

)
, C = C0 ⊕ η(z) · C0,

here we regard C0 and C as free H(G,K)-modules through the Satake transform.

Our main theorem is the following.

Theorem 4 Set

S1 = < ϕλ | λ ∈ Λ0 >C + < ϕλ + ϕλ∗ | λ ∈ Λ∗ >C,

S2 = < ϕλ − ϕλ∗ | λ ∈ Λ∗ >C .

Then S(K\X) = S1 ⊕ S2 as an H(G,K)-module, and Fj induces the H(G,K)-module
isomorphism Sj

∼= C for j = 1, 2.
In particular, S(K\X) is a free H(G,K)-module of rank 4 with basis

{
ϕλ

∣∣∣∣ λ = (0, 0, 0, 0), (
1

2
,
1

2
,
1

2
,
1

2
)
}
∪

{
ϕλ − ϕλ∗

∣∣∣∣ λ = (
3

2
,
1

2
,
1

2
,
1

2
), (2, 1, 1, 1)

}
.
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It is clear that KerF1 ⊃ S2, KerF2 ⊃ S1 and F2 is injective on S2. Theorem 5 follows
from Propositions 5.1 and 5.2 below.

Proposition 5.1 For λ ∈ Λ∗, set

m̃λ(z) =
∑

σ∈W

σ

(
q<λ,z>

H0(z)

)
.

Then

F2(ϕλ − ϕλ∗) ≡ m̃λ(z) (modC×),

m̃λ(z) ∈ C0 (resp. η(z)C0) if λ1 ∈ 1
2

+ Z (resp. λ1 ∈ Z), and

m̃λ(z) =





1 if λ = (3
2
, 1

2
, 1

2
, 1

2
)

η(z) if λ = (2, 1, 1, 1).

In Particular, F2 gives an H(G,K)-module isomorphism S2
∼= C.

Proposition 5.2 For λ ∈ Λ, set

Kλ(z) =
∑

σ∈W

σ

(
G1(z) · q<λ,z>

H0(z)

)
.

Then,

F1(ϕλ) = F1(ϕλ∗) ≡ K
λ̃
(z) (modC×), λ̃ = (λ1 +

3

2
, λ2 +

1

2
, λ3 +

1

2
, λ4 +

1

2
),

and λ ∈ Λ∗, Kλ(z) can be expressed as

Kλ(z) = cλm̃λ(z) +
∑

µ∈Λ∗
λÂµ

cµ m̃µ(z), with some cλ ∈ C×, cµ ∈ C,

where λ Â µ means that ‖λ‖ > ‖µ‖ or ‖λ‖ = ‖µ‖ , λ1 > µ1. In Particular, F1 gives an
H(G,K)-module isomorphism S1

∼= C. In particular

Since ω(x; χ∗; z) vanishes on R̃0 = R̃\R̃∗ and takes a different value at each element
of R̃∗ and ω(x; 1; z) takes a different value at each element of R̃0, we conclude the proof
of Cartan decomposition given in Section 2.

Corollary 5.3 The set R̃, as well as R, is a complete set of representatives of K-orbit
in X.

Finally, we give a parametrization of spherical functions. The characters on k×/(k×)2

are given by {1, χ∗, χπ, χ∗π}, where χπ(π) = −1, χπ(O×) = 1 and χ∗π = χ∗χπ. We set
for each χ

Ψχ(x; z) = Fχ(z) · ω(x; χ; z),

so Ψχ∗(x; z) = Ψ2(x; z) in the previous notation.
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Theorem 5 Eigenvalues for spherical functions are parametrized by z ∈
(
C/2π

√−1
log q

Z
)4

/W

through the Satake transform H(G,K) −→ C, f 7−→ f̃(z) (cf. Proposition 1.1). The
set
{

Ψ1(x; z) + Ψχπ(x; z), Ψχ∗(x; z)−Ψχ∗π(x; z),
Ψ1(x; z)−Ψχπ(x; z)

η(z)
,

Ψχ∗(x; z) + Ψχ∗π(x; z)

η(z)

}

forms a basis of the space of spherical functions on X corresponding to z ∈ C4.
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New vectors for GSp(4): a conjecture and
some evidence

Brooks Roberts ∗

University of Idaho
Ralf Schmidt

Universität des Saarlandes

In this paper we present and state evidence for a conjecture on the existence
and properties of new vectors for generic irreducible admissible representa-
tions of GSp(4, F ) with trivial central character for F a nonarchimedean
field of characteristic zero. To summarize the conjecture, let O be the ring
of integers of F and let P be the prime ideal of O. We define, by a simple
formula, a sequence of compact open subgroups K(Pn) of GSp(4, F ) indexed
by nonnegative integers n. The first group K(O) is GSp(4,O). The second
group K(P) is the other maximal compact subgroup of GSp(4, F ), up to
conjugacy, and is called the paramodular group. Automorphic forms for the
global version of this group have been considered by T. Ibukiyama and his
collaborators in a number of papers dealing with a genus two version of Eich-
ler’s correspondence and old and new forms. In general, we refer to K(Pn)
as the paramodular group of level Pn. Given a generic irreducible admissi-
ble representation π of GSp(4, F ) with trivial central character, we consider
the space of vectors fixed by each K(Pn). The conjecture for π makes three
assertions. First, for some nonnegative n, the space of K(Pn) fixed vectors is
nonzero; second, if Nπ is the smallest such n, then the space of K(PNπ) fixed
vectors is one dimensional; and third, this one dimensional space contains a
vector Wπ whose Novodvorsky zeta integral gives the Novodvorsky L-factor
of the representation:

Z(s,Wπ) = L(s, π).

We call Wπ the new vector of π. Zeta integrals depend on a choice of Whit-
taker model, which depends on a choice of nondegenerate character: we make
a choice independent of π.

Evidently, the conjecture is similar to the theory of new vectors for generic
irreducible admissible representations of GL(2, F ) with trivial central charac-
ter. Just as for GL(2, F ), there is a simple relation between new vectors and

∗Partially supported by a NSA Young Investigators Grant
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ε-factors. Assume the conjecture holds for π. There exists an Atkin-Lehner
type element uNπ in GSp(4, F ) which normalizes K(PNπ) and whose square
is in the center. Thus, π(uNπ)Wπ = επWπ for some επ = ±1. Moreover, it is
easy to show that

ε(s, π) = επq
−Nπ(s−1/2)

so that ε(1/2, π) = επ. Here, q is the order of O/P , and we use the mentioned
nondegenerate character in the definition of the ε-factor.

We state three pieces of evidence for the conjecture. First, the first two
parts of the conjecture are true for all π containing a nonzero vector fixed by
the Iwahori subgroup. As evidence for the third part of the conjecture for
such π one also has

ε(s, ϕπ, ψ, dxψ) = επq
−Nπ(s−1/2)

where ϕπ is the L-parameter assigned to π by [KL]. Second, the first two
parts of the conjecture are true for many π induced from the Siegel or Klin-
gen parabolic subgroups, and for these π, the level PNπ is as expected. Fi-
nally, in proving the analogue for GSp(4) of the dihedral case of the global
Langlands-Tunnell theorem, [R1] defined certain local L-packets Π(τ) and
L-parameters ϕ(τ) for GSp(4, F ) which depend on a generic tempered irre-
ducible admissible representation τ of GL(2, E) with trivial central character,
where E is either a quadratic extension of F , or F × F . The work [R1] gave
strong global evidence that Π(τ) is the L-packet of ϕ(τ). Assuming q is
odd, we show that if E/F is unramified or E = F × F , then the generic
element π of Π(τ) contains a nonzero vector W fixed by K(PN), where N
is defined by ε(s, ϕ(τ), ψ, dxψ) = cq−N(s−1/2), and c is a constant. Moreover,
Z(s,W ) = L(s, π).

To end this introduction, we emphasis that our conjecture is for generic
irreducible admissible representations of GSp(4, F ) with trivial central char-
acter. In gathering evidence we have encountered various related cases and
questions, as mentioned below. But, for example, currently we are not in a
position to state a conjecture for the case of nontrivial central character.

Notation

In this paper GSp(4, F ) is the group of g in GL(4, F ) such that

tg

[
0 12

−12 0

]
g = λ(g)

[
0 12

−12 0

]

for some λ(g) in F×. Fix a continuous character ψ of F with conductor O
and a generator $ for P . Let | · | be the valuation on F such that if µ is
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a Haar measure on F , then µ(xA) = |x|µ(A) for x in F and measurable
sets A in F . If π is an irreducible admissible representation of a group of
td-type [Car], let ωπ denote the central character of π. Let LF = WF ×
SU(2,R) be the Langlands group of F , where WF is the Weil group of F .
A GSp(4) L-parameter over F is a continuous homomorphism ϕ : LF →
GSp(4,C) such that ϕ(x) is semisimple for all x ∈ WF and ϕ|1×SU(2,R) is a
smooth representation. We denote the ε-factor of ϕ with respect to ψ and
the Haar measure dxψ self-dual with respect to ψ by ε(s, ϕ, ψ, dxψ). One has
ε(s, ϕ, ψ, dxψ) = cq−N(s−1/2) for some nonnegative integer N and constant c.

1 The conjecture

To state the conjecture we need some definitions and results. First, we recall
the fundamentals of the theory of Novodvorsky zeta integrals for GSp(4, F ),
as proven in [T-B]. Fix c1, c2 ∈ F×. Let π be an irreducible admissible
representation of GSp(4, F ). We say that π is generic if HomU(π, ψc1,c2) 6= 0,
where U is the group of all elements

u =




1 u1 0 0
0 1 0 0
0 0 1 0
0 0 −u1 1







1 0 ∗ ∗
0 1 ∗ u2

0 0 1 0
0 0 0 1


 ,

and ψc1,c2(u) = ψ(c1u1 + c2u2). Whether π is generic does not depend on the
choice of c1 and c2. Assume π is generic. Consider the space of functions
W : GSp(4, F ) → C such that W (ug) = ψc1,c2(u)W (g) for u in U and g
in GSp(4, F ), and W is right invariant under some compact open subgroup
of GSp(4, F ). There exists a unique GSp(4, F ) subspace W (π, ψc1,c2) of this
space which is isomorphic to π [Rod]. This subspace is called the Whittaker
model of π with respect to ψc1,c2 . Fix Haar measures on F× and F . Let
µ : F× → C× be a continuous quasi-character. If W is in W (π, ψc1,c2), the
Novodvorsky zeta integral associated to W and µ is

Z(s,W, µ) =

∫

F×

∫

F

W (




y 0 0 0
0 y 0 0
0 0 1 0
0 x 0 1


)µ(y)|y|s−3/2 dx d×y.

The Z(s,W, µ) for W in W (π, ψc1,c2) converge absolutely in some right half
plane and are elements of C(q−s). There exists γ(s, π, µ, ψc1,c2) in C(q−s)
such that the following functional equation

Z(1− s, π(

[
0 J
−J 0

]
)W, (ωπµ)−1) = γ(s, π, µ, ψc1,c2)Z(s,W, µ)
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holds for W in W (π, ψc1,c2). This γ-factor does not depend on the choices of
Haar measure on F and F×. Here,

J =

[
0 1
−1 0

]
.

The C[qs, q−s] module generated by the Z(s,W, µ) for W in W (π, ψc1,c2) is a
fractional ideal of C(q−s) with generator of the form 1/Q(q−s) with Q(0) = 1,
where Q(X) is in C[X]. We define

L(s, π, µ) = 1/Q(q−s).

This L-factor does not depend on the choices of Haar measures or c1 and c2.
We also define

ε(s, π, µ, ψc1,c2) = γ(s, π, µ, ψc1,c2)
L(s, π, µ)

L(1− s, π, (ωπµ)−1)
.

The function ε(s, π, µ, ψc1,c2) is a nonzero monomial in q−s (e.g., see the
top of p. 65 of [J]). The work [R2] verifies that L(s, π, µ) = L(s, ϕ, µ),
and ε(s, π, µ, ψ1,−1) = ε(s, ϕ, µ, ψ, dxψ) for the generic element π in Π(χ, τ)
and ϕ = ϕ(χ, τ), where Π(χ, τ) and ϕ(χ, τ) are the local L-packets and
parameters defined in [R1]. We take c1 = 1 and c2 = −1 in the remainder of
this paper, and write W (π) = W (π, ψ1,−1), γ(s, π, µ) = γ(s, π, µ, ψ1,−1) and
ε(s, π, µ) = ε(s, π, µ, ψ1,−1). If µ = 1 we drop µ from our notation.

Next, we define the paramodular group of level Pn. This requires that
we first define the Klingen congruence subgroup of level Pn. Let n be a
nonnegative integer. The Klingen congruence subgroup Kl(Pn) of level
Pn is the subgroup of GSp(4, F ) of all elements k such that λ(k) is in O×

and

k ∈




O O O O
Pn O O O
Pn Pn O Pn

Pn O O O


 .

Define the Atkin-Lehner element of level Pn in GSp(4, F ) to be

un =

[
0 J

−$nJ 0

]
.

Evidently, u2
n = $n is in the center of GSp(4, F ). We now define the

paramodular group K(Pn) of level Pn to be the subgroup of GSp(4, F )
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generated by Kl(Pn) and unKl(Pn)u−1
n = u−1

n Kl(Pn)un. Equivalently, K(Pn)
is the subgroup of GSp(4, F ) of all elements k such that λ(k) is in O× and

k ∈




O O P−n O
Pn O O O
Pn Pn O Pn

Pn O O O


 .

Conjecture 1.1 Let π be a generic irreducible admissible representation of
GSp(4, F ) with trivial central character. For each nonnegative integer n, let
π(Pn) be the subspace of π of vectors fixed by K(Pn).

1. For some nonnegative integer n the space π(Pn) is nonzero.

2. If Nπ is the smallest n such that π(Pn) is nonzero, then

dim π(PNπ) = 1.

3. There exists Wπ in π(PNπ) such that

Z(s,Wπ) = L(s, π).

In (3) of the conjecture we use the Whittaker model W (π) for π as defined
above. If the conjecture holds for π, we call PNπ the level of π and Wπ the
new vector of π.

The reader will note that while the conjecture is quite similar to the theory
of new vectors for generic irreducible admissible representations of GL(2, F )
with trivial central character, there is a significant difference: K(Pn) is not
contained in K(Pn+1)! Thus, the theory of old vectors for GSp(4, F ) will
not be strictly analogous to that for GL(2, F ). Nevertheless, we have some
evidence, which we will not discuss here, that a coherent theory of old vectors
for GSp(4, F ) does exist.

2 A formal heuristic

Before stating implications for ε-factors and our evidence, we will give some
formal motivation for the conjecture. As far as we know, there does not exist
a conjectural conceptual theory of new vectors for representations of the F
points of an arbitrary reductive algebraic group defined over F . The situation
seems to be that, given a particular group like GSp(4), a theory of new vectors
would be useful, but one has no reason to believe it exists. Groups for which
new vectors have been considered include GL(n) (see [Cas], [D], [J-PS-S])
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and SL(2) (see [LR]); for GSp(4) see also [S] for the case of square-free level.
In our considerations we mostly have been guided by empirical facts. Still,
for GSp(4) we can offer the following formal motivation.

Suppose one wants to derive the statement for a conjectural simple theory
of new vectors for generic irreducible admissible representations of GSp(4)
with trivial central character, and let π be one such representation. In π one
might consider the space of Klingen vectors of level Pn, i.e., the subspace
πKl(Pn) of vectors fixed by Kl(Pn). Alternatively, one might consider vec-
tors fixed by Γ0(Pn), the Siegel congruence subgroup of level Pn. However,
without going into details, examples show that these vectors will not give
a simple theory. One might hope, then, that Klingen vectors work, so that
if N is the smallest n such that πKl(Pn) is nonzero, then dimπKl(PN) = 1,
and there exists a W in πKl(PN) such that Z(s,W ) = L(s, π). One might
also hope, as a consequence, that ε(s, π) = cq−N(s−1/2) for some constant c.
Examples show, however, for the smallest n such that πKl(Pn) is nonzero one
can have dimπKl(Pn) > 1: being a Klingen vector at the smallest nontriv-
ial level is not enough to give uniqueness. It seems an enlargement of the
Klingen congruence subgroup is required.

How can one arrive at such an enlargement? One might start with a
Klingen vector W of level PN for which Z(s,W ) = L(s, π) and ε(s, π) =
cq−N(s−1/2) and see if W reasonably might be fixed by a natural larger com-
pact open subgroup. Using Z(s,W ) = L(s, π), the functional equation gives

γ(s, π)L(s, π) = Z(1− s, π(

[
0 J
−J 0

]
)W ).

Dividing by L(1− s, π), one obtains the ε-factor:

ε(s, π) = Z(1− s, π(

[
0 J
−J 0

]
)W )/L(1− s, π).

Now ε(s, π) = cq−N(s−1/2); how can one make the right hand side look like
this? A bit of algebra yields

ε(s, π) =
Z(1− s, π(uN)W )

L(1− s, π)
· q−N(s−1/2).

It follows that Z(s, π(uN)W ) is a constant multiple of L(s, π), or equivalently,
Z(s, π(uN)W ) is a constant multiple of Z(s,W ). What condition on W can
guarantee this? It would hold if π(uN)W is a constant multiple of W ; and if
π(uN)W is a constant multiple ofW , then π(uN)W is fixed by Kl(PN). Thus,
one might consider, for nonnegative integers n, vectors W such that W and
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unW are both fixed by Kl(Pn), or equivalently, vectors fixed by K(Pn). Note
that if W is fixed by Kl(Pn) then one has no reason to expect π(un)W to also
be fixed by Kl(Pn), as un does not normalize Kl(Pn). On the other hand, un
does normalize the Borel congruence subgroup B(Pn) = Kl(Pn)∩ Γ0(Pn) of
level Pn, so if W is fixed by Kl(Pn), then at least π(un)W will be fixed by
B(Pn).

3 The connection to ε-factors

As mentioned in the introduction, the new vector and level of a representation
satisfying the conjecture are closely connected to its ε-factor. This is useful
in providing evidence for the conjecture.

Proposition 3.1 Let π be a generic irreducible admissible representation of
GSp(4, F ) with trivial central character. Assume (1) and (2) of the conjecture
for π hold. Then Wπ is an eigenvector for π(uNπ) with eigenvalue επ = ±1:

π(uNπ)Wπ = επWπ.

Assume (3) of the conjecture for π also holds. Then

ε(s, π) = επq
−Nπ(s−1/2),

so that επ = ε(1/2, π).

Proof. Assume (1) and (2) of the conjecture for π hold. A computation
shows uNπ normalizes K(PNπ). This implies that π(uNπ)Wπ is in π(PNπ);
since this space is one dimensional, π(uNπ)Wπ = επWπ for some επ ∈ C×.
As u2

Nπ
= $Nπ , and π has trivial central character, we have π(uNπ)2 = 1, so

that ε2π = 1. Next, assume (3) of the conjecture for π also holds. Applying
the functional equation to Wπ, we obtain

Z(1− s, π(

[
0 J
−J 0

]
)Wπ) = γ(s, π)Z(s,Wπ).

The definitions of the zeta integral and uNπ imply

Z(1− s, π(

[
0 J
−J 0

]
)Wπ) = επq

−Nπ(s−1/2)Z(1− s,Wπ).

Substituting this into the functional equation and using Z(s,Wπ) = L(s, π),
we obtain

επq
−Nπ(s−1/2)L(1− s, π) = γ(s, π)L(s, π),
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so that ε(s, π) = επq
−Nπ(s−1/2). ¤

This proposition can be used to supply evidence for the conjecture. For
example, suppose π is a generic irreducible admissible representation of
GSp(4, F ) with trivial central character, and parts (1) and (2) of the con-
jecture for π are known. To obtain evidence for (3) of the conjecture for
π we may proceed as follows. Suppose that it is believed that a certain
L-parameter ϕ is the L-parameter associated to π via the conjectural local
Langlands correspondence, so that it is believed that ε(s, ϕ, ψ, dxψ) = ε(s, π)
(or even suppose this equality is known). Then, in light of Proposition 3.1,
verifying

ε(1/2, ϕ, ψ, dxψ) = επq
−Nπ(s−1/2)

gives evidence that (3) of the conjecture for π holds.

4 Evidence

We currently have three different pieces of evidence for the conjecture. Our
evidence considers a wide variety of generic irreducible admissible represen-
tations of GSp(4, F ) with trivial central character, and includes all repre-
sentations of lower level and several families of induced and supercuspidal
representations.

To state the first piece of evidence, define the Iwahori subgroup I of
GSp(4, F ) to be the subgroup of all k in GSp(4, F ) with λ(k) in O× and

k ∈




O O O O
P O O O
P P O P
P P O O


 .

Then we have the following theorem. The number επ is defined in Proposition
3.1.

Theorem 4.1 Parts (1) and (2) of the conjecture are true for all generic ir-
reducible admissible representations of GSp(4, F ) with trivial central charac-
ter which contain a nonzero vector fixed by the Iwahori subgroup. Moreover,
suppose π is a generic irreducible admissible representation of GSp(4, F ) with
trivial central character which contains a nonzero vector fixed by the Iwahori
subgroup, and let ϕ be the L-parameter associated to π by [KL]. Then

ε(1/2, ϕ, ψ, dxψ) = επq
−Nπ(s−1/2),

which gives evidence that (3) of the conjecture for π holds, as explained in
section 3.
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In fact, we have computed the spaces of vectors fixed by K(P0), K(P1),
K(P2) and K(P3) in all the, possibly nongeneric, irreducible admissible repre-
sentations of GSp(4, F ) with trivial central character which contain a nonzero
vector fixed by the Iwahori subgroup. This information is displayed in the
table in the next section, which also includes information on how to under-
stand the table. It is interesting to observe that (1) and (2) of the conjecture
and ε(1/2, ϕ, ψ, dxψ) = επq

−Nπ(s−1/2) hold, with one exception, for all irre-
ducible admissible representations of GSp(4, F ) with trivial central character
which contain a nonzero vector fixed by the Iwahori subgroup. This excep-
tion is the representation VIb, which does not admit a nonzero vector fixed
by K(P0), K(P1), K(P2) or K(P3); we would expect a nonzero vector fixed
by K(P2). However, the representations VIa and VIb form an L-packet, and
the conjecture holds for the representation VIa. This suggests that (1) and
(2) of the conjecture and the equality ε(1/2, ϕ, ψ, dxψ) = επq

−Nπ(s−1/2) may
be true for all irreducible admissible representations of GSp(4, F ) with trivial
central character at the level of L-packets.

Our second parcel of evidence concerns certain induced representations.
For the representations considered in the following theorem there is a natu-
rally associated L-parameter ϕ, which should be the L-parameter associated
to π by the conjectural local Langlands conjecture; define the nonnegative
integer N by ε(s, ϕ, ψ, dxψ) = cq−N(s−1/2), where c is a constant. We use the
notation of [ST] for induced representations.

Theorem 4.2 Let τ be a generic irreducible admissible representation of
GL(2, F ). Assume ωτ is unramified.

1. (Siegel parabolic) Let σ be an unramified quasi-character of F× such
that ωτσ

2 = 1. Assume
π = τ o σ

is irreducible. Then π is a generic irreducible admissible representa-
tion of GSp(4, F ) with trivial central character, and (1) and (2) of the
conjecture for π are true. Moreover, Nπ = N .

2. (Klingen parabolic) Assume

π = ω−1
τ o τ

is irreducible. Then π is a generic irreducible admissible representa-
tion of GSp(4, F ) with trivial central character, and (1) and (2) of the
conjecture for π are true. Moreover, Nπ = N .

9



Our final piece of evidence considers a broad distribution of represen-
tations of GSp(4, F ), including supercuspidals. Recall that [R1] proved an
analogue for GSp(4) of the global Langlands-Tunnell theorem. In doing so,
[R1] defined certain local L-packets of representations of GSp(4, F ). Let
Π(τ) = Π(1, τ) be such a local L-packet which happens to occur in a global
situation as in Theorem 8.6 of [R1]. Thus, in particular, τ is a tempered
generic irreducible admissible representation of GL(2, E) with trivial central
character, where E is either a quadratic extension of F , or E = F × F .
The packet Π(τ) has one or two elements, and all elements are tempered
irreducible admissible representations of GSp(4, F ) with trivial central char-
acter. In [R2] it is shown that exactly one element π of Π(τ) is generic. The
paper [R1] also associates to τ an L-parameter ϕ(τ) = ϕ(1, τ), and Theorem
8.6 of [R1] provides evidence that Π(τ) is the L-packet associated to ϕ(τ) by
the conjectural local Langlands correspondence for GSp(4, F ). Again, define
the nonnegative integer N by ε(s, ϕ(τ), ψ, dxψ) = cq−N(s−1/2), where c is a
constant.

Theorem 4.3 Assume q is odd. If E is unramified or E = F × F , then π
contains a vector W fixed by K(PN) such that Z(s,W ) = L(s, π).

In writing Z(s,W ) = L(s, π) we are, as in the conjecture, using the
Whittaker model W (π) defined in section 1.

5 The table

The table gives information relevant to the conjecture about all the irre-
ducible admissible representations of GSp(4, F ) with trivial central character
which contain a nonzero vector fixed by the Iwahori subgroup.

The first column

By [Bo], an irreducible admissible representation of GSp(4, F ) with trivial
central character contains a nonzero vector fixed by I if and only if it is an
irreducible subquotient of a representation of GSp(4, F ) with trivial central
character induced from an unramified quasi-character of the Borel subgroup.
The basic reference on representations of GSp(4, F ) induced from a quasi-
character of the Borel subgroup is section 3 of [ST], and we will use the
notation of that paper. Thus, St is the Steinberg representation, 1 is the
trivial representation, and ν = | · |. The reader will have to consult [ST]
for more details. It is also useful to consult section 4.1 of [T-B]. Let χ1, χ2

and σ be unramified quasi-characters of F× with χ1χ2σ
2 = 1, so that the
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representation χ1 × χ2 o σ of GSp(4, F ) induced from the quasi-character
χ1 ⊗ χ2 ⊗ σ has trivial central character. Of course, χ1 × χ2 o σ may be
reducible. It turns out that by section 3 of [ST], there are six types of
χ1×χ2oσ such that every irreducible admissible representation of GSp(4, F )
with trivial central character which contains a nonzero vector fixed by I is an
irreducible subquotient of a representative of one of these six types, and that
no two representatives of two different types share a common irreducible
subquotient. The first column gives the name of the type. In the table
we choose a representative for a type with the notation as below, and in
subsequent columns we give information about the irreducible subquotients
of that representative. The types are described as follows:

Type I

These are the χ1×χ2oσ where χ1, χ2 and σ are unramified quasi-characters
of F× such that χ1χ2σ

2 = 1 and χ1 × χ2 o σ is irreducible. See Lemma 3.2
of [ST].

Type II

These are the ν1/2χ × ν−1/2χ o σ where χ and σ are unramified quasi-
characters of F× such that χ2σ2 = 1. See Lemmas 3.3 and 3.7 of [ST].

Type III

These are the χ× ν o ν−1/2σ where χ and σ are unramified quasi-characters
of F× such that χσ2 = 1. See Lemmas 3.4 and 3.9 of [ST].

Type IV

These are the ν2 × ν o ν−3/2σ where σ is an unramified quasi-character of
F× such that σ2 = 1. See Lemma 3.5 of [ST].

Type V

These are the νξ0×ξ0oν−1/2σ where ξ0 and σ are unramified quasi-characters
of F× such that ξ0 has order two and σ2 = 1. See Lemma 3.6 of [ST].

Type VI

These are the ν× 1o ν−1/2σ where σ is an unramified quasi-character of F×

such that σ2 = 1. See Lemma 3.8 of [ST].
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The second column

Choose a type as in the first column, and choose a representative χ1 × χ2 o
σ of that type. Then χ1 × χ2 o σ admits a finite number of irreducible
subquotients, and this number depends only on the type of χ1× χ2o σ. We
index the irreducible subquotients by lower case Roman letters. The letter
“a” is reserved for the generic irreducible subquotient.

The third column

This column lists the irreducible subquotients of the representative of the
type of the first column. We use the specific notation as in the discussion of
the first column.

The fourth column

Suppose π is an entry of the third column, and let ϕ be the L-parameter
associated to π by [KL]. We define N by the equation

ε(s, ϕ, ψ, dxψ) = cq−N(s−1/2),

where c is a constant.

The fifth column

Using the notation of the explanation of the fourth column, this is ε = c =
ε(1/2, ϕ, ψ, dxψ).

The sixth, seventh, eighth and ninth columns

The numbers in the columns give the dimensions of the K(Pn) fixed vectors
for the representations in the third column for n = 0, 1, 2 and 3. Note that
to save space we have abbreviated K(Pn) by K(n). The signs under the
numbers indicate how these spaces of K(Pn) fixed vectors split under the
action of the Atkin-Lehner operator π(un). The signs are correct if in the
type II case, where the central character of π is χ2σ2, the character χσ is
trivial, and in the type IV, V, and IV cases, where the central character of π
is σ2, the character σ is trivial. If these assumptions are not met, then the
plus and minus signs must be interchanged to obtain the correct signs.
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representation N ε K(0) K(1) K(2) K(3)

I χ1 × χ2 o σ (irred.) 0 1 1
+

2
+−

4
+++−

6
+++
−−−

a χStGL(2) o σ 1 −σχ($) 0 1
−

2
+−

4
++−−

II
b χ1GL(2) o σ 0 1 1

+

1
+

2
++

2
++

a χo σStGL(2) 2 1 0 0 1
+

2
+−

III
b χo σ1GL(2) 0 1 1

+

2
+−

3
++−

4
++−−

a σStGSp(4) 3 −σ($) 0 0 0 1
−

b L(ν2, ν−1σStGL(2)) 2 1 0 0 1
+

1
+

IV
c L(ν

3
2 StGL(2), ν

− 3
2σ) 1 −σ($) 0 1

−
2

+−
3

+−−

d σ1GSp(4) 0 1 1
+

1
+

1
+

1
+

a δ([ξ0, νξ0], ν
− 1

2σ) 2 −1 0 0 1
−

2
+−

b L(ν
1
2 ξ0StGL(2), ν

− 1
2σ) 1 σ($) 0 1

+

1
+

2
++

V
c L(ν

1
2 ξ0StGL(2), ξ0ν

1
2σ) 1 −σ($) 0 1

−
1
+

2
−−

d L(νξ0, ξ0 o ν−
1
2σ) 0 1 1

+

0 1
+

0

a τ(S, ν−
1
2σ) 2 1 0 0 1

+

2
+−

b τ(T, ν−
1
2σ) 2 1 0 0 0 0

VI
c L(ν

1
2 StGL(2), ν

− 1
2σ) 1 −σ($) 0 1

−
1
−

2
−−

d L(ν,1F× o ν−
1
2σ) 0 1 1

+

1
+

2
++

2
++

Table 1: Representations containing a nonzero vector fixed by the Iwahori
subgroup. Consult section 5 for definitions and comments.
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§1. Some motivation.– The purpose of this lecture is to survey some recent results
related to harmonic analysis on H\G, where (G,H) is a symmetric space over a nonar-
chimedean local field. Harmonic analysis on symmetric spaces over R and C has been
developed extensively by many authors over many years. By contrast, the p-adic theory is
relatively undeveloped and new.

The impetus for much of the research in this field has come from Jacquet’s relative
trace formulas (starting with [15]) which were designed to study those automorphic repre-
sentations of a given adelic group which satisfy a specific period condition. Without going
into details about the global theory and what we mean by a “period condition,” suffice it
to say that the set of automorphic representations associated to a period condition tends
to be an important set for a variety of reasons. For example, it may be the image of an im-
portant (automorphic or theta) lifting. It may be set of representations for which a certain
automorphic L-function has a pole. It may be the set which determines when an induced
representation is irreducible. Or it may be all of these things (and some other things as
well). The original point of developing the local theory was that it described which rep-
resentations could arise as local components of automorphic representations satisfying a
period condition.

At first, most of the results in this area involved a combination of known techniques
from: (a) the theory of harmonic analysis on p-adic groups, (b) global theory, and (c)
the archimedean theory of symmetric spaces. Recently, more innovative techniques have
been developed and we are seeing phenomena which have no archimedean analogues. I
have been especially interested in finding techniques which exploit the special features of
supercuspidal representations. Below I will indicate various local applications which are
similar to the global applications mentioned above.

§2. Basic concepts.– We start by recalling the notion of a “symmetric space over a
nonarchimedean field.” Let F be a finite extension of some p-adic field Qp. For simplicity,
we assume p is odd. Assume G is a connected reductive group over a field F and let
G = G(F ). Assume τ is an automorphism of G of order 2 which is defined over F . Let
Gτ denote the group of fixed points of τ and let (Gτ )◦ be the identity component of Gτ .
Assume H is an F -subgroup of G such that (Gτ )◦ ⊂ H ⊂ Gτ . Now let H = H(F ). Then
the pair (G,H) (or the quotient H\G) is called a symmetric space over F .

The terminology harmonic analysis on H\G may mean different things to different
people. Classically, one might think of the decomposition of L2(H\G) or some other
induced representation IndG

H(1). For our purposes, it is appropriate to take IndG
H(1) to be

the space C∞(H\G) of smooth (that is, locally constant) functions on H\G.
Suppose π : G → Aut(V ) is an irreducible, admissible complex representation of G.

Then we say π isH-distinguished if it occurs in IndG
H(1) in the sense that HomG(π, IndG

H(1))
is nonzero. A specific embedding Λ : π ↪→ IndG

H(1) will be called an H-model for π.
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Frobenius Reciprocity gives a canonical bijection between HomG(π, IndG
H(1)) and the space

HomH(π, 1) of linear forms λ : V → C satisfying λ(π(h)v) = λ(v), for all h ∈ H and v ∈ V .
Such linear forms λ are called H-invariant functionals. The explicit relation between Λ
and λ is Λ(v)(g) = λ(π(g)v), where g ∈ G and v ∈ V .

The relation between H-models and H-invariant functionals is entirely analogous to
the relation between Whittaker models and Whittaker functionals. One can hope for an
analogue of the uniqueness property of Whittaker models in the symmetric space setting.

Definition. We say that (G,H) has the multiplicity one property (or is a Gelfand pair) if
dimHomH(π, 1) ≤ 1 for all irreducible, admissible representations π.

Note that not everyone uses the terminology “Gelfand pair” in this way.

Definition. We say (G,H) is a geometric Gelfand pair if there exists an anti-auto-
morphism σ of G of order two such that HgσH = HgH for all g ∈ G.

The Gelfand/Kazhdan Lemma [6]. If there exists an anti-automorphism σ of G of
order two which fixes all bi-H-invariant distributions on G then (G,H) is a Gelfand pair.

The problem with this result is that, in principle, one needs to study all of the bi-
H-invariant distributions on G in order to satisfy the hypotheses of the lemma. However,
if (G,H) is a geometric Gelfand pair then the hypothese are automatically satisfied and
hence we have the following:

Corollary. If (G,H) is a geometric Gelfand pair then it is a Gelfand pair.

§3. The example (GL(n,E), GL(n, F )).– Assume E is a quadratic extension of F
and use the notation x 7→ x̄ for the nontrivial Galois automorphism of E/F . We consider
the pair (G,H), with G = GL(n,E) and H = GL(n, F ). This is a symmetric space over
F . If g ∈ G let ḡ be the matrix obtained by applying x 7→ x̄ to each entry of g. Then τ is
an automorphism of G of order two and H is the group of fixed points. It is easy to show
Hḡ−1H = HgH, for all g ∈ G. Hence, (G,H) is a geometric Gelfand pair.

The prototype example is the case in which n = 2 which I studied in my Ph.D. thesis
and in some subsequent papers motivated by the work of Jacquet/Lai [15] and
Harder/Langlands/Rapoport [13]. Flicker [2] generalized some of these results for arbi-
trary n. In some cases, he arrived at the appropriate conjectures relating distinguishedness
with base change from unitary groups and the existence of a pole for the Asai L-function
(a.k.a., twisted tensor L-function). For n = 2, there are two base change maps from
U(2, E/F ) to GL(n,E), each characterized by character relations analogous to Shintani’s
character relations which characterize quadratic base change for GL(2). Flicker showed
that the H-distinguished representations of G are precisely the representations which un-
stable lifts from U(2, E/F ). We also note that representations which are base change lifts
from U(2, E/F ) are characterized by the symmetry condition π̃ ' π̄, where π̄(g) = π(ḡ).
The connection with Asai L-functions for general n has recently been firmly established in
unpublished work of Kable [17] and, independently, Anandavardhanan and Tandon [1].
Their work builds on [13] and results developed by Flicker in several papers (starting with
[3]).
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A natural problem, which we will call the “classification problem,” is to explicitly
determine which irreducible, admissible representations of G are H-distinguished. Assume
for a moment longer that n = 2. For the nonsupercuspidal representations, it is fairly easy
to give explicit conditions on the inducing data for these representations which correspond
to distinguishedness. This was probably first done by Clozel in unpublished notes. (See
[2], [4] and [9] for more details.) For supercuspidal representations, a characterization of
distinguishedness in terms of Jacquet-Langlands ε-factors was given in [9]:

Proposition 1 [9]. Let ψ be a nontrivial character of E which is trivial on F . Then an
irreducible, supercuspidal representation π of G = GL(2, E) is H-distinguished if and only
if ε(1/2, π ⊗ χ, ψ) = 1 for all quasicharacters χ of E× which are trivial on F×.

The result in [9] is stated only under the assumption that the central character of
π is trivial, however, this assumption is totally unnecessary. Note that the criterion in
Proposition 1 is closely related to Corollary 2.4 in Saito’s paper [24] on Tunnell’s formula.

According to the work of Howe [14] (in the tame case) and Kutzko (in general), the
supercuspidal representations of G may be realized via compactly supported induction
from compact-mod-center subgroups. To give a satisfactory solution to the classification
problem for distinguished supercuspidal representations requires giving conditions on the
inducing data which corresponds to distinguishedness. This is partially done in the tame
case for general n in [12]. (Note that if p > n then all representations are tame.) Ac-
cording to Howe’s construction, each irreducible tame supercuspidal representation π of
G corresponds to a certain equivalence class of quasicharacters χ : L× → C× where L is
a degree n tamely ramified extension of E. The quasicharacter χ must be E-admissible
in the sense of Kutzko. If π̃ ' π̄, as is the case whenever π is H-distinguished, then it
is a basic fact that there must exist an automorphism σ of order two of L/F such that
σ(x) = x̄ for all x ∈ E and χ−1 = χ ◦ σ. Let L′ be the fixed field of σ. We say that
the pair (L/E, σ) is odd if the ramification degree e(L/E) is odd, L/L′ is unramified and
E/F is ramified. Otherwise, (L/E, σ) is even. Let χ

L/L′ and χ
E/F

be the class field theory
characters associated to L/L′ and E/F , respectively. The following result was proved in
collaboration with Fiona Murnaghan:

Theorem 2 [12]. Assume and χ = χ−1 ◦ σ is an E-admissible character of L× and π is
the associated irreducible, tame supercuspidal representation of G such that π̃ ' π ◦ τ .
If (L/E, σ) is even and χ|L′× = 1 or if (E/F, σ) is odd and χ|L′× = χ

L/L′ then π is H-

distinguished. If π is not H-distinguished and χ′ is a character of E× such that χL|L′× =
χ

L/L′ then π ⊗ χ′ is H-distinguished. Such characters χ′ always exist, for example, one

may take any character of E× whose restriction to F× is χ
E/F

.

A closely related result in the case in which E/F is unramified was obtained by
Dipendra Prasad [22] by totally different methods.

Murnaghan’s initial interest in such problems resulted from her joint work with Repka
[21] on the reduciblity of induced representations of unitary groups, following the approach
of Goldberg [7] and Shahidi [25]. Roughly speaking, G may be embedded as a Levi com-
ponent of a maximal parabolic subgroup of the quasisplit unitary group U(2n,E/F ). If π
is an irreducible, admissible representation of G then there is an associated induced repre-
sentation I(π) of U(2n,E/F ). Then I(π) is irreducible if and only if π is H-distinguished.
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When n = 2, this is evident in the work of Kazuko Konno [18], where all of the non-
supercuspidal representations of the unitary group are computed.

The H-distinguished representations of G also arise in connection with the generic
packet conjecture for unitary groups. A relative trace formula approach to this problem
is developed for n = 3 in [5]. An alternate approach to the generic packet conjecture is
given by Takuya Konno [19].

§4. The example (GL(n), U(n)).– Let E/F be a quadratic extension and G =
GL(n,E), as in the previous example. Now fix η ∈ G which is hermitian in the sense that
tη = η̄. Let H = {h ∈ G : hηth̄ = η} be the associated unitary group. One may expect
that (G,H) is Gelfand pair, since the analogous pair over a finite field is. Unfortunately,
it is not a Gelfand pair, though we will see that it comes very close.

Theorem 3 [11]. If π is an irreducible, tame supercuspidal representation of G then the
dimension of HomH(π, 1) is at most one.

Again, it is natural to ask whether distinguishedness can be characterized in terms of
a simple condition on the inducing data. We have:

Theorem 4 [11]. Let L be a tamely ramified degree n extension of E which is embedded,
via an E-embedding, in the ring M of n-by-n matrices with entries in E. Assume that ι
is the automorphism of M given by applying the nontrivial Galois automorphism of E/F
to the entries of each matrix in M . Let G = M× = GL(n,E) and T = L×. Suppose χ is
an admissible character of T and let π be the irreducible, supercuspidal representation of
G associated to χ by Howe’s construction. Let H be a unitary group in G associated to
some hermitian matrix η ∈ G. Then the following conditions are equivalent:

i. The space HomH(π, 1) is nonzero.
ii. π ∼ π ◦ ι.
iii. π is a base change lift from GL(n, F ).
iv. There exists an automorphism σ of L which agrees with ι on E and satisfies θ = θ ◦σ.
v. θ is trivial U(1, L/L′), where L′ is the fixed field of an automorphism of L of order

two which agrees with ι on E.

The method we use to solve the classification problem for tame supercuspidal repre-
sentations for (GL(n), U(n)) has worked, with some modifications, for other pairs (G,H),
as well. Using Jiu-Kang Yu’s building theoretic extension [26] of Howe’s construction, we
hope to extend our methods to essentially arbitrary pairs (G,H).

The situation for (GL(n), U(n)) motivates the following:

Definition. A pair (G,H) is a supercuspidal Gelfand pair if dimHomH(π, 1) ≤ 1 for all
irreducible supercuspidal representations π of G.

Fiona Murnaghan has recently found some examples of symmetric spaces which are
not supercuspidal Gelfand pairs. Before this, there was a general suspicion that such pairs
might not exist.

§5. The example (GL(n), GL(n/2) × GL(n/2)).– Assume n = 2m is even and let
G = GL(n, F ), where we write the elements of G as block matrices

(
a
c

b
d

)
, with a, b, c, d ∈
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M(m,F ). LetH ∼= GL(m,F )×GL(m,F ) be the subgroup ofG consisting of block diagonal
matrices. Jacquet and Rallis [16] have shown in this case that (G,H) is a Gelfand pair.
However, since (G,H) is not a geometric Gelfand pair, it was necessary for Jacquet and
Rallis to conduct a very difficult 50-page analysis of the bi-H-invariant distributions on G
in order to show that the hypotheses of the Gelfand/Kazhdan Lemma are satisfied.

We have the following block matrix identity:

(
bd−1c− a 0

0 d− ca−1b

)(
a b
c d

)−1 (−a 0
0 d

)
=

(
a b
c d

)

which is only valid when a and d are invertible. This shows that Hg−1H = HgH for
almost all g ∈ G.

Definition. (G,H) is almost a Gelfand pair if there exists an anti-automorphism σ of
order two such that HgσH = HgH, for almost all g ∈ G.

Theorem 5 [10]. Suppose α is an automorphism of order two of G such that HgαH =
Hg−1H for almost all g ∈ G. If π is an irreducible, H-distinguished supercuspidal represen-
tation of G then the contragredient π̃ of π is equivalent to the representation πα(g) = π(gα)
and dimHomH(π, 1) = dimHomH(π̃, 1) = 1.

Corollary. If (G,H) is almost a Gelfand pair then it must be a supercuspidal Gelfand
pair.

So, for (GL(n), GL(n/2)×GL(n/2)), this reduces Jacquet/Rallis’ lengthy argument to
the above matrix identity. Of course, Jacquet/Rallis’ result applies to arbitrary irreducible,
admissible representations and not just supercuspidal representations. We will discuss
some of the ingredients in the proof in the next section.

In the present context, Murnaghan and I [12] have an analogue of Theorem 2 which
gives a weak solution to the classification problem. Since it is rather technical to state, we
will not state it here.

We remark that distinguishedness may be correlated to the existence of a pole of the
exterior square L-function, in much the same way that distinguishedness for
(GL(n,E), GL(n, F )) is related to the existence of a pole of the Asai L-function. There
also is a relation with reducibility of induced representations of classical groups and it
is well known that the self-contragredient representations are expected to be lifts from
classical groups. We refer to [12] for details and references for these things.

§6. Character theory and the proof of Theorem 5.– If V is the space of π
and Ṽ is the space of π̃, then we note that V embeds in the space Ṽ ∗ of linear forms on
Ṽ . In particular, v ∈ V corresponds to the linear form v 7→ 〈v,−〉 on Ṽ . The pairing
〈−,−〉 is the natural pairing on V × Ṽ and it extends in an obvious way to a pairing on
(Ṽ ∗×Ṽ )∪(V ×V ∗). The elements of Ṽ ∗ are sometimes referred to as “generalized vectors”
associated to π. Similarly, V ∗ is the space of generalized vectors for π̃. If f ∈ C∞c (G) and
λ ∈ Ṽ ∗ then we may define π(f)λ ∈ Ṽ ∗ by

〈π(f)λ, ṽ〉 = 〈λ, π̃(f̌)ṽ〉,
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where f̌(g) = f(g−1) and ṽ ∈ Ṽ . In fact, π(f)λ lies in V . Consequently, given generalized
vectors λ ∈ Ṽ ∗ and λ̃ ∈ V ∗ there is an associated distribution

Θλ,λ̃(f) = 〈π(f)λ, λ̃〉.

It is natural to refer to such distributions as generalized matrix coefficients because they
generalize the matrix coefficients fv,ṽ(g) = 〈π(g)v, ṽ〉, where g ∈ G, v ∈ V and ṽ ∈ Ṽ .

For harmonic analysis on H\G, the generalized matrix coefficients of most interest
are the coefficients Θλ,λ̃ for which λ ∈ HomH(π̃, 1) and λ̃ ∈ HomH(π, 1). We call these
spherical matrix coefficients.

If (G,H) is a Gelfand pair and π and π̃ are distinguished then, up to scalar multiples,
there is a unique nonzero spherical matrix coefficient of π. This spherical matrix coefficient
should be viewed as a symmetric space analogue of the character distributuion trπ(f) of
π. One can ask whether these objects enjoy the same analytic properties (such as local
integrability and smoothness on the regular set) established for the character distributions
by Harish-Chandra (using various results of Howe). Indeed this is the case for pairs of the
form (H(E),H(F )), where H is a connected reductive F -group and E/F is quadratic. (See
[8]) However, Rader and Rallis [23] have studied this problem for general pairs (G,H)
and they have shown the precise extent to which Harish-Chandra’s results fail to generlize
nicely.

Let us now give a sketch of the formal argument which underlies the proof of the
theorem. For the sake of convenience and to simplify our exposition, we now assume that
G has trivial center. Assume π is supercuspidal, as in the hypothesis of the theorem.
Note that if fv,ṽ is a matrix coefficient of π then, since π is supercuspidal, we have fv,ṽ ∈
C∞c (G). In addition, f̌v,ṽ = fṽ,v is a matrix coefficient of π̃. So if π is a supercuspidal
H-distinguished representation of G with spherical matrix coefficient Θλ,λ̃ and if fṽ,v is
a matrix coefficient of π̃ then the quantity Θλ,λ̃(fṽ,v) is well defined. A straightforward
generalization of the Schur orthogonality relations shows that

Θλ,λ̃(fṽ,v) = d(π)−1〈λ, ṽ〉〈v, λ̃〉,

where d(π) is the formal degree of π.
Unfortunately, Θλ,λ̃ is not a true matrix coefficient, however, it may be realized, in

a suitable sense, as a limit of matrix coefficients fwn,w̃n . For the moment, in order to
provide a formal heuristic, we will pretend that Θλ,λ̃ coincides with a matrix coefficient
fw,w̃, where w and w̃ are H-fixed vectors. To legitimize this heuristic, one must engage in
various technical manipulations involving approximations of Θλ,λ̃ by matrix coefficients.

Proceeding formally, we now let ϕ = fw,w̃fṽ,v ∈ C∞c (G). Rader and Rallis have
produced a symmetric space analogue of the Weyl integration formula which formally
looks like: ∫

G

ϕ(g) dg =
∑

T

1
wT

∫
|∆(t)|1/2fw,w̃(t)ΦT

fṽ,v
(t) dt,

where: (i) we are summing over classes of “Cartan subsets” T ofH\G, (ii) ∆ is a symmetric
space analogue of the Weyl discriminant, and (iii) ΦT

fṽ,v
(t) is a type of orbital integral of
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fṽ,v(t) which represents an average over the double coset HtH. So we have a fundamental
identity

d(π)−1〈λ, ṽ〉〈v, λ̃〉 =
∑

T

1
wT

∫
|∆(t)|1/2fw,w̃(t)ΦT

fṽ,v
(t) dt.

This identity, though we have obtained it by dubious means, is actually valid if fw,w̃ is
interpreted as the smooth function, given by Rader and Rallis, which represents Θλ,λ̃ on
the (G,H)-regular set.

Now let σ be the anti-involution gσ = (gα)−1, where α is as in the hypothesis of the
theorem. We observe that fṽ,v(gσ) = 〈v, π̃(gσ)ṽ〉 = 〈π(gα)v, ṽ〉 is a matrix coefficient of
πα(g) = π(gα). Since

d(π)−1〈λ, ṽ〉〈v, λ̃〉 =
∫

G

ϕ(g) dg =
∫

G

ϕ(gσ) dg

is nonzero for suitable v and ṽ and since this is an average of a matrix coefficient of π against
a matrix coefficient of πα, Schur orthogonality implies that π must be equivalent to π̃α.
Thus we may choose a nonzero intertwining operator I : V → Ṽ such that I(π(g)v) =
π̃α(g)I(v) for all g ∈ G and v ∈ V . Consequently,

fṽ,v(gσ) = 〈π(gα)v, ṽ〉 = 〈I−1(ṽ), π̃(g)I(v)〉 = fI(v),I−1(ṽ)(g).

It follows that ∫

G

ϕ(gσ) dg = d(π)−1〈λ, I(v)〉〈I−1(ṽ), λ̃〉.

This yields the identity
〈λ, ṽ〉〈v, λ̃〉 = 〈λ, I(v)〉〈I−1(ṽ), λ̃〉.

The theorem follows immediately from this identity, though this may not be obvious.
Indeed, fix ṽ such that 〈λ, ṽ〉 6= 0. Since we know that v may be chosen so that 〈v, λ̃〉 6= 0,
we see that 〈I−1(ṽ), λ̃〉 6= 0. Now letting v vary, we deduce that I(ker λ̃) = kerλ. This
seems to contradict the fact that λ and λ̃ were chosen independently. The only explanation
of this is that both HomH(π, 1) and HomH(π̃, 1) have dimension one and thus we essentially
have no choice when choosing λ and λ̃. This completes the formal argument. The precise
details of the proof of the theorem are in [10].
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ON FUNCTORIALITY OF ZELEVINSKI INVOLUTIONS

HIRAGA, KAORU

Let F be a p-adic field and G a connected reductive algebraic group
defined over F . For simplicity, we assume that G is quasi-split. We
denote by WF the Weil group of F . Let LG = Ĝ o WF be the L-
group of G. We denote by LG the set of standard Levi subgroups
of G. For M ∈ LG, we denote by r(M) the semisimple split F -
rank of M . Let Π(G) be the set of equivalence classes of irreducible
admissible representations of G(F ) and C[Π(G)] the space of virtual
characters of G(F ). The parabolic induction defines a homomorphism
iGM : C[Π(M)] −→ C[Π(G)] and the (normalized) Jacquet functor de-
fines a homomorphism rGM : C[Π(G)] −→ C[Π(M)]. Following S. Kato
[11], we define the Zelevinski involution DG by

DG =
∑

M∈LG
(−1)r(M)iGM ◦ rGM .

Let {M} be the set of associate standard Levi subgroups of M . We
say that π ∈ Π(G) is of type {Mπ} if rGMπ

(π) is a non-zero linear
combination of supercuspidal representations of Mπ(F ). We put rπ =
r(Mπ). For π ∈ Π(G), we define

dG(π) = (−1)rπDG(π).

A.-M. Aubert [4, 5] proved that dG(π) is irreducible. Thus the Zelevin-
ski involution preserves the irreducibility. It seems natural to con-
sider the relation between the Zelevinski involution and the conjec-
tural Langlands functoriality. Nevertheless the Zelevinski involution
does not preserve the L-packets. We consider the A-packets conjec-
tured by J. Arthur [3, Conjecture 6.1]. For a Langlands parameter
φ : WF × SU2(C) −→ LG, we denote by Πφ(G) the corresponding
conjectural L-packet. Although SU2(C) is isomorphic to SL2(C), we
denote the second factor of this group by SU2(C) in order to distin-
guish it from the factor SL2(C) used to define the Arthur parameters
in [3]. Let

ψ : WF × SU2(C)× SL2(C) −→ LG

be an Arthur parameter of G. We put

Sψ = Cent(ψ, Ĝ),

Sψ = Sψ/S
0
ψ · ZΓ

Ĝ
,

where S0
ψ is the identity component of Sψ and ZΓ

Ĝ
is the subgroup of

the center ZĜ of Ĝ consisting of the elements fixed by Γ = Gal(F/F ).
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Let Πψ(G) be the conjectural A-packet of ψ and Πφψ(G) the L-packet
corresponding to ψ. We fix Whittaker data χ of G(F ). This determines
the base point πχ ∈ Πφψ(G) as in [3, §6]. For s ∈ Sψ and π ∈ Πψ(G),
we define 〈s, π|πχ〉 as in [3, Conjecture 6.1]. Then it is conjectured
that 〈 · , π|πχ〉 is an irreducible character of Sψ. We say that a vir-
tual character θ ∈ C[Π(G)] is stable if θ is stable as a distribution
on G(F ). Let C[Π(G)]st be the space of stable virtual characters of
G(F ) and C[Πψ(G)] the subspace of C[Π(G)] generated by Πψ(G). We
put C[Πψ(G)]st = C[Π(G)]st ∩ C[Πψ(G)]. As F is a p-adic field, the
following hypothesis is believed.

Hypothesis 1. The map

π ∈ Πψ(G) −→ 〈 · , π|πχ〉 ∈ Π(Sψ)

is injective, where Π(Sψ) is the set of irreducible characters of Sψ, and

dimC[Πψ(G)]st = 1.

In this article, we assume the Arthur conjecture [3, Conjecture 6.1]
and this hypothesis.

Now we turn to the Zelevinski involution. We identify SU2(C) with
SL2(C) and define d(ψ) by

d(ψ)(w × t× u) = ψ(w × u× t),

w × t× u ∈ WF × SU2(C)× SL2(C).

Then d(ψ) is an Arthur parameter of G constructed from ψ by inter-
changing the role of SU2(C) and SL2(C).

Conjecture 2.
dG(Πψ(G)) = Πd(ψ)(G).

Since Sψ = Sd(ψ), we may identify Sψ with Sd(ψ). We denote the base
point in Πφd(ψ)

(G) by πd,χ.

Conjecture 3. There exists a one-dimensional character µ of Sψ which
satisfies

〈s,dG(π)|πd,χ〉 = µ(s)〈s, π|πχ〉,
for all s ∈ Sψ.

If Sψ = {1}, then Πψ(G) = {πχ} and Πd(ψ)(G) = {πd,χ}. The
following conjecture is a special case of Conjecture 2 .

Conjecture 4. If ψ satisfies Sψ = {1}, then

dG(πχ) = πd,χ.

In general, nevertheless, dG(πχ) may not be equivalent to πd,χ. If
G = SL2 and if ψ corresponds to an induced representation of G which
is a direct sum of two irreducible tempered representations, then dG
interchanges these two representations. Thus dG(πχ) 6= πd,χ.
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In the case that G = GLn, Conjecture 2 follows from the results
of C. Moeglin and J.-L. Waldspurger [20]. Recently, K. Konno and
T. Konno have checked that Conjecture 2 is compatible with their
candidates for the A-packets of G = U(2, 2).

Conjecture 3 implies that the Zelevinski involutions behave well un-
der the endoscopic transfers. Thus it turns our attention to the relation
between the Zelevinski involutions and the endoscopic transfers. Since
iGM(C[Π(M)]st) ⊂ C[Π(G)]st and rGM(C[Π(G)]st) ⊂ C[Π(M)]st, we have

DG(C[Π(G)]st) = C[Π(G)]st.

Let (H, H, s, ξ) be (standard) endoscopic data. For the sake of brevity,
we assume thatH ∼= LH. Unfortunately the existence of the endoscopic
transfer is still hypothetical. In this article, to define the endoscopic
transfer of virtual characters, we assume the fundamental lemma for
groups [1, Hypothesis 3.1] and for Lie algebras [21, Conjecture 1.3].
Let

TranGH : C[Π(H)]st −→ C[Π(G)]

be the endoscopic transfer from H to G. Let A0 (resp. AH,0) be a
maximal split torus of G (resp. H). We put a(G) = dim(A0) and
a(H) = dim(AH,0). Then we have the following theorem.

Theorem 5. Assume the fundamental lemma for groups and for Lie
algebras. Then we have

DG ◦ TranGH = (−1)a(G)−a(H) TranGH ◦DH .

By using this theorem, we can reduce Conjecture 2 to Conjecture 4.
Moreover, we can show that Conjecture 4 implies the following formula;

〈s,dG(π)|πd,χ〉 = 〈s,dG(πχ)|πd,χ〉〈s, π|πχ〉,
where 〈 · ,dG(πχ)|πd,χ〉 is a one-dimensional character of Sψ. This is
Conjecture 3.

To prove Theorem 5, we show some properties of the double cosets
of the Weyl groups (a generalization of [7, Proposition 2.7.7]) and an
analogue of the geometric lemma [6, Lemma 2.12].

We fix an F -splitting (B0, T0, {Xα}) ofG, an F -splitting (BH,0, TH,0, {Yα})
of H, a Γ-splitting (B, T , {Xα̌}) of Ĝ and a Γ-splitting (BH , TH , {Yα̌})
of Ĥ. Then we may identify T̂0 (resp. T̂H,0) with T (resp. TH). We
may assume that A0 ⊂ T0 and that AH,0 ⊂ TH,0. We say that a
subtorus of A0 is standard if it is equal to the split component of the
center of a standard Levi subgroup of G. We assume that s ∈ T ,
ξ(TH) = T and ξ(BH) ⊂ B. Let i0 : TH,0 −→ T0 be the dual homomor-
phism of ξ−1 : T −→ TH . We may assume that i0(AH,0) is a standard
subtorus of A0. We identify AH,0 with the image i0(AH,0) in A0. Put
MH = Cent(AH,0, G).
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We discuss the properties of the double cosets of the Weyl groups
with respect to the endoscopic groups. Let

Ω(G) = Norm(A0, G)/Cent(A0, G),

Ω(H) = Norm(AH,0, H)/Cent(AH,0, H),

be the Weyl groups. We denote the set of roots of (G,A0) (resp.
(H,AH,0)) by R(G) = R(G,A0) (resp. R(H) = R(H,AH,0)). For
ωH ∈ Ω(H), there exists a unique ωG ∈ Ω(G) which satisfies the fol-
lowing three conditions.

1) ωG(AH,0) = AH,0,
2) ωG|AH,0 = ωH ,
3) ωG(R+(MH)) > 0.

By identifying ωH with ωG, we may regard Ω(H) as a subgroup of
Ω(G). For M ∈ LG, we put

Ω(G)M,H = {ω ∈ Ω(G)|ω(AH,0) ⊃ AM},
where AM is the split component of the center of M . We also put

D̃M = {ω ∈ (Ω(G)M,H)−1|ω(R+(M)) > 0}.
Let α ∈ R+(H) and ω ∈ (D̃M)−1. Choose α̃ ∈ R+(G) whose restriction
to AH,0 is α. We say that ωα is positive (and write ωα > 0) if ωα̃ is
contained in R+(G). It is not hard to show that the positivity of ωα
does not depend on the choice of α̃. We define DM,H by

DM,H = {ω ∈ (D̃M)−1|ω(R+(H)) > 0}.
Lemma 6. (1) The set DM,H is a system of representatives for

Ω(M)\Ω(G)M,H/Ω(H).

(2) For ω ∈ DM,H , put

Mω = Cent((ω ◦ i0)−1(AM), H),

then Mω is a standard Levi subgroup of H.

For L ∈ LH , we put

DM,H,L = {ω ∈ DM,H |Mω = L}
and

aM,H,L = ]DM,H,L.

Then we have the following formula, which is a generalization of [7,
Proposition 2.7.7].

Proposition 7.
∑

M∈LG
(−1)r(M)aM,H,L = (−1)a(G)−a(H) · (−1)r(L).
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Let LMω be the L-group of Mω. Then we may regard LMω as a
subgroup of LH. Since G is quasi-split, we may regard Ω(G) as a sub-
group of Ω(G, T0). The choice of the splittings defines an isomorphism

Ω(G, T0) −→ Ω(Ĝ, T ). We choose a representative n̂ω ∈ Norm(T , Ĝ)
of

ω ∈ Ω(G) ⊂ Ω(G, T0) ∼= Ω(Ĝ, T ).

We put sω = Int n̂ω(s) and ξω = Int n̂ω ◦ ξ. Then (LMω,Mω, sω, ξω)
is endoscopic data of M . We choose absolute transfer factors of these
endoscopic data and choose Haar measures of standard Levi subgroups
and tori suitably. The following formula is an analogue of the formula
of Bernstein–Zelevinski [6, Lemma 2.12].

Proposition 8. Assume the fundamental lemma for groups and for
Lie algebras. Then we have

rGM ◦ TranGH =
∑

ω∈DM,H
TranMMω

◦rHMω
.
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[4] Aubert, A.-M. Dualité dans le groupe de Grothendieck de la catégorie des
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CAP automorphic representations of low rank groups ∗

Takuya KONNO †

April 22, 2003

Abstract

In this talk, I report my recent joint work with K. Konno on non-tempered
automorphic representations on low rank groups [KK]. We obtain a fairly complete
classification of such automorphic representations for the quasisplit unitary groups
in four variables.

1 CAP forms

The term CAP in the title is a short hand for the phrase “Cuspidal but Associated to
Parabolic subgroups”. This is the name given by Piatetski-Shapiro [PS83] to those cuspi-
dal automorphic representations which apparently contradict the generalized Ramanujan
conjecture. More precisely, let G be a connected reductive group defined over a number
field F , and G∗ be its quasisplit inner form. We write A = AF for the adéle ring of F . An
irreducible cuspidal representation π =

⊗
v πv is a CAP form if there exists a residual

discrete automorphic representation π∗ =
⊗

v π
∗
v such that, at all but finite number of v,

πv and π∗v share the same absolute values of Hecke eigenvalues.
It is a consequence of the result of Jacquet-Shalika [JS81a], [JS81b] and Moeglin-

Waldspurger [MW89] that there are no CAP forms on the general linear groups. On
the other hand, for a central division algebra D of dimension n2 over F×, the trivial
representation of D×(A) is clearly a CAP form which shares the same local component,
at any place v where D is unramified, with the residual representation 111GL(n,A). On the
other hand, a quasisplit unitary group UE/F (3) of 3-variables already have non-trivial CAP
forms, which can be obtained as θ-lifts of some automorphic characters of UE/F (1) [GR90],
[GR91]. But the first and the most well-known example of CAP forms are the analogues
of the θ10 representation by Howe-Piatetski-Shapiro [Sou88] and the Saito-Kurokawa rep-
resentations of Sp4 [PS83]. Also Gan-Gurevich-Jiang obtained very interesting example

∗Note of the talk at the conference “Automorphic forms and representations of algebraic groups over
local fields”, RIMS, Kyoto Univ. 23 January, 2003

†Graduate School of Mathematics, Kyushu University, 812-8581 Hakozaki, Higashi-ku, Fukuoka, Japan
E-mail : takuya@math.kyushu-u.ac.jp
URL: http://knmac.math.kyushu-u.ac.jp/∼tkonno/
The author is partially supported by the Grants-in-Aid for Scientific Research No. 12740019, the

Ministry of Education, Science, Sports and Culture, Japan

1



of CAP forms on the split group of type G2 [GGJ02] (see also the article by Gan in this
volume).

In any case, the local components of CAP forms at almost all places are non-trivial
Langlands quotients by definition, and hence non-tempered in an apparent way. To put
such forms into the framework of Langlands’ conjecture, J. Arthur proposed a series of
conjectures [Art89]. The conjectural description is through the so-called A-parameters,
homomorphisms ψ from the direct product of the hypothetical Langlands group LF of F
with SL(2,C) to the L-group LG of G [Bor79]:

ψ : LF × SL(2,C) −→ LG,

considered modulo Ĝ-conjugation. We write Ψ(G) for the set of Ĝ-conjugacy classes of
A-parameters for G. By restriction, we obtain the local component

ψv : LFv × SL(2,C) → LGv

of ψ at each place v. Here the local Langlands group LFv is defined in [Kot84, §12],
and LGv is the L-group of the scalar extension Gv = G ⊗F Fv. The local conjecture,
among other things, associates to each ψv a finite set Πψv(Gv) of isomorphism classes of
irreducible unitarizable representations of G(Fv), called an A-packet . At all but finite
number of v, Πψv(Gv) is expected to contain a unique unramified element π1

v . Using such
elements, we can form the global A-packet associated to ψ

Πψ(G) :=

{⊗
v

πv

∣∣∣∣
(i) πv ∈ Πψv(Gv), ∀v;
(ii) πv = π1

v , ∀′v

}
.

Arthur’s conjecture predicts the multiplicity of each element in Πψ(G) in the discrete
spectrum of the right regular representation of G(A) on L2(G(F )AG\G(A)). Here AG is
the maximal R-vector subgroup in the center of the infinite component G(A∞) of G(A).

We say an A-parameter ψ is of CAP type if

(i) ψ is elliptic. This is the condition for Πψ(G) to contain an element which occurs in
the discrete spectrum.

(ii) ψ|SL(2,C) is non-trivial.

According to the conjecture, the CAP automorphic representations of G(A) is contained
in some of the global A-packets associated to such A-parameters. In this talk, we shall
classify the CAP forms by such parameters along the line of Arthur’s conjecture, in the
case of the quasisplit unitary group UE/F (4) of four variables. Although our description
of such forms tells nothing about the character relations conjectured in [Art89], it is quite
explicit and fairly complete. We hope to apply this to certain analysis of the cohomology
of the Shimura variety attached to GUE/F (4).

2 Parameter consideration

Global case Take a quadratic extension E/F of number fields and write σ for the
generator of the Galois group of this extension. Let G = Gn := UE/F (n) be the quasisplit
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unitary groups in n variables associated to E/F . Later we shall mainly be concerned

with the case n = 4. The L-group LG is the semi-direct product of Ĝ = GL(n,C) by the
absolute Weil group WF of F , where WF acts through WF/WE ' Gal(E/F ) by

ρG(σ)g = Ad(In)
tg−1, In :=




1
−1

.·...
(−1)n−1


 .

Thus an A-parameter ψ for G is determined by its restriction to LE × SL(2,C), which is
just a completely reducible representation:

ψ|LE×SL(2,C) =
r⊕
i=1

ϕΠi ⊗ ρdi .

Here Πi is an irreducible cuspidal representation of GL(mi,AE) enjoying the following
properties:

• σ(Πi) := Πi ◦ σ is isomorphic to the contragredient Π∨
i .

• Its central character ωΠi restricted to A× equals ωn−di−mi+1
E/F , where ωE/F is the

quadratic character associated to E/F by the classfield theory.

• Some condition on the order of its twisted Asai L-functions at s = 1.

ρd is the d-dimensional irreducible representation of SL(2,C). We note that ψ is elliptic
if and only if its irreducible components ϕΠi⊗ρdi are distinct to each other. The S-group

Sψ(G) := π0(Cent(ψ, Ĝ)/Z(Ĝ))

is isomorphic to (Z/2Z)r−1, where π0(•) stands for the group of connected components.
This plays a central role in the conjectural multiplicity formula.

Local case Similar description for the A-packets of the unitary groupG = Gn associated
to a quadratic extension E/F of local fields is also valid. For each A-parameter ψ, we
have the associated non-tempered Langlands parameter

φψ : LF 3 w 7−→ ψ
(
w,

(
|w|1/2F 0

0 |w|−1/2
F

)
) ∈ LG.

Here the “absolute value” | |F on LF is the composite | |F : LF ³ W ab
F

rec∼→ F×
| |F→ R×+.

(rec denotes the reciprocity map in the local classfield theory.) In Arthur’s conjecture, it
was imposed that the L-packet Πφψ(G) associated to φψ should be contained in Πψ(G).
We also have the S-group Sψ(G) as in the global case. We postulate the following:

Assumption 2.1. There exists a bijection Πψ(G) 3 π 7−→ (s̄ 7→ 〈s̄, π〉ψ) ∈ Π(Sψ(G)).
Here Π(Sψ(G)) is the set of isomorphism classes of irreducible representations of Sψ(G).
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Now for n = 4, the possibilities of {(di,mi)}i for elliptic A-parameters with non-trivial
SL(2,C)-component are given as follows.

(1) Stable cases. {(4, 1)}, {(2, 2)}.
(2) Endoscopic cases.

(a) {(3, 1), (1, 1)};
(b) {(2, 1), (1, 2)};
(c) {(2, 1), (2, 1)};
(d) {(2, 1), (1, 1), (1, 1)}.

In the cases (1), (2.a), it follows from Assumption 2.1 that Πφψ(G) = Πψ(G), and we know
from [Kon98] that all the contribution of the corresponding global A-packets belong to the
residual spectrum. On the other hand, Πψ(G) \ Πφψ(G) is expected to be non-empty in
the rest cases. We shall use the local θ-correspondence to construct the missing members.

3 Local θ-correspondence

Local Howe duality First let us recall the local θ-correspondence. We consider an m-
dimensional (non-degenerate) hermitian space (V, ( , )) and n-dimensional skew-hermitian
space (W, 〈 , 〉) over E. We write G(V ) and G(W ) for the unitary groups of V and W ,
respectively. If we define the symplectic space (W, 〈〈 , 〉〉) by

W := V ⊗E W, 〈〈v ⊗ w, v′ ⊗ w′〉〉 :=
1

2
TrE/F [(v, v′)σ(〈w,w′〉)],

Then (G(V ), G(W )) form a so-called dual reductive pair in the symplectic group Sp(W)
of this symplectic space:

ιV,W : G(V )×G(W ) 3 (g, g′) 7−→ g ⊗ g′ ∈ Sp(W).

Fixing a non-trivial character ψF of F , we have the metaplectic group of W which is a
central extension

1 −→ C1 −→MpψF (W) −→ Sp(W) −→ 1.

This admits a unique Weil representation ωψF on which C1 acts by the multiplication
[RR93]. For each pair ξ = (ξ, ξ′) of characters of E× satisfying ξ|F× = ωnE/F , ξ′|F× = ωmE/F ,

we have the corresponding lifting ι̃V,W,ξ : G(V )×G(W ) →MpψF (W) of ιV,W :

G(V )×G(W )
eιV,W,ξ−−−→ MpψF (W)∥∥∥

y
G(V )×G(W )

ιV,W−−−→ Sp(W)

The composite ωV,W,ξ := ωψ ◦ ι̃V,W,ξ is the Weil representation of the dual reductive pair
(G(V ), G(W )) associated to ξ. It is the product of the Weil representations ωW,ξ of G(V )
and ωV,ξ′ of G(W ).
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We write R(G(V ), ωW,ξ) for the set of isomorphism classes of irreducible admissible
representations of G(V ) which appear as quotients of ωW,ξ. For πV ∈ R(G(V ), ωW,ξ), the
maximal πV -isotypic quotient of ωV,W,ξ is of the form πV ⊗ Θξ(πV ,W ) for some smooth
representation Θξ(πV ,W ) of G(W ). Similarly we have R(G(W ), ωV,ξ′) and Θξ(πW , V )
for each πW ∈ R(G(W ), ωV,ξ′). The local Howe duality conjecture, which was proved
by R. Howe himself if F is archimedean [How89] and by Waldspurger if F is a non-
archimedean local field of odd residual characteristic [Wal90], asserts the following:

(i) Θξ(πV ,W ) (resp. Θξ(πW , V )) is an admissible representation of finite length of
G(W ) (resp. G(V )), so that it admits an irreducible quotient.

(ii) Moreover its irreducible quotient θξ(πV ,W ) (resp. θξ(πW , V )) is unique.

(iii) πV 7→ θξ(πV ,W ), πW 7→ θξ(πW , V ) are bijections between R(G(V ), ωW,ξ) and
R(G(W ), ωV,ξ′) converse to each other.

Adams’ conjecture A link between the local θ-correspondence and A-packets is given
by the following conjecture of J. Adams [Ada89]. Suppose n ≥ m. Then we have an
L-embedding iV,W,ξ : LG(V ) → LG(W ) given by

iV,W,ξ(g o w) :=





ξ′ξ−1(w)

(
g

111n−m

)
× w if w ∈ WE,

(
g

Jn−m−1
n−m

)
o wσ if w = wσ,

where wσ is a fixed element in WF \WE and

Jn :=




1
−1

. . .

(−1)n−1




Let T : SL(2,C) → Cent(iV,W,ξ, Ĝ(W )) be the homomorphism which corresponds to a

regular unipotent element in Cent(iV,W,ξ, Ĝ(W )) ' GL(n−m,C) (the tail representation
of SL(2,C)). Using this, we define the θ-lifting of A-parameters by

θV,W,ξ : Ψ(G(V )) 3 ψ 7−→ (iV,W,ξ ◦ ψ∨) · T ∈ Ψ(G(W )).

Conjecture 3.1 ([Ada89] Conj.A). The local θ-correspondence should be subordinated
to the map of A-packets: Πψ(G(V )) 7→ ΠθV,W,ξ(ψ)(G(W )).

Here we have said subordinated because R(G(V ), ωW,ξ) is not compatible with A-
packets, that is, Πψ(G(V ))∩R(G(V ), ωW,ξ) is often strictly smaller than Πψ(G(V )). But
when these two are assured to coincide, we can expect more:
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Conjecture 3.2 ([Ada89] Conj.B). For V , W in the stable range, that is, the Witt
index of W is larger than m, we have

ΠθV,W,ξ(ψ)(G(W )) =
⋃

V ; dimE V=m

θξ(Πψ(G(V )),W ).

Now we note that our situation is precisely that of Conj. 3.2 with m = 2 and W =
V ⊕ −V . Moreover, we find that the A-parameters in the cases (2.b), (2.c), (2.d) in § 2
are exactly those of the form

θV,W,ξ(ψ), ψ ∈ Ψ(G(V )).

ε-dichotomy We explain the construction of the A-packets when F is non-archimedean.
We need one more ingredient.

Proposition 3.3 (ε-dichotomy). Suppose dimE V = 2 and write W1 for the hyperbolic
skew-hermitian space (E2, ( 0 1

−1 0 )). Take an L-packet Π of G2(F ) = G(W ) and τ ∈ Π
[Rog90, Ch.11].
(i) τ ∈ R(G(W ), ωV,ξ′) if and only if

ε(1/2,Π× ξξ′−1
, ψF )ωΠ(−1)λ(E/F, ψF )−2 = ωE/F (− detV ).

Here the ε-factor on the right hand side is the standard ε-factor for G2 twisted by ξξ′−1

defined by the Langlands-Shahidi theory [Sha90]. ωΠ is the central character of the ele-
ments of Π and λ(E/F, ψF ) is Langlands’ λ-factor [Lan70].
(ii) If this is the case, we have θξ(τ, V ) = (ξ−1ξ′)G(V )τ

∨
V . Here (ξ−1ξ′)G(V ) denotes the

character of G(V ) given by the composite

G(V )
det→ UE/F (1, F ) 3 z/σ(z) 7→ ξ−1ξ′(z) ∈ C×.

τV stands for the Jacquet-Langlands correspondent1 of τ .

This is a special case of the ε-dichotomy of the local θ-correspondence for unitary
groups over p-adic fields, which was proved for general unitary groups (at least for su-
percuspidal representations) in [HKS96]. But since we need to combine this with our
description of the residual spectrum [Kon98], we have to use the Langlands-Shahidi ε-
factors instead of Piatetski-Shapiro-Rallis’s doubling ε-factors adopted by them. By this
reason, we deduced this proposition from the analogous result for the unitary similitude
groups [Har93] combined with the following description of the base change for G2.

Lemma 3.4. Let π̃ = ω ⊗ π′ be an irreducible admissible representation of the unitary
similitude group GUE/F (2) ' (E× × GL(2, F ))/∆F×, and write Π(π̃) for the associated
L-packet of G2(F ) consisting of the irreducible components of π̃|G2(F ). Then the standard
base change of Π(π̃) to GL(2, E) [Rog90, 11.4] is given by ω(det)π′E, where π′E is the base
change lift of π′ to GL(2, E) [Lan80].

1In fact, the Jacquet-Langlands correspondence for unitary groups in two variables is defined only
for L-packets and not for each member of the packets [LL79]. We know that τ 7→ τV certainly defines
a bijection between Π and its Jacquet-Langlands correspondent. But we do not specify the bijection
explicitly here. See Rem. 3.6 also.
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Now we construct the A-packets. Our construction is summarized in the following
picture.

G(V ′)

G(V )

πV ′

πV

6
J-L corr.

G(W2) = G4(F )

G(W1) = G2(F )

π−
π+

τ

Witt tower

¾
θξ(•,V )

¡
¡

¡
¡

¡
¡µ

θξ(•,W2)

´
´

´
´

´́3θξ(•,W2)

Each A-parameter of our concern is of the form

ψ|LE×SL(2,C) = ψ1|LE×SL(2,C) ⊕ (ξ′ξ−1 ⊗ ρ2),

where ψ1 is some A-parameter for G2. Take τ ∈ Πψ1(G2) and let (V, ( , )) be the 2-
dimensional hermitian space such that the condition of Prop. 3.3 (i) holds. If we write
πV := θξ(τ, V ) ' (ξξ′−1)G(V )τ

∨
V , then the result of [Kud86] tells us π+ := θξ(πV ,W2),

(τ ∈ Πψ1(G2)) form the local residual L-packet Πφψ(G4). We now suppose that there

exists a Jacquet-Langlands corresondent πV ′ ' (ξξ′−1)G(V ′)τ
∨
V ′ of πV on the unitary group

G(V ′) of the other (isometry class of) 2-dimensional hermitian space. Then Prop. 3.3 (i)
tells us that πV ′ /∈ R(G(V ′), ωW1,ξ). Yet its local θ-lifting π− := θξ(πV ′ ,W2) to the larger
group G4(F ) still exists. This is the so-called early lift or the first occurrence. Following
Conj. 3.2, we define

Πψ(G4) := {π± | τ ∈ Πψ(G2)}.
This gives sufficiently many members of the packet as predicted by Assumption 2.1.

Example 3.5. (i) Suppose Πψ1(G2) is an L-packet consisting of supercuspidal elements.

For τ ∈ Πψ1(G2), π+ is the Langlands quotient JG4
P1

(ξ′ξ−1| |1/2E ⊗τ), where P1 is a parabolic
subgroup with the Levi factor RE/FGm × G2. On the other hand the early lift π− of the
supercuspidal τ is again supercuspidal. Thus Πψ(G4) consists of non-tempered members
and supercuspidal elements.
(ii) On the contrary, we take ξ = ξ′ and consider Πψ1(G2) consists of either the Steinberg
representation δG2 or the trivial representation 111G2.

• δG2 lifts to πV = 111G(V ), where V is anisotropic. πV ′ = δG2. π+ = JG4
P1

(| |1/2E ⊗ δG2)
and π− is an irreducible tempered but not square integrable representation.

• 111G2 lifts to πV = 111G(V ) but V is hyperbolic this time. πV ′ is again 111G(V ′) but this
should be viewed as the Jacquet-Langlands correspondent of the A-packet {111G(V )}.
We have π+ = JG4

P2
(I
GL(2)E
B (111⊗111)| det |1/2E ), where P2 is the so-called Siegel parabolic

subgroup with the Levi factor GL(2, E). Obviously π− = JG4
P1

(| |1/2E ⊗ δG2). This last
representation is shared by the two packets considered here.
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Real case We end this section by some comments on the case E/F = C/R. Similar
results are obtained by applying the argument of Adams-Barbasch [AB95]. In fact, the
local θ-correspondence between unitary groups of the same size is described quite explic-
itly and in full generality in [Pau98]. Their argument also works in the present case. Let
me explain some example.

We write Gp,q = U(p, q). For a regular integral infinitesimal character λ = (λ1, λ2) for
G1,1, consider the extended L-packet:

Πλ = {δ+
1,1, δ

−
1,1, δ2,0, δ0,2}

consisting of the discrete series representation of various Gp,q with the infinitesimal charac-
ter λ. The subscript p, q indicates that δ•p,q lives on Gp,q. We can write ξ′ξ−1(z) = (z/z̄)n,
∀z ∈ C for some n ∈ Z. An analogue of Prop. 3.3 in the real case asserts that the local
θ-correspondence under the Weil representation ωV,W,ξ gives a bijection

θξ : Πλ
∼−→ Πn−λ,

where n− λ = (n− λ2, n− λ1).
If λ is sufficiently regular, by which we mean |λi − n| > 1, then it is proved by J.-

S. Li [Li90] that θξ(θξ(δ
±
1,1),W2) is a non-tempered cohomological representation Aq(λ

′),
where the Levi factor of the θ-stable parabolic subalgebra q is u(1, 1)⊕ u(1)2. As for the
other elements δp,q ∈ Πn−λ, θξ(δp,q,W2) is a discrete series representation Aq(λ

′). This

time q has the Levi factor u(2) ⊕ u(1)2. The resulting A-packet θξ(Πn−λ) is exactly the
cohomological A-packet defined by Adams-Johnson [AJ87].

For the complete list of the packets both in the archimedean and non-archimedean
case, see our paper [KK].

One can easily check that the S-groups in the cases (2.b), (2.c), (2.d) satisfy Sψ(G4) '
Sψ1(G2)× Z/2Z. Now we define the bijection in Assumption 2.1 by

• 〈s̄, π±〉ψ := 〈s̄, τ〉ψ1 on s̄ ∈ Sψ1(G2);

• 〈 , π±〉ψ on Z/2Z equals the sign character if π− and trivial character otherwise.

For the other cases, only the first one in this definition is enough to give a complete
bijection. This finishes our local task.

Remark 3.6. In the above, we do not mention the definition of the pairing 〈 , 〉ψ1. There
are several choices for this, and we can choose one by fixing a non-trivial character ψF of
F [LL79]. Also we did not specify the correspondence πV 7→ πV ′, which is again a subtle
problem. In fact, we need to make a choice of (absolute) transfer factor as in [LL79]
which again involves a choice of ψF (appearing in λ(E/F, ψF ) in the transfer factor).
Using this specific transfer, we label the members of endoscopic L-packets of anisotropic
unitary group. The correspondence πV 7→ πV ′ can be described in terms of these data, but
we do not go into details here.
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4 Multiplicity formula

We now go back to the global situation where E/F is a quadratic extension of number
fields. We note that there always exists a homomorphism Sψ(G4) 3 s̄ 7→ s̄(v) ∈ Sψv(G4,v).
We can now state the main result of this talk. Although we treat only the number field
case, we believe the result holds also over function fields of one variable over a finite field
of odd characteristic.

Theorem 4.1. Let ψ be an A-parameter of CAP type for G4 = UE/F (4). As was explained
in § 1, we form the global A- packet Πψ(G4) :=

⊗
v Πψv(G4,v). Then the multiplicity m(π)

of π =
⊗

v πv ∈ Πψ(G4) in L2(G(F )\G(A)) is given by

m(π) =
1

|Sψ(G4)|
∑

s̄∈Sψ(G4)

εψ(s̄)
∏
v

〈s̄(v), πv〉ψv ,

where the sign character εψ is defined by

εψ =





sgnSψ(G4)

if ψ1 is a stable L-parameter

and ε(1/2, ψ1 ⊗ ξξ′−1) = −1,

111 otherwise.

Here ε(s, ψ1 ⊗ ξξ′−1) is the Artin root number attached to ψ1, which equals the standard
ε-function for Πψ1(G2)× ξξ′−1.

The proof divides into two parts. Our local construction together with the global θ-
correspondence shows that the multiplicity is no less than the right hand side. Note that
we also relies on the multiplicity formula of Labesse-Langlands for unitary groups in two
variables [LL79], [Rog90]. Then we prove a characterization of the image of such θ-lifts by
poles of certain L-functions, which gives the converse inequality. This also shows that all
the CAP forms for UE/F (4) are obtained in the above as the contribution of the A-packets
we constructed. In particular the A-packets contains the sufficiently many members at
least for global purposes, so that our Assumption 2.1 is justified.
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Parabolic induction and parahoric induction

J.-F. Dat

March 26, 2003

1 Introduction

In the same way Eisenstein series theory is a masterpiece of the description
of the automorphic spectrum, the so-called parabolic induction and restric-
tion functors are prominent tools in the study of smooth representations of
a p-adic group G. Given a parabolic subgroup P of G with Levi component
M , we will note iGP and rP

G respectively these functors. These are a priori
functors between categories of all smooth representations of G and M , but
it is well known that these functors restrict to (or respect) the subcategories
of admissible, resp. finite length, smooth representations. And actually it is
generally believed that only the latter category is relevant for automorphic
applications. For example the first interesting question for someone inter-
ested in automorphic spectral problems is the study of reducibility (and of
composition factors) of representations of G parabolically induced from irre-
ducible ones of M , especially when the latter are local components of some
automorphic representation. On this question we will say almost nothing.

But among all automorphic aspects, especially thinking to the links with
Galois representations, is the study of congruences between automorphic
forms as in the pioneering works of Serre and Ribet. This leads naturally
to studying not only complex but finite fields-valued and even ring-valued
smooth representations. For example one might be interested in studying
stable Zl-lattices in Ql-representations. In this respect, the most promi-
nent work is that of Vignéras for GLn : she classified the finite coefficients
smooth dual à la Bernstein-Zelevinski and à la Bushnell-Kutzko, she also
could thoroughly study lattices as above, and eventually she got a beautiful
local Langlands’ type correspondance modulo a prime l and compatible with
Harris-Taylor-Henniart’s one through reduction of lattices. Unfortunately all
this was possible only by Gelfand’s derivatives theory and Bushnell-Kutzko’s
types theory which at present only exist for GLn.
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In this note we want to explain a general and systematic approach to the
study of ring-valued smooth representations. The proofs may be found in [3].
Our general motivation is a possible further application to finite coefficients
local Langland’s functoriality.

The first systematic algebraic approach to smooth representation theory
was that of Bernstein ; he recognized very soon the interest of working with
more general smooth representations than just admissible ones. In this re-
spect, he proved highly non trivial abstract (finiteness and cohomological)
properties of parabolic functors and relevant categories. However his results
work only for complex coefficients (more generally for coefficients in an alge-
braically closed field of banal characteristic). Our first task has been thus to
try and extend his results to general ring coefficients. His approach hinges
on a good “spectral” understanding of the parabolic functors, ours hinges
rather on a tentative of “geometric” understanding. We use Bruhat-Tits’
bulding theory and especially the parahoric groups they have defined after
Iwahori’s pioneering work. These are compact open subgroups in contrast
with parabolic subgroups which are closed non-compact.

2 Problems arising from Bernstein’s theory

Let R be a ring such that p ∈ R∗. Let us write ModR(G) for the category of
all smooth R-valued representations (recall that this merely means that any
vector is fixed by an open subgroup). We will sum up Bernstein’s theory [2],
[1] in the following

Theorem 2.1 (Bernstein)

i) There is a categorical decomposition ModC(G) =
⊕

[M,π] ModC(G)M,π

where by definition ModC(G)M,π is the full subcategory of all objects
all irreducible subquotients of which have cuspidal support conjugate to
some unramified twist of (M,π) (and thus the sum runs over conjugacy-
unramified-twisting classes of such pairs).

ii) The category ModC(G) is noetherian. In particular, for any compact
open subgroup H of G, the Hecke algebra HC(G,H) of compactly sup-
ported bi-H-invariant distributions is a noetherian algebra.

iii) Parabolic induction functors send finitely generated complex represen-
tations on finitely generated representations (the corresponding state-
ment for restriction is also true and easy).
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iv) Parabolic restriction rP
G is right adjoint to opposite parabolic induction

iG
P

for complex representations (highly non-trivial fact, not to be con-
fused with usual Frobenius reciprocity).

Bernstein’s arguments for the proofs of these statements rest heavily on
the following

Fact 2.2 Let π be a complex irreducible smooth representation of G, the
following assumptions are equivalent

i) π is cuspidal (meaning that its matrix coefficients are compact-modulo-
center).

ii) π never appears as a subquotient of a parabolically induced representa-
tion iGP (σ).

iii) π is a projective object in ModC(G) (“modulo center”).

Replacing C by a general algebraically closed field, the three above as-
sumptions may be distinct as soon as the characteristic divides the order of
some compact subgroup of G. As a consequence, point i) of the theorem is
definitely not true over this kind of fields and no substitute is even conjec-
tured in general. However, points ii), iii) and iv) are expected to hold true
in general, even on (noetherian) rings of coefficients.

3 Buildings and parahoric subgroups

3.1 Assume G = G(F ) for some reductive algebraic group G over the p-
adic field F . Bruhat and Tits have attached to the pair (G, F ) an euclidean
“extended” building IG. This is a metric space isomorphic to a product of
a euclidean space and a polysimplicial complex with isometric polysimplicial
action of G.

Example : In the case of SLn, the euclidean part is trivial and the polysim-
plicial part is just simplicial of dimension n − 1. The set of vertices is in
bijection with the homothetic classes of lattices in F n, while d-simplices cor-
respond to collections of lattices (ωi)i=0,···,d−1 such that ω0 ⊂ ω1 ⊂ · · · ⊂
ωd−1 ⊂ $−1

F ω0. This together with obvious incidence relations give the data
of a combinatorial polysimplex, and ISLn is the standard geometric reali-
sation of this combinatorial polysimplex. One can then identify ISLn with
the spaces of homothetic classes of norms on F n. When n = 2 we get a
homogeneous tree, each vertex belonging to q + 1 segments.
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In the case of a torus T , the simplicial part is trivial and the euclidean
part is just XF

∗ (T )⊗ R (rational cocharacters).

When x ∈ IG, we note Gx its fixator in G. It is a compact open subgroup,
and it is well known that any compact open subgroup is contained in such a
fixator. This group Gx has a pro-p-radical noted G+

x . In general Gx/G
+
x is

isomorphic to the group of rational points of some reductive group over the
residue field kF of F .

Example : For SLn, the stabilizer of some vertex is always GLn(F )-
conjugated to SLn(OF ) where OF is the ring of integers of F . The reduction
map to kF sets up a bijection between parabolic subgroups of SLn(kF ) and
fixators of points in the simplicial star of the vertex (i.e. the union of all
facets whose closure contains the vertex).

3.2 Let M be a F -Levi subgroup of G. Bruhat and Tits have also shown the
existence of a (non-unique) isometric and M -equivariant embedding IM ↪→
IG. We will fix such an embedding and consider IM as a subset of IG.
Taking up the foregoing notations with M in place of G, it is obvious that
Mx = Gx ∩ M and it is also true that M+

x = G+
x ∩ M . This allows us to

use the following general notation : if H is a subgroup of G, we will note
Hx := H ∩Gx and H+

x := H ∩G+
x .

Example : If T the diagonal torus of SLn and µ ∈ X∗(T ) is a rational
cocharacter, we can attach to µ the class of the lattice

∑n
i=1 µ($F )iiOF ei

where ei is the standard basis of F n. This extends to an embedding of
X∗(T )⊗R ↪→ ISLn , and the simplicial structure which is drawn on X∗(T )⊗R
by the ambient building is that attached to the hyperplane arrangement of
X∗(T )⊗ R given by equations {α(x) = k}α,x for all roots α and k ∈ Z.

3.3 Let P be a parabolic subgroup of G with Levi component M , and
let P be the opposed parabolic subgroup . It is known that the group G+

x

has a so-called Iwahori decomposition, meaning that the product map U+
x ×

M+
x × U

+

x −→ G+
x is a bijection, whatever ordering is chosen to make the

product. We will briefly account for such decompositions by the simple

notation G+
x = U+

x M+
x U

+

x . Notice that G+
x by definition is a normal subgroup

of Gx, so that the set Gx,P := PxG
+
x is a group. This group will be called a

parahoric subgroup of G ; this differs slightly from the Bruhat-Tits definition.

It also has a Iwahori decomposition Gx,P = UxMxU
+

x .

3.4 Given x,M and P , we would like to construct functors ModR(Mx) −→
ModR(Gx,P ) −→ ModR(Gx) with model the classical construction of parabolic
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induction ModR(M) −→ ModR(P ) −→ ModR(G) where the first functor is
inflation and the second one is induction. The problem in the parahoric sit-
uation is the inflation stage which is impossible since Mx is not a quotient of
Gx,P . Next lemma is intended to solve this problem. We need some notations
; for any subgroup H of G we will note Z[1

p
][H] the algebra of all Z[1

p
]-values

compactly supported distributions. If K is pro-p-subgroup of H, we will note
eK the element of Z[1

p
][H] given by the normalized Haar measure on K.

Lemma 3.5 There is a central and invertible element zx,P ∈ Z[1
p
][Gx,P ] such

that εx,P := z−1
x,P eUxeU

+
x

is an idempotent in Z[1
p
][Gx,P ].

Notice that by our assumption p ∈ R∗, the algebra Z[1
p
][Gx,p] naturaly

acts on any smooth R-valued representation of Gx,P , in particular on the
space C∞R (Gx) of smooth R-valued functions on Gx. Thus we may define
Ex,P := εx,P .C∞R (Gx). This R-module is endowed with smooth action of Gx

on the right and Mx on the left, since Mx normalizes εx,P . We may thus
define functors

Rx,P : ModR(Gx) → ModR(Mx)
V 7→ Ex,P ⊗RGx V

and
Ix,P : ModR(Mx) → ModR(Gx)

W 7→ Ex,P ⊗RMx W

where tensor products are taken with respect to adequate (right or left)
actions. The above lemma implies that Ix,P is left adjoint to Rx,P .

3.6 Given x and M , next question is to what extend these functors rely on
the choice of P . As already said, for any parabolic subgroup P containing M ,
Gx,P is a parahoric subgroup of Gx. But the map P 7→ Gx,P is not injective
in general : for example if x is inside a maximal simplex, all Gx,P are equal
to Gx which in this case is a Iwahori subgroup. But when one proves the
former lemma, one can also prove that the above functors actually depend
only on Gx,P and not on P . By the way this justifies the name “parahoric
induction/restriction”.

But the following question remains open : does parahoric induction really
depend on the parahoric subgroup Gx,P ?

Thinking to the parabolic analog, it is well known that even for com-
plex coefficients, the parabolic functors heavily depend on the choice of a
parabolic subgroup. In contrast, for a finite group of Lie type, it was shown
by Howlett and Lehrer [4] that the parabolic functors don’t depend on this
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choice. Inspired by their work, we can restate our question of dependance in
purely algebraic terms :

Question 3.7 Fix x,M and let P be a parabolic subgroup with Levi com-
ponent M . Do we have εx,P ∈ Z[1

p
][Gx]εx,P εx,P and εx,P ∈ Z[1

p
][Gx]εx,P εx,P

?

Next section will justify our interest in answering this question. The only
cases we can treat at present are summed up in

Proposition 3.8 i) If M is a minimal Levi subgroup, then the answer is
positive for any parabolic P with Levi component M .

ii) In general, we have εx,P eM+
x
∈ Z[1

p
][Gx]εx,P εx,P eM+

x
.

The second point is a direct consequence of Howlett and Lehrer’s results.

4 Applications of parahoric functors

Theorem 4.1 Fix a parabolic subgroup P with Levi component M and as-
sume that question 3.7 has a positive answer for any x ∈ IM . Then the
map

εx,P .C∞,c
R (G) → C∞,c

R (U\G)
f 7→ (g 7→ ∫

U
f(ug)du)

is an isomorphism of Mx ×G smooth R-representations, for any x ∈ IM .

In order to stress up the scope of the displayed statement in the theorem,
let us explain some consequences. First for any x,M, P as above we get an
isomorphism of functors on R-representations

ResMx
M ◦ rP

G ' Rx,P ◦ ResGx
G .

Notice that this immediately implies that parabolic restriction respects ad-
missibility, which is generally not known on non-Artinian rings of coefficients.
On another hand we get after little further work an isomorphism of functors,
still on R-representations,

indG
Gx
◦ Ix,P ' iGP ◦ indM

Mx
.

As an immediate application, this clearly shows that parabolic induction
sends finitely generated objects on finitely generated objects.

Next consequence rests on ideas of Bernstein and deserves a special treat-
ment
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Corollary 4.2 Under the same hypothesis as in previous theorem, the func-
tor iG

P
is left adjoint to the functor rP

G.

As an immediate application, we see that parabolic induction preserves pro-
jective objects while parabolic restriction preserves injective ones.

Resting on these results, we can then prove

Proposition 4.3 Assume now that the answer to 3.7 is positive for any
x,M, P . Then

i) For any compact open H, there is a compact-modulo-center subset SH ⊂
G supporting all cuspidal bi-H-invariant functions on G, regardless of
the ring of coefficients.

ii) The category ModZ[ 1
p
](G) is noetherian.

Other applications, to shape of reducibility points and to K-theory are
given in [3], under the same assumptions as in this proposition.

Recall now that our theorem rests on a basic assumption we cannot grant
in full generality. By the proposition in the former section, this assumption is
fulfilled when M is minimal, and in this case our theorem gives a real result
and the former proposition applies for any relative rank 1 group G. By the
same proposition we can also state results on the “level 0 subcategory”. We
mention first :

Fact 4.4 (Moy-Prasad-Vigneras [6] +ε) There is a decomposition

ModZ[ 1
p
](G) = ModZ[ 1

p
](G)

0

⊕
ModZ[ 1

p
](G)0

where by definition ModZ[ 1
p
](G)

0
is the full subcategory of all objects generated

by their G+
x -invariants, x running through IG (called the level 0 subcategory).

Moreover, the parabolic functors preserve level 0 subcategories.

For level 0 representations, our theorem and its consequences are listed in

Proposition 4.5 i) For any x,M, P , the morphism

eM+
x
εx,P .C∞,c

R (G) → eM+
x
C∞,c

R (U\G)
f 7→ (g 7→ ∫

U
f(ug)du)

is an isomorphim of Mx ×G representations.

ii) On the level 0 subcategories, the functor iG
P

is left adjoint to rP
G.

iii) The level 0 subcategory ModZ[ 1
p
](G)

0
is noetherian.

7



About proofs in [3]: that of the lemma is elementary algebra, that of the
theorem rests on a dynamical argument on the building inpired by work of
Moy-Prasad [5], that of the corollary rests on “completions” as in Bernstein’s
unpublished work [1], that of noetheriannity requires new other arguments.
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On Siegel modular forms of degree 2 with
square-free level

Ralf Schmidt

Introduction

For representations of GL(2) over a p–adic field F there is a well-known
theory of local newforms due to Casselman, see [Cas]. This local theory
together with the global strong multiplicity one theorem for cuspidal auto-
morphic representations of GL(2) is reflected in the classical Atkin–Lehner
theory for elliptic modular forms.

In contrast to this situation, there is currently no satisfactory theory of local
newforms for the group GSp(2, F ). As a consequence, there is no analogue of
Atkin–Lehner theory for Siegel modular forms of degree 2. In this paper we
shall present such a theory for the “square-free” case. In the local context
this means that the representations in question are assumed to have non-
trivial Iwahori–invariant vectors. In the global context it means that we are
considering congruence subgroups of square-free level.

We shall begin by reviewing some well known facts from the classical the-
ory of elliptic modular forms. Then we shall give a definition of a space
Sk(Γ0(N)(2))new of newforms in degree 2, where N is a square-free positive
integer. Table 1 on page 8 lies at the heart of our theory. It contains the
dimensions of the spaces of fixed vectors under each parahoric subgroup in
every irreducible Iwahori–spherical representation of GSp(2) over a p–adic
field F .

Section 4 deals with a global tool, namely a suitable L–function theory for
certain cuspidal automorphic representations of PGSp(2). Since none of the
existing results on the spin L–function seems to fully serve our needs, we have
to make certain assumptions at this point. Having done so, we shall present
our main result in the final section 5. It essentially says that given a cusp
form f ∈ Sk(Γ0(N))new, assumed to be an eigenform for almost all unramified
Hecke algebras and also for certain Hecke operators at places p|N , we can
attach a global L–packet πf of automorphic representations of PGSp(2,AQ)
to f . This allows us to associate with f a global (spin) L–function with a
nice functional equation. We shall describe the local factors at the bad places
explicitly in terms of certain Hecke eigenvalues.



1 Review of classical theory

We recall some well-known facts for classical holomorphic modular forms.
Let f ∈ Sk(Γ0(N)) be an elliptic cuspform, and let G = GL(2), considered
as an algebraic Q–group. It follows from strong approximation for SL(2)
that there is a unique associated adelic function Φf : G(A) → C with the
following properties:

i) Φf (ρgz) = Φf (g) for all g ∈ G(A), ρ ∈ G(Q) and z ∈ Z(A). Here Z is
the center of GL(2).

ii) Φf (gh) = Φf (g) for all g ∈ G(A) and h ∈ ∏
p<∞Kp(N). Here Kp(N) ={(

a b
c d

)
∈ GL(2,Zp) : c ∈ NZp

}
is the local analogue of Γ0(N).

iii) Φf (g) = (f
∣∣
k
g)(i) := det(g)k/2j(g, i)−kf(g〈i〉) for all g ∈ GL(2,R)+

(the identity component of GL(2,R)).

Since f is a cusp form, Φf is an element of L2(G(Q)\G(A)/Z(A)). Let πf be
the unitary PGL(2,A)–subrepresentation of this L2–space generated by Φf .

1.1 Theorem. With the above notations, the representation πf is irredu-
cible if and only if f is an eigenform for the Hecke operators T (p) for almost
all primes p. If this is the case, then f is automatically an eigenform for T (p)
for all p - N .

Idea of Proof: We decompose the representation πf into irreducibles,
πf =

⊕
i πi. Each πi can be written as a restricted tensor product of lo-

cal representations,

πi '
⊗
p≤∞

πi,p, πi,p a representation of PGL(2,Qp).

Assuming that f is an eigenform, one can show easily that for almost all p we
have πi,p ' πj,p. But Strong Multiplicity One for GL(2) says that two cuspidal
automorphic representations coincide (as spaces of automorphic forms) if
their local components are isomorphic at almost every place. It follows that
πf must be irreducible.

Thus to each eigenform f we can attach an automorphic representation
πf = ⊗πp. A natural problem is to identify the local representations πp

given only the classical function f . This is easy at the archimedean place:
π∞ is the discrete series representation of PGL(2,R) with a lowest weight
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vector of weight k. It is also easy for finite primes p not dividing N . At
such places πp is an unramified principal series representation, i.e., πp is
an infinite-dimensional representation containing a non-zero GL(2,Zp)–fixed
vector. These representations are characterized by their Satake parameter
α ∈ C∗, and the relationship between α and the Hecke–eigenvalue λp is
λp = p(k−1)/2(α+ α−1).

In general it is not easy to identify the local components πp at places p|N .
But if N is square-free, we have the following result.

1.2 Theorem. Assume that N is a square-free positive integer, and let f ∈
Sk(Γ0(N)) be an eigenform. Further assume that f is a newform. Then
the local component πp of the associated automorphic representation πf at
a place p|N is given as follows:

πp =

{
StGL(2) if a1f = −f,
ξ StGL(2) if a1f = f.

Here StGL(2) is the Steinberg representation of GL(2,Qp), and ξ is the unique
non-trivial unramified quadratic character of Q∗p. The operator a1 is the
Atkin–Lehner involution at p.

Idea of Proof: It follows from the fact that f is a modular form for Γ0(N)
that πp contains non-trivial vectors invariant under the Iwahori subgroup

I =

{(
a b
c d

)
∈ GL(2,Zp) : c ∈ pZp

}
.

The following is a complete list of all such Iwahori-spherical representations
together with the dimensions of their spaces of fixed vectors under I and
under K = GL(2,Zp).

representation K I

π(χ, χ−1), χ unramified, χ2 6= | |±1 1 2

StGL(2) or ξ StGL(2) 0 1

(1)

We recall the definition of newforms, for notational simplicity assuming that
N = p. We have two operators

T0, T1 : Sk(SL(2,Z)) −→ Sk(Γ0(p)), (2)
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where T0 is simply the inclusion and T1 is given by (T1f)(τ) = f(pτ). Then
the space of oldforms is defined as

Sk(Γ0(p))
old = im(T0) + im(T1), (3)

and the space of newforms Sk(Γ0(p))
new is by definition the orthogonal com-

plement of Sk(Γ0(p))
old with respect to the Petersson inner product. Now it

is easily checked that locally, in an unramified principal series representation
π(χ, χ−1) realized on a space V , we have

V I = T0V
K + T1V

K . (4)

Hence the fact that f is a newform means precisely that πp cannot be an un-
ramified principal series representation π(χ, χ−1). Therefore πp = StGL(2) or
πp = ξ StGL(2), and easy computations show the connection with the Atkin–
Lehner eigenvalue (cf. [Sch], section 3).

Knowing the local components πp allows to correctly attach local factors to
the modular form f . For example, if f is a newform as in Theorem 1.2, one
would define for p|N

Lp(s, f) = Lp(s, πp) =

{
(1− p−1/2−s)−1 if a1f = −f,
(1 + p−1/2−s)−1 if a1f = f.

εp(s, f) = εp(s, πp) =

{ −p1/2−s if a1f = −f,
p1/2−s if a1f = f.

With these definitions, and unramified and archimedean factors as usual,
the functional equation L(s, f) = ε(s, f)L(1 − s, f) holds for L(s, f) =∏

p Lp(s, f) and ε(s, f) =
∏

p εp(s, f).

2 Newforms in degree 2

It is our goal to develop a similar theory as outlined in the previous section
for the space of Siegel cusp forms Sk(Γ0(N)(2)) of degree 2 and square-free
level N . Here we are facing several difficulties.

• Strong multiplicity one fails for the underlying group GSp(2), and even
weak multiplicity one is presently not known. Thus it is not clear how
to attach an automorphic representation of GSp(2,A) to a classical
cusp form f .
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• The local representation theory of GSp(2,Qp) is much more compli-
cated than that of GL(2,Qp). In particular, there are 13 different
types of infinite-dimensional representations containing non-trivial vec-
tors fixed under the local Siegel congruence subgroup, while in the
GL(2) case we had only 2 (see table (1)).

• There is currently no generally accepted notion of newforms for Siegel
modular forms of degree 2.

The last two problems are of course related. Let P1 be the Siegel congruence
subgroup of level p, i.e.,

P1 =

{(
A B
C D

)
∈ GSp(2,Zp) : C ≡ 0 mod p

}
. (5)

Every classical definition of newforms with respect to P1 must in particular
be designed to exclude K–spherical representations, where K = GSp(2,Zp).
Since an unramified principal series representation of GSp(2,Qp) contains a
four–dimensional space of P1–invariant vectors (see Table 1 below), we expect
four operators

T0, T1, T2, T3 : Sk(Sp(2,Z)) −→ Sk(Γ0(p))

whose images would span the space of oldforms. (From now on, when we
write Γ0(N), we mean groups of 4 × 4–matrices.) For this purpose we are
now going to introduce four endomorphisms T0(p), . . . , T3(p) of the space
Sk(Γ0(N)), where N is square-free and p|N .

• T0(p) is simply the identity map.

• T1(p) is the Atkin–Lehner involution at p, defined as follows. Choose
integers α, β such that pα− N

p
β = 1. Then the matrix

ηp =




pα 1
pα 1

Nβ p
Nβ p




is in GSp(2,R)+ with multiplier p. It normalizes Γ0(N), hence the map
f 7→ f

∣∣
k
ηp defines an endomorphism of Sk(Γ0(N)). Since η2

p ∈ pΓ0(N),
this endomorphism is an involution (we always normalize the slash
operator as

(f
∣∣
k
g)(Z) = µ(g)kj(g, Z)−kf(g〈Z〉) (µ is the multiplier),

which makes the center of GSp(2,R)+ act trivially). This is the Atkin–
Lehner involution at p. It is independent of the choice of α and β.
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• We define T2(p) by

(T2(p)f)(Z) =
∑

g∈Γ0(N)\Γ0(N)
(

1
p1

)
Γ0(N)

(
f
∣∣
k
g
)
(Z)

=
∑

x,µ,κ∈Z/pZ


f

∣∣∣
k




1
1

p
p







1 x µ
1 µ κ

1
1





 (Z). (6)

This is a well-known operator in the classical theory. In terms of
Fourier expansions, if f(Z) =

∑
n,r,m c(n, r,m)e2πi(nτ+rz+mτ ′) with Z =(

τ z
z τ ′

)
, then

(T2(p)f)(Z) =
∑
n,r,m

c(np, rp,mp)e2πi(nτ+rz+mτ ′). (7)

• Finally, we define T3(p) := T1(p) ◦ T2(p).

Now we are ready to define newforms in degree 2.

2.1 Definition. Let N be a square-free positive integer. In Sk(Γ0(N)) we
define the subspace of oldforms Sk(Γ0(N))old to be the sum of the spaces

Ti(p)Sk

(
Γ0(Np

−1)
)
, i = 0, 1, 2, 3, p|N.

The subspace of newforms Sk(Γ0(N))new is defined as the orthogonal com-
plement of Sk(Γ0(N))old inside Sk(Γ0(N)) with respect to the Petersson scalar
product.

Note that this definition is analogous to the definition of oldforms in the
degree 1 case. The operator T1 given in (2) has the same effect as the Atkin–
Lehner involution on modular forms for SL(2,Z).

See [Ib] for more comments on the topic of old and new Siegel modular forms.

3 Local newforms

Let us realize G = GSp(2) using the symplectic form

(
1

−1

)
. In this

section we shall consider G as an algebraic group over a p–adic field F . Let
o be the ring of integers of F and p its maximal ideal. Let K = G(o) be
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the standard special maximal compact subgroup of G(F ). As an Iwahori
subgroup we choose

I =




g ∈ K : g ≡




∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗


 mod p





The parahoric subgroups of G(F ) correspond to subsets of the simple Weyl
group elements in the Dynkin diagram of the affine Weyl group C2:

• • •
s0 s1 s2

The Iwahori subgroup corresponds to the empty subset of {s0, s1, s2}. The
numbering is such that s1 and s2 generate the usual 8–element Weyl group
of GSp(2). The corresponding parahoric subgroup is P12 = K. The Atkin–
Lehner element

η =




1
1

$
$


 ∈ GSp(2, F ) ($ a uniformizer) (8)

induces an automorphism of the Dynkin diagram. The parahoric subgroup
P01 corresponding to {s0, s1} is therefore conjugate to K via η. We further
have the Siegel congruence subgroup P1 (see (5)), the Klingen congruence
subgroup P2, its conjugate P0 = ηP2η

−1, and the paramodular group

P02 =




g ∈ G(F ) : g, g−1 ∈




o p o o

o o o p−1

o p o o

p p p o







.

K and P02 represent the two conjugacy classes of maximal compact subgroups
of GSp(2, F ). By a well-known result of Borel (see [Bo]) the Iwahori–
spherical irreducible representations are precisely the constituents of repre-
sentations induced from an unramified character of the Borel subgroup. For
GSp(2), such representations were first classified by Rodier, see [Rod], but
in the following we shall use the notation of Sally–Tadic [ST]. The fol-
lowing Table 1 gives a complete list of all the irreducible representations of
GSp(2, F ) with non-trivial I–invariant vectors. Behind each representation
we have listed the dimension of the spaces of vectors fixed under each para-
horic subgroup (modulo conjugacy). The last column gives the exponent of
the conductor of the local parameter of each representation.
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representation K P02 P2 P1 I a

I χ1 × χ2 o σ (irreducible) 1 2
+−

4 4
++
−−

8
++++
−−−−

0

a χStGL(2) o σ 0 1
−

2 1
−

4
+−−−

1
II

b χ1GL(2) o σ 1 1
+

2 3
++−

4
+++−

0

a χo σStGSp(1) 0 0 1 2
+−

4
++−−

2
III

b χo σ1GSp(1) 1 2
+−

3 2
+−

4
++−−

0

a σStGSp(2) 0 0 0 0 1
−

3

b L((ν2, ν−1σStGSp(1))) 0 0 1 2
+−

3
++−

2
IV

c L((ν3/2StGL(2), ν
−3/2σ)) 0 1

−
2 1

−
3

+−−
1

d σ1GSp(2) 1 1
+

1 1
+

1
+

0

a δ([ξ0, νξ0], ν
−1/2σ) 0 0 1 0 2

+−
2

b L((ν1/2ξ0StGL(2), ν
−1/2σ)) 0 1

+

1 1
+

2
++

1
V

c L((ν1/2ξ0StGL(2), ξ0ν
−1/2σ)) 0 1

−
1 1

−
2
−−

1

d L((νξ0, ξ0 o ν−1/2σ)) 1 0 1 2
+−

2
+−

0

a τ(S, ν−1/2σ) 0 0 1 1
−

3
+−−

2

b τ(T, ν−1/2σ) 0 0 0 1
+

1
+

2
VI

c L((ν1/2StGL(2), ν
−1/2σ)) 0 1

−
1 0 1

−
1

d L((ν,1F ∗ o ν−1/2σ)) 1 1
+

2 2
+−

3
++−

0

Table 1: Dimensions of spaces of invariant vectors in
Iwahori–spherical representations of GSp(2, F ).
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The signs under the entries for the “symmetric” subgroups P02, P1 and I
indicate how these spaces of fixed vectors split into Atkin–Lehner eigenspaces,
provided the central character of the representation is trivial. The signs listed
in Table 1 are correct if one assumes that

• in Group II, where the central character is χ2σ2, the character χσ is
trivial.

• in Groups IV, V and VI, where the central character is σ2, the character
σ itself is trivial.

If these assumptions are not met, then one has to interchange the plus and
minus signs in Table 3 to get the correct dimensions.

The information in Table 1 is essentially obtained by computations in the
standard models of these induced representations. Details will appear else-
where.

Imitating the classical theory, one can define oldforms by introducing natural
operators from fixed vectors for bigger to fixed vectors for smaller parahoric
subgroups. Here “bigger” not always means inclusion, since we also consider
K “bigger” than P02. More precisely, we consider R′ bigger than R, and shall
write R′ Â R, if there is an arrow from R′ to R in the following diagram.

P01

!!DD
DD

DD
DD

ÀÀ²²

P12

}}zz
zz

zz
zz

¢¢ ²²

P02

}}zz
zz

zz
zz

!!DD
DD

DD
DD

P0

""DD
DD

DD
DD

D P1

²²

P2

||zz
zz

zz
zz

z

I

(9)

Whenever R′ Â R, one can define natural operators from V R′ to V R, where
V is any representation space. For example, our previously defined global
operators T0(p) and T2(p) correspond to two natural maps V K → V P1 . Our
T1(p) and T3(p) correspond to two natural maps V P01 → V P1 , composed with
the Atkin–Lehner element V K → V P01 .

This can be done for any parahoric subgroup, and it is natural to call any fixed
vector that can be obtained from any bigger parahoric subgroup an oldform.
Everything else would naturally be called a newform, but the meaning of
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“everything else” has to be made precise. Let it suffice to say that if the
representation is unitary one can work with orthogonal complements as in
the classical theory.

Once these notions of oldforms and newforms are defined, one can verify the
decisive fact that each space of fixed vectors listed in Table 1 consists either
completely of oldforms or completely of newforms. If this were not true, our
notions of oldforms and newforms would make little sense. In Table 1 we
have indicated the spaces of newforms by writing their dimensions in bold
face. We see that they are not always one-dimensional.

4 L–functions

For the applications we have in mind we need the spin L–function of cuspidal
automorphic representations of GSp(2,A) as a global tool. There are several
results on this L–function, see [No], [PS] or [An]. Unfortunately none of these
results fully serves our needs. What we need is the following.

4.1 L–Function Theory for GSp(2).

i) To every cuspidal automorphic representation π of PGSp(2,A) is asso-
ciated a global L–function L(s, π) and a global ε–factor ε(s, π), both
defined as Euler products, such that L(s, π) has meromorphic continu-
ation to all of C and such that a functional equation

L(s, π) = ε(s, π)L(1− s, π)

of the standard kind holds.

ii) For Iwahori–spherical representations, the local factors Lv(s, πv) and
εv(s, πv, ψv) coincide with the spin local factors defined via the local
Langlands correspondence as in [KL].

Of course such an L–function theory is predicted by general conjectures over
any number field. For our classical applications we shall only need it over
Q. Furthermore, we can restrict to the archimedean component being a
lowest weight representation with scalar minimal K–type (a discrete series
representation if the weight is ≥ 3). All we need to know about ε–factors is
in fact that they are of the form cpms with a constant c ∈ C∗ and an integer
m.

The local Langlands correspondence is not yet a theorem for GSp(2) (but see
[Pr], [Rob]), but for Iwahori–spherical representations it is known by [KL].
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In fact, the local parameters (four–dimensional representations of the Weil–
Deligne group) of all the representations in Table 1 can easily be written
down explicitly. Hence we know all their local factors. There is one case of
L–indistinguishability in Table 1, namely, the representations VIa and VIb
constitute an L–packet. The representation Va also lies in a two-element
L–packet. Its partner is a θ10–type supercuspidal representation.

4.2 Theorem. We assume that an L–function theory as in 4.1 exists. Let
π1 = ⊗π1,p and π2 = ⊗π2,p be two cuspidal automorphic representations of
PGSp(2,AQ). Let S be a finite set of prime numbers such that the following
holds:

i) π1,p ' π2,p for each p /∈ S.

ii) For each p ∈ S, both π1,p and π2,p possess non-trivial Iwahori–invariant
vectors.

Then, for each p ∈ S, the representations π1,p and π2,p are constituents of
the same induced representation (from an unramified character of the Borel
subgroup).

Idea of proof: We divide the two functional equations for L(s, π1) and
L(s, π2) and obtain finite Euler products by hypothesis i). Since we are over
Q, and since the expressions p−s for different p can be treated as independent
variables, it follows that we get equalities

Lp(s, π1,p)

Lp(s, π2,p)
= cpmsLp(1− s, π1,p)

Lp(1− s, π2,p)
, c ∈ C∗, m ∈ Z,

for each p ∈ S. But we have the complete list of all possible local Euler
factors. One can check that such a relation is only possible if π1,p and π2,p

are constituents of the same induced representation.

Remark: In Table 1, for two representations to be constituents of the same
induced representation means that they are in the same group I–VI.

With some additional information on the representation this result sometimes
allows to attach a unique equivalence class of automorphic representations to
a classical cuspform f . For example, ifN is square-free and f ∈ Sk(Γ0(N))new

is an eigenform for almost all the unramified Hecke algebras and also an
eigenvector for the Atkin–Lehner involutions for all p|N , then Theorem 4.2
together with the information in Table 1 show that the associated adelic
function Φf generates a multiple of an automorphic representation πf of
PGSp(2,A).
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5 The main result

Let N be a square-free positive integer. In the degree 1 case, given an
eigenform f ∈ Sk(Γ0(N))new, knowing the Atkin–Lehner eigenvalues for p|N
was enough to identify the local representations and attach the correct local
factors. In the degree 2 case, since there are more possibilities for the lo-
cal representations, and since some of them have parameters, we need more
information than just the Atkin–Lehner eigenvalues. For example, the repre-
sentations IIa or IIIa, both of which have local newforms with respect to P1,
depend on characters χ and σ. Hence there are additional Satake parameters
which enter into the L–factor. What we need are suitable Hecke operators on
Sk(Γ0(N))new to extract this information from the modular form f . It turns
out that the previously defined operator T2(p) works well, but we need even
more information. We are now going to define an additional endomorphism
T4(p) of Sk(Γ0(N))new.

For notational simplicity assume N = p is a prime and consider the following
linear maps:

Sk(Γ0(p))
new

d02 // Sk(Γ
para(p))new

d1

oo (10)

Here d1 and d02 are trace operators which always exist between spaces of
modular forms for commensurable groups. Explicitly,

d02f =
1

(Γpara(p) : Γ0(p) ∩ Γpara(p))

∑

γ∈(Γ0(p)∩Γpara(p))\Γpara(p)

f
∣∣
k
γ.

It is obvious from Table 1 that these operators indeed map newforms to
newforms. The additional endomorphism of Sk(Γ0(p))

new we require is

T4(p) := (1 + p)2 d1 ◦ d02. (11)

Similarly we can define endomorphisms T4(p) of Sk(Γ0(N))new for each p|N .
Looking at local representations, the following is almost trivial.

5.1 Proposition. LetN be square-free. The space Sk(Γ0(N))new has a basis
consisting of common eigenfunctions for the operators T2(p) and T4(p), all
p|N , and for the unramified Hecke algebras at all good places p - N .

We can now state our main result.
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5.2 Theorem. We assume that an L–function theory as in 4.1 exists. Let
N be a square-free positive integer, and let f ∈ Sk(Γ0(N))new be a newform
in the sense of Definition 2.1. We assume that f is an eigenform for the
unramified local Hecke algebras Hp for almost all primes p. We further
assume that f is an eigenfunction for T2(p) and T4(p) for all p|N ,

T2(p)f = λpf, T4(p)f = µpf for p|N. (12)

Then:

i) f is an eigenfunction for the local Hecke algebras Hp for all primes
p - N .

ii) Only the combinations of λp and µp as given in the following table can
occur. Here ε is ±1.

λ µ rep. Lp(s,f)−1 εp(s,f)

−εp /∈{0,2p} IIa (1+ε(p+1)(p−µ)p−3/2−s+p−2s)(1+εp−1/2−s) εp1/2−s

6=±p 0 IIIa (1−λp−3/2−s)(1−λ−1p1/2−s) p1−2s

−εp 2p Vb,c (1−εp1/2−s)(1−p−1/2−s)(1+p−1/2−s) εp1/2−s

−εp 0 VIa,b (1+εp−1/2−s)2 p1−2s

(We omit some indices p.)

iii) We define archimedean local factors according to our L–function theory
and unramified spin Euler factors for p - N as usual. For places p|N we
define L– and ε–factors according to the table in ii). Then the resulting
L–function has meromorphic continuation to the whole complex plane
and satisfies the functional equation

L(s, f) = ε(s, f)L(1− s, f), (13)

where L(s, f) =
∏

p≤∞ Lp(s, f) and ε(s, f) =
∏

p|N∞ εp(s, f).

Sketch of proof: Statement i) follows from Theorem 4.2. Statement ii)
follows by explicitly computing the possible eigenvalues of T2(p) and T4(p)
in local representations. In the present case we cannot conclude that in
the global representation πf = ⊕πi all the irreducible components πi must
be isomorphic, because the eigenvalues in (12) cannot tell apart local rep-
resentations VIa and VIb. This is however the only ambiguity, so that we
can at least associate a global L–packet with f . (As mentioned before, VIa
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and VIb constitute a local L–packet.) The table in ii) indicates the possible
representations depending on the Hecke eigenvalues.

The L–factors given in the table are those coming from the local Langlands
correspondence. By hypothesis they coincide with the factors in our L–
function theory. Hence the L–function in (13) coincides with the L–function
of any one of the automorphic representations in our global L–packet. By
our L–function theory we get the functional equation.

5.3 Corollary. If a cusp form f ∈ Sk(Sp(2,Z)) is an eigenfunction for the
unramified Hecke algebras Hp for almost all primes p, then it is an eigen-
function for those Hecke algebras for all p.

Remarks:

i) The corollary does not claim that f generates an irreducible automor-
phic representation of PGSp(2,A), but a multiple of such a represen-
tation. Without knowing multiplicity one for PGSp(2) we cannot con-
clude that f is determined by all its Hecke eigenvalues.

ii) The local factors given in Theorem 5.2 are the Langlands L– and ε–
factors for the spin (degree 4) L–function. The following table lists the
Langlands factors for the standard (degree 5) L–function.

λ µ rep. Lp(s, f, st)−1 εp(s, f, st)

−εp /∈{0,2p} IIa (1−(p+1)(p−µ)p−2−s+p−1−2s)(1−p−s) p1−2s

6=±p 0 IIIa (1−λ2p−2−s)(1−λ−2p2−s)(1−p−1−s) p1−2s

−εp 2p Vb,c (1+p−1−s)(1+p−s)(1−p−s) p1−2s

−εp 0 VIa,b (1−p−s)2(1−p−1−s) p1−2s

iii) There is a statement analogous to Theorem 5.2 for modular forms with
respect to the paramodular group Γpara(N). Instead of T4(p) as defined
in (11) this result makes use of the “dual” endomorphism T5(p) :=
(1 + p)2 d02 ◦ d1 of Sk(Γ

para(N))new.
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[ST] Sally, P., Tadić, M.: Induced representations and classifications
for GSp(2, F ) and Sp(2, F ). Bull. Soc. Math. France 121, Mem. 52
(1993), 75–133

[Sch] Schmidt, R.: Some remarks on local newforms for GL(2). J. Ra-
manujan Math. Society 17 (2002), 115–147

Ralf Schmidt rschmidt@math.uni-sb.de

Universität des Saarlandes
Fachrichtung 6.1 Mathematik
Postfach 15 11 50
66041 Saarbrücken
Germany

15



Global base change identity and
Drinfeld’s shtukas

Ngô Bao Châu

This is the text of my talk at the conference "Automorphic forms and repre-
sentation theory ofp-adic groups" in Kyoto, January 2003. It summarizes my
preprint [7] which will be published elsewhere. In loc. cit. we propose a new
approach to prove the global base change identity which arises in the compari-
son of the Lefschetz trace formula on moduli space of Drinfeld’s shtukas and the
Selberg’s trace formula, without using the fundamental lemma for base change.

I would like to thank the organizers Professors H. Saito and T. Takahashi for
this very instructive conference. I am also grateful to Professor L. Breen for lin-
guistic helps in the preparation of this manusript.

1 Drinfeld’s shtukas with multiples modifications

Let X be a geometrically connected, smooth and projective curve overFq. Let
X̄ = X ⊗Fq k wherek is an algebraic closure ofFq. Let σ denote the geometric
Frobenius element ofGal(k/Fq).

Let F denote the function field ofX. For every closed pointx ∈ |X|, let Fx be
the completion ofF at x andOx be the ring of integers ofFx.

Let d ≥ 2 be an integer andG = GLd. According to Drinfeld, one has the
notion ofG-shtukas with multiples modifications which we are going to review in
a moment. Let̄x1, . . . , x̄n ∈ X(k) ben mutually distinct geometric points ofX. Let
T̄ = {x̄1, . . . , x̄n}. A T̄-modification is an isomorphism

t : V′T̄ ∼−→VT̄

between the restrictionsV′T̄ anVT̄ of vector bundles of rankdV′ andV over X̄
to theX̄ − T̄.

Let x̄ ∈ T̄ and let denoteV′x̄ andVx̄ the completions ofV′ andV at x̄.
These are freeOx̄-modules of rankd whose generic fibers are identified withtx :
V′x̄

∼−→Vx. By the theory of elementary divisors, twoOx̄-lattices within the same
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F x̄-vector spaces can be given an invariant

inv(tx̄) ∈ Zd
+ = {(λ1, . . . , λd) ∈ Zd | λ1 ≥ · · · ≥ λd}.

For general reductive groupG,Zd
+ must be replaced by the set of dominant coweights

of G and and this set comes equipped with a natural partial order :λ ≥ λ′ if and
only if λ − λ′ is a sum of positive coroots. This partial order has geometric origin
since anx̄-modification with invariantλ can only degenerate to āx-modification
with some invariantλ′ ≤ λ. It will be convenient to write formally

inv(t) =

n∑

i=1

inv(tx̄i )x̄i .

We will say
n∑

i=1

inv(tx̄i )x̄i ≤
n∑

i=1

λi x̄i

if for every i = 1, . . . , n, we haveinv(tx̄i ) ≤ λi.

Definition 1 (Drinfeld) Let x = (x̄1, . . . , x̄n) be a collection of mutually distinct
k-points of X and letλ a collection of dominant coweightsλ1, . . . , λn ∈ Zd

+. A
λ-shtuka over xis a pair (V, t) whereV is a vector bundle of rank d over̄X and t
is a T̄ -modification withT̄ = {x̄1, . . . , x̄n}

t : σVT̄ ∼−→VT̄

with inv(t) ≤ ∑n
i=1 λi x̄i. HereσV denotes the pull-back ofV by the endomorphism

idX ⊗Fq σ of X⊗Fq k

These data have a moduli stack

c′λ : S′λ → Xn − ∆

where∆ is the union of all diagonals inXn. This moduli space can be continued
over the diagonals at the price of a small break of symmetry. Letx = (x̄1, . . . , x̄n) ∈
Xn(k) with possibly x̄i = x̄j. Then aλ-shtuka overx is a collection of vector
bundles of rankd

V0,V1, . . . ,Vd

over X̄ equipped with

• a collection of modifications

t1 : Vx̄1
1

∼−→Vx̄1
0 , . . . , tn : Vx̄n

n

∼−→Vx̄n
n−1

such that for everyi = 1, . . . , n, inv(ti) ≤ λi x̄i,
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• and an isomorphismeσV0
∼−→Vn.

For a pointx away from the diagonals∆, this definition is equivalent to Definition
1.1. Therefore the abovec′λ can be continued in a natural way to a obtain a smooth
morphism

cλ : Sλ → Xn.

For every finite subschemeI of X, one can define the notion of anI -level
structure of a shtuka. We also have a moduli space ofλ-shtukas withI -level
structure

cI
λ : SI

λ → (X − I )n.

This morphism is smooth, locally of finite type but in general not of finite type.
This lack of finiteness is one of the main difficulties that Lafforgue had to over-
come in his solution of Langlands’ correspondence forGLd over function fields
[5]. Since we want to focus into another aspect of moduli spaces of shtukas, we
prefer for the moment to avoid this difficulty by restricting ourself to the case of
D-shtukas associated to a division algebra.

Let D be a division algebra overF and letD be a maximalOX-algebra with
generic fiberD. Let X′ be the open ofX whereD is unramified. LetG = D×

asF-group. For every placev ∈ |X′|, Gv is isomorphic toGLd. We can define
the moduli space ofG-shtukas in completely similar way to shtukas forGLd and
obtain a morphism

cI
λ,a : (D− SI

λ)/a
Z → (X′ − I )n

which is a separated, proper and smooth morphism under the assumptionI , ∅.
Herea ∈ A×F is an idele withdeg(a) , 0 and the groupaZ acts freely on the moduli
space of shtukas by(V, t) 7→ (V ⊗ L(a), idL(a)) whereL(a) is the line bundle on
X associated to the idelea.

LetFλ be the intersection complex ofSI
λ. As usual, the restricted tensor prod-

uct
H I =

⊗

v∈|X′−I |
Hv

whereHv is the unramified Hecke algebra ofGv, acts by correspondences on

Ri(cI
λ,a)∗F I

λ

which is a local system on(X′ − I )n for all integeri.

Theorem 2 We have the following equality in the Grothendieck group of local
systems on(X′ − I )n equipped with action ofH I

∑

i

(−1)i[Ri(cI
λ,a)∗Fλ] =

⊕

π

m(π)πI ⊗
n⊗

i=1

pr∗iLλi (π)

3



whereπ runs over the set of automorphic representation of G(AF) where aZ acts
trivially, m(π) its multiplicity,Lλi (π) is the local system on X′ − I such that the
equality of L-functions holds

L(Lλi (π), s) = L(π, λi; s)

where L(π, λi; s) is the automorphic L-function associated toπ and to the repre-
sentation ofĜ of highest weightλi.

This statement is what one can expect from the cohomology of moduli space
of shtukas, according to Langlands’ philosophy.

2 Outline of the proof

In order ro simplify the exposition, we will restrict ourself to the casen = 1 and
λ = (λ1 ≥ · · · ≥ λd) with

∑
j λ

j = 0.
Let x̄ ∈ (X′− I )(k) with σs(x) = x whereσ denotes the action of the geometric

Frobenius on(X′ − I )(k). Let x be the closed point ofX′ − I supportingx̄.
Let T′ ⊂ X′ − I − {x} be a finite reduced subscheme and letλ′T′ : |T′| → Zd

+ be
an arbitrary function. Let

ΦT′,λ′
T′

=
⊗

v∈|T′ |
φλ′(v) ⊗

⊗

v<|T′ |
1v ∈ H I

whereφλ′(v) is the characteristic function of the double cosetG(Ov)λ′vG(Ov) in
G(Fv), and1v is the unit function.

One can use a similar method for counting points, due to Langlands and Kot-
twitz [3], in order to prove the following formula

Tr(σs ◦ ΦT′,λ′
T′

) =
∑

(γ0,δx)

vol(Jγ0,δx(F)aZ\Jγ0,δx(AF))

∏

v∈|X−T′−{x}|
Oγ0(1v)

∏

v∈|X′ |
Oγ0(φλ′(v))TOδx(ψλ,x̄) (1)

where

• γ0 is a conjugacy class ofG(F), δx is aσ-conjugacy class ofG(Fx ⊗Fq Fqs)
whose norm down toG(Fx) is the class ofγ0.

• J(γ0,δx) is theF-group which is an inner form of the centralizerGγ0 of γ0 such
that at a placev , x, (J(γ0,δx))v is isomorphic to(Gγ0)v and atx, (J(γ0,δx))x is
isomorphic to the twisted centralizer ofδx. This inner form is well defined
up to isomorphism.
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• The functionψλ,x̄ ∈ H(G(Fx ⊗Fq Fqs)) is defined as follows. Lety1, . . . , yr

be the places ofF ⊗Fq Fqs over x. Assume the geometric point̄x lies over
y1. Then we define

ψλ,x̄ = ψλ(y1) ⊗ 1y2 ⊗ · · · ⊗ · · · 1yr

where1y2, . . . , 1yr are the unit functions ofH(Gy2), . . . ,H(Gyr ) respectively.
The functionψλ(y1) ∈ H(Gy1) is the unique function whose the Satake trans-
form is the function onĜ(C) given by

ĝ 7→ Tr(ĝ,Vλ)

whereVλ is the irreducible representation ofĜ of highest weightλ.

I refer to [7] for the detailed proof of this counting point formula.
To prove the theorem, we need to transform (1) in to a sum without twisted

orbital integral. Namely, we want to prove that (1) is equal to the following sum

∑

γ0

vol(Gγ0(F)aZ\Gγ0(AF))
∏

v∈|X−T′−{x}|
Oγ0(1v)

∏

v∈|X′ |
Oγ0(φλ′(v))Oγ0(b(ψλ,x̄)) (2)

where
b : H(G(Fx ⊗Fq Fqs))→ H(G(Fx))

is the base change homomorphism. Once the equality(1) = (2) has been etab-
lished, it remains to apply Selberg to obtain the equality between the sum(2) and
the following

Tr


⊗

v∈|X−T′−{x}|
1v ⊗

⊗

v∈|T′ |
φλ′(v) ⊗ b(ψλ,x̄),L

2
(
aZG(F)\G(AF)

) (3)

and the theorem follows by a standard argument.
The above strategy is well known and goes back to Langlands and Kottwitz’s

work on Shimura varieties [2]. For the moduli space of shtukas, this is also done
by Drinfeld and Lafforgue with maybe some technical differences. The only new
point in our work concerns the proof of the identity(1) = (2). Usually, one needs
the fundamental lemma for base changein order to convert a twisted orbital inte-
gral into orbital integral, which is known inp-adic case due to works of Kottwitz,
Clozel and Labesse. In positive characteristic, the fundamental lemma for base
change was not written down except for the function associated to the minuscule
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coweight which is proved by a direct calculation due to Drinfeld [6], but it is
known to Henniart.

Our point is that one can prove the global base change identity(1) = (2) with-
out using local harmonic analysis but rather a combination of counting of points,
local model theory, a geometric interpretation of the base change homomorphism
in terms of perverse sheaves and Tchebotarev’s density theorem. We hope that
our method can be generalized to other situations.

3 Global base change identity

Equality (1) = (2) will be proved by counting points on two different moduli
spaces called A and B.

3.1 Situation A

The moduli space A is a scalar restriction à la Weil. Consider thes-fold product

(cI
λ,a)

s : (D− SI
λ/a

Z)s→ (X′ − I )s

of cI
λ,a : (D − SI

λ)/a
Z → X′ − I . This morphism comes with an action of the

symmetric groupSs and of the action by correspondences of(H I )⊗s. Let denote

[A] :=
∑

i

(−1)iR(cI
λ,a)

s
∗F £s

λ

the class in the Grothendieck group of local system on(X′ − I )s equipped with an
action of(H)s and with a compatible action ofSs. By the Kunneth formula,[A]
should be ⊕

π1,...,πs

s∏

i=1

m(πi)
s⊗

i=1

πI
i ⊗

s⊗

i=1

pr∗iLλ(πi) (4)

whereπ1, . . . , πs are automorphic representations ofG with trivial action of aZ.
It’s clear howSs and(H I )s should act on(4).

Assume for simplicity that the closed pointx supportingx̄ is of degree1. Let
x = (x̄, . . . , x̄) be the correponding point in the small diagonal of(X′ − I )s. By
usual properties of Weil’s scalar restriction,(1) is equal to

Tr(τ ◦ σ ◦ (1⊗ · · · ⊗ 1⊗ ΦT′,λ′
T′

), [A]x) (5)

whereτ ∈ Ss is the cyclic permutation.
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3.2 Situation B

Let us consider a particular collection of coweights

sλ = (λ, . . . , λ︸   ︷︷   ︸
s

)

and the associated moduli space of shtukas with "symmetric modifications"

cI
sλ : (D− SI

sλ)/a
Z → (X′ − I )s.

By the very definition, for everyτ ∈ Ss, the fiber ofcI
sλ over a point(x̄1, . . . , x̄s)

away from the union∆ of all diagonals, is canonically isomorphic with the fiber
overτ(x̄1, . . . , x̄s). This gives rises to a compatible action ofSs on the restriction
of

R(cI
sλ)∗Fsλ

to (X′−I )s−∆. Since this direct image is a local system, we can extend canonically
the action ofSs over the diagonals. Let denote

[B] =
∑

i

(−1)iR(cI
sλ)∗Fsλ

the class in the Grothendieck group of local systems equipped with an action of
H I and a compatible action ofSs.

Assuming Theorem 2,[B] should be

⊕

π

m(π)πI ⊗
s⊗

i=1

pr∗iLλ(π) (6)

Let x = (x̄, . . . , x̄) in the small diagonal as in 3.1. We want to compute

Tr(τ ◦ σ ◦ ΦT′,λ′
T′
, [B]x) (7)

whereτ is the cyclic permutation like in 3.1. A priori, it is not obvious how to
compute this trace by counting points, since the action of the symmetric group is
not concretely defined over the diagonals. This is however possible using local
model theory and the geometric interpretation of the base change homomorphism
in terms of perverse sheaves on the affine Grassmannian. What we get finally is
(2) = (7).

3.3 Main observation

To prove(1) = (2) is now equivalent to proving(5) = (7). We can in fact prove a
more general equality.
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Theorem 3 For all ξ ∈ π1((X′ − I )s) andφ ∈ H I and for the cyclic permutation
τ ∈ Sr , we have

Tr(τ ◦ ξ ◦ (1⊗ · · · ⊗ 1︸      ︷︷      ︸
s−1

⊗Φ), [A]x) = Tr(τ ◦ ξ ◦ Φ, [B]x) (8)

Heuristically, assuming Theorem 2, equality(8) can be proved as follows. In
comparing(6) with (4) one can observe that(6) consists essentially in the diagonal
termsπ1 = · · · = πs of (4), up to multiplicity. But the non-diagonal terms of(4) are
permuted around byτ and therefore don’t contribute to the trace. The diagonals
terms of(4) give now the same trace as(6) according to the following general
linear algebra lemma which is implicit in papers of Saito and Shintani on base
change.

Lemma 4 Let V be a finite dimensional vector space over some field K. Let f be
any endomorphism of V. Then

Tr( f ,V) = Tr(τ ◦ (1⊗ · · · ⊗ 1︸      ︷︷      ︸
s−1

⊗ f ),V⊗s)

whereτ is the cyclic permutation.

3.4 Tchebotarev’s density theorem

The rigourous proof of Theorem 3 makes essential use of Tchebotarev’s density
theorem. LetU = (X′ − I )s − ∆ be the complement of the union of all diagonals.
Let Ũ = U/〈τ〉 the free quotient ofU by the cyclic group〈τ〉 = Z/sZ generated
by τ. One has the exact sequence of fundamental groupoids

1→ π1(U)→ π1(Ũ)→ Z/sZ→ 1.

Any closed point̃u ∈ |Ũ | gives rises to a conjugacy classFrob̃u of π1(Ũ). A closed
point ũ ∈ |Ũ | is calledcyclic if the image ofFrob̃u in Z/sZ is the generatorτ. By
Tchebotarev’s theorem, it is enough to prove

Tr(Frob̃u ◦ (1⊗ · · · ⊗ 1︸      ︷︷      ︸
s−1

⊗Φ), [A]) = Tr(Frob̃u ◦ Φ, [B])

for all cyclic closed points̃u ∈ |Ũ | and for allΦ ∈ H I .
Since we are away from the diagonals one can compute the above traces by

counting points without using local model theory. The nice feature of cyclic points
is that in the expressions of traces of cyclic points on[A] and[B], there are no
twisted orbital integrals. The expressions we get for the traces of cyclic points on
[A] and on[B], are in fact identical.
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Note that even outside the diagonals, if we takeFrob2
ũ instead ofFrob̃u, the

expressions we gets for the traces on[A] and[B] are no longer identical due to
the apperance of twisted orbital integrals on both side. Therefore our proof relies
heavily on Tchebotarev’s theorem.

The proof in the casen > 1 is a little more complicated since the closed
points of Xns/(Z/sZ) are not as nice as those ofXs/(Z/sZ). For that case, we
made essential use of a theorem of Drinfeld asserting that the representations of
π1((X′ − I )ns) on [A] and on[B] factor throughπ1(X′ − I )ns. Consequently, instead
of closed pointsXns/(Z/sZ) we can take collections ofn cyclic closed points of
Xs/(Z/sZ). We refer again to [7] for more details.
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RESTRICTION OF HERMITIAN MAASS LIFTS AND
THE GROSS-PRASAD CONJECTURE

(JOINT WITH T. IKEDA)

ATSUSHI ICHINO

This note is a report on a joint work with Tamotsu Ikeda [12].
After the discovery of the integral representation of triple prod-

uct L-functions by Garrett [5], Harris and Kudla [10] determined the
transcendental parts of the central critical values of triple product L-
functions. The transcendental parts behaves differently according to
whether the weights are “balanced” or not. In the “balanced” case,
the critical values of triple product L-functions have also been studied
by Garrett [5], Orloff [18], Satoh [20], Garrett and Harris [6], Gross
and Kudla [7], Böcherer and Schulze-Pillot [4], and so on. By contrast,
in the “imbalanced” case, there are no results on the critical values of
triple product L-functions except [10] to our knowledge. We express
certain period integrals of Maass lifts which appear in the Gross-Prasad
conjecture [8], [9], as the algebraic parts of the central critical values
in the “imbalanced” case.

1. The Gross-Prasad conjecture

In [8], [9], Gross and Prasad suggested that the central values of cer-
tain L-functions control a global obstruction of blanching rules for auto-
morphic representations of special orthogonal groups. Let V be a non-
degenerate quadratic space of dimension n over a number field k and
H = SO(V ) the special orthogonal group of V . Take a non-degenerate
quadratic subspace V ′ of V of dimension n−1 and regard H ′ = SO(V ′)
as a subgroup of H. Let τ ' ⊗vτv (resp. τ ′ ' ⊗vτ

′
v) be an irreducible

cuspidal automorphic representation of H(Ak) (resp. H ′(Ak)).

Conjecture 1.1 (Gross-Prasad). Assume that τ and τ ′ are both tem-
pered. Then the period integral

〈G|H′ , F 〉 =

∫

H′(k)\H′(Ak)

G(h)F (h) dh

does not vanish for some G ∈ τ and some F ∈ τ ′ if and only if

(i) HomH′(kv)(τv, τ
′
v) 6= 0 for all places v of k,

(ii) L(1/2, τ × τ ′) 6= 0.

Remark that a meromorphic continuation of the L-function L(s, τ ×
τ ′) has not been established in general, however, it could be described
in terms of L-functions of general linear groups by the functoriality.
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We also note that the conjecture is supported by the results of Wald-
spurger [22] for n = 3, Harris and Kudla [10], [11] for n = 4, Böcherer,
Furusawa, and Schulze-Pillot [3] for n = 5.

Gross and Prasad restricted their conjecture to the tempered cases.
According to the Arthur conjecture [2], non-tempered cuspidal auto-
morphic representations exist, and if τ or τ ′ is non-tempered, then
the L-function L(s, τ × τ ′) could have a pole at s = 1/2. Hence a
modification to the condition (ii) would be inevitable if one consider
the Gross-Prasad conjecture in general (see [3] for n = 5). Our result
provides an example for n = 6 when τ , τ ′ are both non-tempered. Re-
mark that the triple product L-function considered in this note is only
of degree 8 and is a part of the L-function L(s, τ × τ ′) of degree 24.

2. Saito-Kurokawa lifts

First, we review the notion of Saito-Kurokawa lifts [16], [17], [1], [23].
Let k be a positive even integer. Let

F (Z) =
∑
B>0

A(B)e2π
√−1 tr(BZ) ∈ Sk(Sp2(Z)), Z ∈ h2

be a Siegel modular form of degree 2. Here h2 is the Siegel upper half
plane given by

h2 =
{
Z = tZ ∈ M2(C) | Im(Z) > 0

}
.

We say that F satisfies the Maass relation if there exists a function
β∗F : N→ C such that

A

((
n r/2

r/2 m

))
=

∑

d|(n,r,m)

dk−1β∗F

(
4nm− r2

d2

)
.

We denote by SMaass
k (Sp2(Z)) the space of Siegel cusp forms which

satisfy the Maass relation.
Kohnen [13] introduced the plus subspace S+

k−1/2(Γ0(4)) given by

S+
k−1/2(Γ0(4)) = {h(τ) =

∑
N>0

c(N)qN ∈ Sk−1/2(Γ0(4)) |

c(N) = 0 if −N 6≡ 0, 1 mod 4}.
For F ∈ SMaass

k (Sp2(Z)), put

ΩSK(F )(τ) =
∑
N≥0

−N≡0,1 mod 4

β∗F (N)qN .

Then ΩSK(F ) ∈ S+
k−1/2(Γ0(4)), and the linear map

ΩSK : SMaass
k (Sp2(Z)) −→ S+

k−1/2(Γ0(4))

is an isomorphism.
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3. Hermitian Maass lifts

Next, we recall an analogue of Saito-Kurokawa lifts for hermitian
modular forms by Kojima [14], Sugano [21], and Krieg [15]. Let K =
Q(
√−D) be an imaginary quadratic field with discriminant −D < 0,

O the ring of integers of K, wK the number of roots of unity contained
in K, and χ be the primitive Dirichlet character corresponding to K/Q.
Write

χ =
∏

q∈QD

χq,

where QD is the set of all primes dividing D and χq is a primitive
Dirichlet character mod qordq D for each q ∈ QD.

Let k be a positive integer such that wK | k. Let

G(Z) =
∑

H∈Λ2(O)+

A(H)e2π
√−1 tr(HZ) ∈ Sk(U(2, 2)), Z ∈ H2

be a hermitian modular form of degree 2. Here H2 is the hermitian
upper half plane given by

H2 =

{
Z ∈ M2(C)

∣∣∣∣
1

2
√−1

(Z − tZ̄) > 0

}
,

and

Λ2(O)+ =

{
H = tH̄ ∈ 1√−D

M2(O)

∣∣∣∣ diag(H) ∈ Z2, H > 0

}
.

We say that G satisfies the Maass relation if there exists a function
α∗G : N→ C such that

A(H) =
∑

d|ε(H)

dk−1α∗G

(
D det(H)

d2

)
,

where
ε(H) = max{n ∈ N |n−1H ∈ Λ2(O)+}.

We denote by SMaass
k (U(2, 2)) the space of hermitian cusp forms which

satisfy the Maass relation.
Krieg [15] introduced the space S∗k−1(Γ0(D), χ) which is an analogue

of the Kohnen plus subspace and is given by

S∗k−1(Γ0(D), χ) = {g∗(τ) =
∑
N>0

ag∗(N)qN ∈ Sk−1(Γ0(D), χ) |

ag∗(N) = 0 if aD(N) = 0},
where

aD(N) =
∏

q∈QD

(1 + χq(−N)).

Let
g(τ) =

∑
N>0

ag(N)qN ∈ Sk−1(Γ0(D), χ)
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be a primitive form. For each Q ⊂ QD, set

χQ =
∏
q∈Q

χq, χ′Q =
∏

q∈QD−Q

χq.

Then there exists a primitive form

gQ(τ) =
∑
N≥0

agQ
(N)qN ∈ Sk−1(Γ0(D), χ)

such that

agQ
(p) =

{
χQ(p)ag(p) if p /∈ Q,

χ′Q(p)ag(p) if p ∈ Q,

for each prime p. Put

(3.1) g∗ =
∑

Q⊂QD

χQ(−1)gQ.

Then g∗ ∈ S∗k−1(Γ0(D), χ). When g runs over primitive forms in
Sk−1(Γ0(D), χ), the forms g∗ span S∗k−1(Γ0(D), χ).

For G ∈ SMaass
k (U(2, 2)), put

Ω(G)(τ) =
∑
N>0

aD(N)α∗G(N)qN .

Then Ω(G) ∈ S∗k−1(Γ0(D), χ), and the linear map

Ω : SMaass
k (U(2, 2)) −→ S∗k−1(Γ0(D), χ)

is an isomorphism.

4. Statement of the main theorem

Let k be a positive integer such that wK | k. Let f ∈ S2k−2(SL2(Z))
be a primitive form and h(τ) =

∑
N>0 c(N)qN ∈ S+

k−1/2(Γ0(4)) a

Hecke eigenform which corresponds to f by the Shimura correspon-
dence. Note that h is unique up to scalars. Let F = (ΩSK)−1(h) ∈
SMaass

k (Sp2(Z)) be the Saito-Kurokawa lift of f . Define the Petersson
norms of f and F by

〈f, f〉 =

∫

SL2(Z)\h1

|f(τ)|2y2k−4dτ,

〈F, F 〉 =

∫

Sp2(Z)\h2

|F (Z)|2| det Im(Z)|k−3dZ,

respectively.
Let g(τ) =

∑
N>0 ag(N)qN ∈ Sk−1(Γ0(D), χ) be a primitive form

and G = Ω−1(g∗) ∈ SMaass
k (U(2, 2)) the hermitian Maass lift of g, where

g∗ ∈ S∗k−1(Γ0(D), χ) is given by (3.1). Observe that h2 ⊂ H2, and by
[15], the restriction G|h2 belongs to SMaass

k (Sp2(Z)).
The completed triple product L-function Λ(s, g × g × f) is given by

Λ(s, g×g×f) = (2π)−4s+4k−8Γ(s)Γ(s−2k+4)Γ(s−k+2)2L(s, g×g×f),
4



and satisfies a functional equation which replaces s with 4k − 6− s.
Our main result is as follows.

Theorem 4.1.

Λ(2k − 3, g × g × f)

〈f, f〉2 = −24k−6D−2k+3c(D)2 〈G|h2 , F 〉2
〈F, F 〉2

5. Proof

Theorem 4.1 follows from the following seesaws.

(5.1) O(4, 2)

PPPPPPPPPPPPPP S̃L2 × S̃L2 O(2, 2)

nnnnnnnnnnnnnn

O(3, 2)×O(1)

nnnnnnnnnnnn
SL2 O(2, 1)×O(1)

PPPPPPPPPPPP

(5.2) Sp6

HHHHHHHHH
O(2, 2)3

vvvvvvvvv

SL3
2 O(2, 2)

To explain these seesaws more precisely, we introduce some notation.
In [13], Kohnen defined a linear map

S+
−D : S+

k−1/2(Γ0(4)) −→ S2k−2(SL2(Z)),

∑
N>0

c(N)qN 7−→
∑
N>0

∑

d|N
χ(d)dk−2c

(
N2

d2
D

)
qN .

If h(τ) =
∑

N>0 c(N)qN ∈ S+
k−1/2(Γ0(4)) is a Hecke eigenform and

corresponds to f ∈ S2k−2(SL2(Z)) by the Shimura correspondence, then

S+
−D(h) = c(D)f.

Let TrD1 denote the trace operator given by

TrD1 : S2k−2(Γ0(D)) −→ S2k−2(SL2(Z)),

f 7−→
∑

γ∈Γ0(D)\ SL2(Z)

f |γ.

The seesaw (5.1) accounts for the following identity.

Proposition 5.1.

S+
−D(ΩSK(G|h2)) = ag(D)2 TrD1 (g2).

This identity is proved by computing the Fourier coefficients of the
both sides explicitly.

The seesaw (5.2) accounts for the following refinement of the main
identity by Harris and Kudla [10].

5



Proposition 5.2.

Λ(2k − 3, g × g × f) = −24k−6D−2k+3ag(D)4〈TrD1 (g2), f〉2

This identity is proved by computing the local zeta integrals which
arise in the integral representation of triple product L-functions by
Garrett [5], Piatetski-Shapiro and Rallis [19] at bad primes.

Now Theorem 4.1 follows from Propositions 5.1 and 5.2.

References

[1] A. N. Andrianov, Modular descent and the Saito-Kurokawa conjecture, Invent.
Math. 53 (1979), 267–280.

[2] J. Arthur, Unipotent automorphic representations: conjectures, Astérisque
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MULTIPLICITIES OF CUSP FORMS

WEE TECK GAN

1. Introduction

Let G be a connected simple linear algebraic group defined over a number field
F . It is a basic problem in the theory of automorphic forms to describe the spectral
decomposition of the unitary representation L2(G(F )\G(A)) of G(A). Such a unitary
representation possesses an orthogonal decompostion

L2(G(F )\G(A)) = L2
disc ⊕ L2

cont

into the direct sum of its discrete spectrum and its continuous spectrum. Let us write:

L2
disc =

⊕
π

mdisc(π) · π.

It is known that the discrete multiplicities mdisc(π) are finite. The discrete spectrum
has a further orthogonal decomposition

L2
d(G(F )\G(A)) = L2

cusp ⊕ L2
res

where L2
cusp is the subspace of cusp forms, and L2

res is the so-called residual spectrum.
Let us write:

L2
cusp = ⊕̂πmcusp(π) · π and L2

res = ⊕̂πmres(π) · π.
In this talk, we consider the following two simple-minded questions:

(A) Does there exist π such that mcusp(π) ·mres(π) 6= 0?

(B) Can the collection of non-negative integers {mcusp(π)} be unbounded?

Here are some prior results on these questions:

(i) When G = PGLn, the results of Jacquet-Shalika [JS] and the multiplicity one
theorem imply that mdisc(π) ≤ 1 and thus the answers are negative for both questions.

(ii) When G = SL2, it is a recent result of Ramakrishnan [R] that mdisc(π) ≤ 1.

(iii) For a more general classical group G , it is known that mcusp(π) can be > 1.
Examples of such failure of multiplicity one were constructed by Labesse-Langlands
[LL] for the inner forms of SL2, by Blasius [B] for SLn (with n ≥ 3) and by Li [L]
for quaternionic unitary groups. However, in these examples, the multiplicities are
bounded above by a number depending only on the given G.

In this talk, I will discuss the following theorem, which was obtained jointly with N.
Gurevich and D.-H. Jiang in [GGJ]:

A talk given at the conference “Automorphic forms and representations of algebraic groups over
local fields” at RIMS, Kyoto, 20-24th January 2003.
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Theorem 1.1. When G = G2, both questions A and B have positive answers. More
precisely, for each finite set S of places of F , with #S ≥ 2, there is an irreducible
unitary representation πS of G2(A) with

{
mres(πS) = 1,

mdisc(πS) ≥ 1
6
(2#S + (−1)#S2).

The representations πS of the theorem are very degenerate: their local components
are non-tempered and non-generic. They are the so-called unipotent representations.
This may lead one to think that the phenomenon of unbounded cuspidal multiplicities
only happens for very degenerate representations. However, as we explain in Section
3, it should already occur for representations in tempered L-packets. We shall discuss
in Section 5 how we intend to construct these tempered representations of arbitrarily
high cuspidal multiplicities.

In fact, the unboundedness of discrete multiplicities for G2 is a consequence of a
famous conjecture of J. Arthur (see [A1] and [A2]). Hence, we shall begin by reviewing
his conjecture in the following section.

2. My Understanding of Arthur’s Conjecture

In this section, we shall briefly discuss Arthur’s conjecture on L2
disc(G(F )\G(A)).

For simplicity, we assume that G is split, simple and simply-connected, so that the

dual group Ĝ is adjoint. We begin by introducing some notations.

Let LF denote the Langlands group of F (whose existence is still conjectural). For
the purpose of understanding Arthur’s conjecture, there is no loss in pretending that
LF is the absolute Galois group of F . For each place v of F , one also has a local group
LFv , and there should be a natural class of embeddings LFv ↪→ LF . The group LFv is
actually known to exist: it is the Weil group if v is archimedean and the Weil-Deligne
group if v is finite.

By an Arthur parameter for G, we mean a Ĝ-conjugacy class of homomorphisms

ψ : LF × SL2(C) −→ Ĝ

so that the following conditions hold:

• ψ(LF ) is bounded in Ĝ;
• the centralizer Sψ of the image of ψ is finite.

Given ψ, Arthur defined a quadratic character εψ of Sψ. In the examples we will look
at later, εψ turns out to be the trivial character. Hence we will not bother to go into
the general definition here.

We will describe the conjecture in the statements A, B and C below.

(A) There is a decomposition:

L2
disc(G(F )\G(A)) =

⊕

ψ

L2[ψ],

2



indexed by the Arthur parameters for G.

Fix a parameter ψ. We must now describe the G(A)-module L2[ψ]. Using the
embedding LFv ↪→ LF , we obtain local parameters

ψv : LFv × SL2(C) ↪→ Ĝ.

Let us set:

• Sψv = the finite group of components of the centralizer of the image of ψv.
• Sψ,A =

∏
v Sψv , a compact group.

• ∆ : Sψ −→ Sψ,A, the natural diagonal map.

(B) For each place v of F , there is a finite subset Aψv of unitary representations of
G(Fv) associated to ψv; this is the so-called local Arthur packet. This finite set is
indexed by the irreducible characters of Sψv :

Aψv = {πηv : ηv ∈ Ŝψv}.
Moreover, it should satisfy the following conditions:

• for almost all v where ψv|LFv is unramified, π1v is the irreducible unramified
representation with Satake parameter

sψv := ψv

(
Frobv ×

(
q
1/2
v

q
−1/2
v

))
.

• a particular linear combination of the characters of the πηv ’s is a stable distri-
bution.

• certain identities involving transfer to endoscopic groups hold.

Here we have not described the last two conditions precisely as they will not be relevant
for us in this talk.

If η =
⊗

v ηv is an irreducible character of Sψ,A, then we may set

πη =
⊗
v

πηv .

This is possible because for almost all v, ηv = 1v and π1v is required to be unramified
by the above. We can now state the last statement of Arthur’s conjecture:

(C) The G(A)-submodule L2[ψ] has a decomposition given by:

L2[ψ] =
⊕

η∈ dSψ,A

mη · πη

where

mη = 〈ε,∆∗(η)〉Sψ
is the multiplicity of ε in the representation ∆∗(η) of Sψ.

This concludes our discussion of Arthur’s conjecture.
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3. The Example of G2

Now we examine the special case when G = G2 so that Ĝ = G2(C). We shall write
down some Arthur parameters for G2 and see what Arthur’s conjecture says for them.
Essentially, the only fact we need to know about G2 is the following:

Lemma 3.1. G2(C) contains a subgroup isomorphic to SO3(C)× S3, where S3 is the
symmetric group on 3 letters. Moreover, the centralizer of SO3(C) is precisely S3.

The map SL2(C) → SO3(C) ↪→ G2(C) corresponds via the Jacobson-Morozzov
theorem to the subregular unipotent orbit in G2(C). With this lemma in hand, we can
now write down our first family of Arthur parameters.

3.1. Cubic unipotent parameters. Let E be an étale cubic F -algebra. Then E
corresponds to a conjugacy class of maps

ρE : LF −→ Gal(F/F ) −→ S3.

Using ρE and the natural projection map from SL2(C) to SO3(C), we set:

ψE : LF × SL2(C) −→ S3 × SO3(C) ↪→ G2(C).

The maps ψE are the cubic unipotent Arthur parameters.

For simplicity, we shall only consider the case when E = E0 is the split algebra
F × F × F . In this case, ρE0 is the trivial map, and so we have:{

SψE0
= SψE0

,v = S3

SψE0
,A = S3(A).

The map Sψ → Sψ,A is simply the natural embedding S3(F ) ↪→ S3(A).

What does Arthur’s conjecture say for the parameter ψE0? Well, statement B pre-
dicts that for each place v, the corresponding local Arthur packet has 3 members
indexed by the irreducible characters of S3. So we have:

AψE0
= {π1v , πrv , πεv}

where εv is the sign character of S3 and rv is the 2-dimensional one. Further, for S a
finite set of places of F , let

ηS = (⊗v∈Srv)
⊗

(⊗v/∈S1v) .

Then statement C predicts that the representation

πS := πηS = (⊗v∈Sπrv)
⊗

(⊗v/∈Sπ1v)

occurs in L2[ψE0 ] with multiplicity equal to the multiplicity of the trivial representation
in r ⊗ r ⊗ ....⊗ r (#S times). A quick computation gives:

mdisc(πS) ≥ 1

6
· (2#S + (−1)#S2),

which is one of the main claims of Theorem 1.1. Thus Arthur’s conjecture predicts
the existence of a family of representations {πS} whose discrete multiplicities are un-
bounded as #S →∞.
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3.2. Some Tempered Parameters. Now we consider some tempered Arthur pa-
rameters, i.e. those for which ψ is trivial on SL2(C). Let us start with a cuspidal
representation τ of PGL2 such that

τv =

{
Steinberg representation for v ∈ Sτ ;
an unramified representation for v /∈ Sτ

for some finite set Sτ of finite places of F . Conjecturally, τ corresponds to a map
φτ : LF −→ SL2(C). Because of our assumptions, the map φτ is surjective; in fact,
for v ∈ Sτ , the local parameter φτv is already surjective, since it corresponds to the
Steinberg representation.

Now we construct an Arthur parameter for G2 using φτ as follows:

ψτ : LF −→ SL2(C) → SO3(C) ↪→ G2(C).

Then we have: {
Sψτ = Sψτ ,v = S3 for all v ∈ Sτ .
Sψτ ,v = {1} for all v /∈ Sτ .

In particular, statement B in Arthur’s conjecture predicts that the local packets have
the following form:

Aψτ ,v =

{
{π′1v

, π′rv , π
′
εv} if v ∈ Sτ ;

{π′1v
} if v /∈ Sτ .

Moreover, the representations in the local packets should be tempered.

In fact, the parameter ψτ is an example of Langlands parameter considered by
Lusztig. Hence, in this case, the local packet Aψτ ,v has already been defined, and
it does consist of 3 discrete series representations (see [GrS]).

Finally, if we set

πτ =
(⊗v∈Sτπ

′
rv

) ⊗ (⊗v/∈Sτπ
′
1v

)
,

then statement C in Arthur’s conjecture implies that

mdisc(πτ ) ≥ 1

6
· (2#Sτ + (−1)#Sτ2).

In fact, since the representation π′τ is tempered, it cannot occur in the residual spec-
trum, and so we have

mcusp(πτ ) ≥ 1

6
· (2#Sτ + (−1)#Sτ2).

Now one can find cuspidal representations τ of PGL2 of the above type and with Sτ
as big as one wishes (using the trace formula for example). Hence, Arthur’s conjecture
predicts that one can find a family of tempered representations of G2(A) whose cuspidal
multiplicities are unbounded.
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4. Construction of Unipotent Cusp Forms

In this section, we explain how one constructs the unipotent representation πS and
demonstrates Theorem 1.1.

Let H be the disconnected linear algebraic group Spin8 o S3. For each place v
of F , the group H(Fv) has a distinguished representation Πv known as the minimal
representation. To be more precise, Πv is a particular extension to H(Fv) of the
unramified representation of Spin8(Fv) whose Satake parameter is

ι

(
q
1/2
v

q
−1/2
v

)

where ι : SL2(C) −→ PGSO8(C) is the map associated to the subregular unipotent
orbit of the dual group PGSO8(C).

Now H contains the subgroup S3 ×G2, and one may restrict the representation Πv

to the subgroup S3(Fv)×G2(Fv) to get:

Πv =
⊕

ηv∈Ŝ3(Fv)

ηv ⊗ πηv .

In the beautiful papers [HMS] and [V], Huang-Magaard-Savin (for non-archimedean v)
and Vogan (for archimedean v) showed that each πηv is a non-zero irreducible unitariz-
able representation and the πηv ’s are mutually distinct. Moreover, the representations
πηv can be completely determined, and π1v is unramified with Satake parameter sψE0,v

.
In view of these results, it seems natural to take the set of representations πηv as the
elements of the local Arthur packet AψE0,v

.

Consider now the global situation. If Π = ⊗vΠv, then as an abstract representation
of S3(A)×G2(A), we have:

Π =
⊕
η

η ⊗ πη

as η = ⊗vηv ranges over the irreducible representations of S3(A). In particular, for
each η, we have an embedding

ιη : η ⊗ πη ↪→ Π.

Using residues of Eisenstein series, one can construct a Spin8(A)-equivariant embed-
ding

Θ : Π ↪→ A2(Spin8)

of Π into the space of square-integrable automorphic forms of Spin8. For each η, we
may now define a G2(A)-equivariant map Θη as follows:

Θη : η ⊗ πη
ιη−−−→ Π

Θ−−−→ A2(Spin8)
restriction−−−−−→ {functions on G2(F )\G2(A)}.

Then the following was proved in [GGJ]:
6



Theorem 4.1. (i) The image of Θη is contained in A2(G2).

(ii) The restriction of Θη to the subspace ηS3(F ) ⊗ πη is injective.

The proof of the theorem is not difficult; it involves showing the non-vanishing
of certain Fourier coefficients. Also, it is easy to see that the restriction of Θη to
(ηS3(F ))⊥ ⊗ πη is identically zero. In any case, the theorem immediately implies that

mdisc(πS) ≥ 1

6
· (2#S + (−1)#S2).

In fact, in [G], we show that equality holds when F is totally real.

To complete the proof of Theorem 1.1, one may appeal to the determination of the
residual spectrum of G2 by H. Kim [K] and S. Zampera [Z]. Their results show that
L2
res has the multiplicity one property, and further that mres(πS) = 1. This concludes

the proof of Theorem 1.1.

5. Potential Construction of some Tempered Cusp Forms

Finally, we would like to explain how we expect to show that the tempered repre-
sentation πτ discussed in Section 3 has cuspidal multiplicity at least that predicted by
Arthur’s conjecture.

The parameter

ψτ : LF −→ SO3(C) ↪→ G2(C)

actually factors as:

ψτ : LF −→ SO3(C) ↪→ SL3(C) ↪→ G2(C).

Hence, instead of lifting the cuspidal representation τ of PGL2 directly to G2, one may
first lift it to a cuspidal representation of PGL3. This is precisely the Gelbart-Jacquet
lift, and we denote this cuspidal representation of PGL3 by GJ(τ). Note that

GJ(τ)v =

{
the Steinberg representation Stv if v ∈ Sτ ;
a specific unramified representation if v /∈ Sτ .

Now it turns out that PGL3 × G2 is a dual pair in the split (adjoint) exceptional
group of type E6. This suggests that we may use exceptional theta correspondence to
lift GJ(τ) from PGL3 to G2: hopefully we will get the representation πτ . For this to
work out, one should first verify that under local theta correspondence, the Steinberg
representation Stv of PGL3(Fv) lifts to the representation π′r of G2(Fv). However, it
was shown in [GS] that the theta lift of Stv is equal to π′1 ⊕ π′ε. So this doesn’t work
out as planned.

Thankfully, a homomorphism LF −→ SL3(C) is not just a Langlands parameter for
PGL3; it is also a parameter for any inner form of PGL3. Such an inner form is of the
form PD× where D is a degree 3 division algebra. Over a p-adic field Fv, there are
two such division algebras: Dv and its opposite Dopp

v . Being opposite algebras, their
groups of invertible elements define isomorphic algebraic groups. Thus, locally, PGL3

has precisely one inner form PD×.
7



Now under the local Jacquet-Langlands correspondence, the Steinberg representation
Stv corresponds to the trivial representation 1v of PD×(Fv). Moreover, PD× ×G2 is
a dual pair in an inner form of E6. It was shown in [S] that the local theta lift of 1v is
indeed equal to π′r.

Hence we are led to the following strategy for embedding πτ into L2
cusp. Choose a

global division algebra D of degree 3 which is ramified precisely at the set Sτ . Then
one lifts τ from PGL2 to G2 as follows:

PGL2
Gelbart-Jacquet−−−−−−−−−→ PGL3

Jacquet-Langlands−−−−−−−−−−→ PD× theta lift−−−−−→ G2

τ −−−→ GJ(τ) −−−→ JLD(GJ(τ)) −−−→ Θ(JLD(GJ(τ))).

As an abstract representation, Θ(JLD(GJ(τ))) is indeed isomorphic to πτ (if it is
non-zero).

How does the multiplicity 1
6
· (2#Sτ + (−1)#Sτ2) arise in this case? The answer lies

in the following lemma:

Lemma 5.1. The number of global division algebras of degree 3 ramified precisely at
a set S is equal to

1

3
· (2#S + (−1)#S2).

In particular, the number of inner forms of PGL3 which are ramified at the set S is
half of the above number.

Note that the various inner forms of the lemma are non-isomorphic as algebraic
groups, but their groups of adelic points are abstractly isomorphic. Thus the reason
for the high multiplicity here is the failure of Hasse principle for the inner forms of
PGL3!

In order for the above strategy to work, it remains to show:

• the non-vanishing of the theta lift Θ(JLD(GJ(τ)));
• the various Θ(JLD(GJ(τ)))’s generate linearly independent copies of πτ in
L2
cusp.

At the moment, we are still trying to resolve these questions.
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ON THE LIFTING OF HERMITIAN MODULAR
FORMS

TAMOTSU IKEDA

Notation

Let K be an imaginary quadratic field with discriminant −D =
−DK . We denote by O = OK the ring of integers of K. The non-trivial
automorphism of K is denoted by x 7→ x̄. The primitive Dirichlet
character corresponding to K/Q is denoted by χ = χD. We denote by
O] = (

√−D)−1O the inverse different ideal of K/Q.
The special unitary group G = SU(m,m) is an algebraic group de-

fined over Q such that

G(R) =

{
g ∈ SL2m(R⊗K) g

(
0m −1m

1m 0m

)
tḡ =

(
0m −1m

1m 0m

)}

for any Q-algebra R. We put Γ
(m)
K = G(Q) ∩GL2m(O).

The hermitian upper half space Hm is defined by

Hm = {Z ∈ Mm(C) | 1

2
√−1

(Z − tZ̄) > 0}.

Then G(R) acts on Hm by

g〈Z〉 = (AZ + B)(CZ + D)−1, Z ∈ Hm, g =

(
A B
C D

)
.

We put

Λm(O) = {h = (hij) ∈ Mm(K) |hii ∈ Z, hij = h̄ji ∈ O], i 6= j},
Λm(O)+ = {h ∈ Λm(O) |h > 0}.

We set e(T ) = exp(2π
√−1tr(T )) if T is a square matrix with entries

in C. For each prime p, the unique additive character of Qp such
that ep(x) = exp(−2π

√−1x) for x ∈ Z[p−1] is denoted ep. Note that
ep is of order 0. We put eA(x) = e(x∞)

∏
p<∞ ep(xp) for an adele

x = (xv)v ∈ A.
1



Let χ = ⊗vχv
be the Hecke character of A×/Q× determined by χ.

Then χ
v

is the character corresponding to Qv(
√−D)/Q and given by

χ
v
(t) =

(−D, t

Qv

)
.

Let QD be the set of all primes which divides D. For each prime
q ∈ QD, we put Dq = qordqD. We define a primitive Dirichlet character
χq by

χq(n) =

{
χ(n′) if (n, q) = 1

0 if q|n,

where n′ is an integer such that

n′ ≡
{

n mod Dq,

1 mod D−1
q D

Then we have χ =
∏

q|D χq. Note that

χq(n) =

(
χq(−1)Dq, n

Qq

)
=

∏

p|n

(
χq(−1)Dq, n

Qp

)

for q - n, n > 0. One should not confuse χq with χ
q
.

1. Fourier coefficients of Eisenstein series on Hm

In this section, we consider Siegel series associated to non-degenerate
hermitian matrices. Fix a prime p. Put ξp = χ(p), i.e.,

ξp =





1 if −D ∈ (Q×p )2

−1 if Qp(
√−D)/Qp is unramified quadratic extension

0 if Qp(
√−D)/Qp is ramified quadratic extension.

For H ∈ Λm(O), det H 6= 0, we put

γ(H) = (−D)[m/2] det(H)

ζp(H) = χ
p
(γ(H))m−1.

The Siegel series for H is defined by

bp(H, s) =
∑

R∈Herm(Kp)/Herm(Op)

ep(tr(BR))p− ordp(ν(R))s, Re(s) À 0.

Here, Herm(Kp) (resp. Herm(Op)) is the additive group of all hermitian
matrices with entries in Kp (resp. Op). The ideal ν(R) ⊂ Zp is defined

2



as follows: Choose a coprime pair {C, D}, C, D ∈ M2n(Op) such that
C tD̄ = D tC̄, and D−1C = R. Then ν(R) = det(D)Op ∩ Zp.

We define a polynomial tp(K/Q; X) ∈ Z[X] by

tp(K/Q; X) =

[(m+1)/2]∏
i=1

(1− p2iX)

[m/2]∏
i=1

(1− p2i−1ξpX).

There exists a polynomial Fp(H; X) ∈ Z[X] such that

Fp(H; p−s) = bp(H, s)tp(K/Q; p−s)−1.

This is proved in [9].
Moreover, Fp(H; X) satisfies the following functional equation:

Fp(H; p−2mX−1) = ζp(H)(pmX)−ordpγ(H)Fp(H; X).

This functional equation is a consequence of [7], Proposition 3.1. We
will discuss it in the next section.

The functional equation implies that degFp(H; X) = ordpγ(H). In
particular, if p - γ(H), then Fp(H; X) = 1. Put

F̃p(H; X) = X−ordpγ(H)Fp(H; p−mX2).

Then following lemma is a immediate consequence of the functional
equation of F (H; X).

Lemma 1. We have

F̃p(H; X−1) = F̃p(H; X), if m is odd.

F̃p(H; ξpX
−1) = F̃p(H; X), if m is even and ξp 6= 0.

Let k be a sufficiently large integer. Put n = [m/2]. The Eisenstein

series E
(m)
2k+2n(Z) of weight 2k + 2n on Hm is defined by

E
(m)
2k+2n(Z) =

∑

{C,D}/∼
det(CZ + D)−2k−2n,

where {C, D}/ ∼ extends over coprime pairs {C, D}, C, D ∈ M2n(O)
such that C tD̄ = D tC̄ modulo the action of GLm(O). We put

E (m)
2k+2n(Z) = A−1

m

m∏
i=1

L(1 + i− 2k − 2n, χi−1)E
(m)
2k+2n(Z).

Here

Am =

{
2−4n2−4nD2n2+n if m = 2n + 1,

(−1)n2−4n2+4nD2n2−n if m = 2n.
3



Then the H-th Fourier coefficient of E (2n+1)
2k+2n (Z) is equal to

|γ(H)|2k−1
∏

p|γ(H)

Fp(H; p−2k−2n) =|γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H; p−k+(1/2))

=|γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H; pk−(1/2))

for any H ∈ Λ2n+1(O)+ and any sufficiently large integer k.

The H-th Fourier coefficient of E (2n)
2k+2n(Z) is equal to

|γ(H)|2k
∏

p|γ(H)

Fp(H; p−2k−2n) = |γ(H)|k
∏

p|γ(H)

F̃p(H; p−k)

for any H ∈ Λ2n(O)+ and any sufficiently large integer k.

2. Main theorems

We first consider the case when m = 2n is even.
Let f(τ) =

∑∞
N=1 a(N)qN ∈ S2k+1(Γ0(D), χ) be a primitive form,

whose L-function is given by

L(f, s) =
∞∑

N=1

a(N)N−s

=
∏

p -D
(1− a(p)p−s + χ(p)p2k−2s)−1

∏

q|D
(1− a(q)q−s)−1.

For each prime p - D, we define the Satake parameter {αp, βp} =
{αp, χ(p)α−1

p } by

(1− a(p)X + χ(p)p2kX2) = (1− pkαpX)(1− pkβpX).

For q | D, we put αq = q−ka(q).
Put

A(H) = |γ(H)|k
∏

p|γ(H)

F̃p(H, αp), H ∈ Λ2n(O)+

F (Z) =
∑

H∈Λ2n(O)+

A(H)e(HZ), Z ∈ H2n.

Then our first main theorem is as follows:

Theorem 1. Assume that m = 2n is even. Let f(τ), A(H) and F (Z)

be as above. Then we have F ∈ S2k+2n(Γ
(2n)
K ). Moreover, F is a Hecke

eigenform. F = 0 if and only if f(τ) comes from a Hecke character of
K and n is odd.

4



Now we consider the case when m = 2n + 1 is odd.
Let f(τ) =

∑∞
N=1 a(N)qN ∈ S2k(SL2(Z)) be a normalized Hecke

eigenform, whose L-function is given by

L(f, s) =
∞∑

N=1

a(N)N−s

=
∏

p

(1− a(p)p−s + p2k−1−2s)−1

For each prime p, we define the Satake parameter {αp, α
−1
p } by

(1− a(p)X + p2k−1X2) = (1− pk−(1/2)αpX)(1− pk−(1/2)α−1
p X).

Put

A(H) = |γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H, αp), H ∈ Λ2n+1(O)+

F (Z) =
∑

H∈Λ2n+1(O)+

A(H)e(HZ), Z ∈ H2n+1.

Theorem 2. Assume that m = 2n + 1 is odd. Let f(τ), A(H) and

F (Z) be as above. Then we have F ∈ S2k+2n(Γ
(2n+1)
K ). Moreover, F is

a non-zero Hecke eigenform.
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