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§1. Some motivation.– The purpose of this lecture is to survey some recent results
related to harmonic analysis on H\G, where (G,H) is a symmetric space over a nonar-
chimedean local field. Harmonic analysis on symmetric spaces over R and C has been
developed extensively by many authors over many years. By contrast, the p-adic theory is
relatively undeveloped and new.

The impetus for much of the research in this field has come from Jacquet’s relative
trace formulas (starting with [15]) which were designed to study those automorphic repre-
sentations of a given adelic group which satisfy a specific period condition. Without going
into details about the global theory and what we mean by a “period condition,” suffice it
to say that the set of automorphic representations associated to a period condition tends
to be an important set for a variety of reasons. For example, it may be the image of an im-
portant (automorphic or theta) lifting. It may be set of representations for which a certain
automorphic L-function has a pole. It may be the set which determines when an induced
representation is irreducible. Or it may be all of these things (and some other things as
well). The original point of developing the local theory was that it described which rep-
resentations could arise as local components of automorphic representations satisfying a
period condition.

At first, most of the results in this area involved a combination of known techniques
from: (a) the theory of harmonic analysis on p-adic groups, (b) global theory, and (c)
the archimedean theory of symmetric spaces. Recently, more innovative techniques have
been developed and we are seeing phenomena which have no archimedean analogues. I
have been especially interested in finding techniques which exploit the special features of
supercuspidal representations. Below I will indicate various local applications which are
similar to the global applications mentioned above.

§2. Basic concepts.– We start by recalling the notion of a “symmetric space over a
nonarchimedean field.” Let F be a finite extension of some p-adic field Qp. For simplicity,
we assume p is odd. Assume G is a connected reductive group over a field F and let
G = G(F ). Assume τ is an automorphism of G of order 2 which is defined over F . Let
Gτ denote the group of fixed points of τ and let (Gτ )◦ be the identity component of Gτ .
Assume H is an F -subgroup of G such that (Gτ )◦ ⊂ H ⊂ Gτ . Now let H = H(F ). Then
the pair (G,H) (or the quotient H\G) is called a symmetric space over F .

The terminology harmonic analysis on H\G may mean different things to different
people. Classically, one might think of the decomposition of L2(H\G) or some other
induced representation IndG

H(1). For our purposes, it is appropriate to take IndG
H(1) to be

the space C∞(H\G) of smooth (that is, locally constant) functions on H\G.
Suppose π : G → Aut(V ) is an irreducible, admissible complex representation of G.

Then we say π isH-distinguished if it occurs in IndG
H(1) in the sense that HomG(π, IndG

H(1))
is nonzero. A specific embedding Λ : π ↪→ IndG

H(1) will be called an H-model for π.

1



Frobenius Reciprocity gives a canonical bijection between HomG(π, IndG
H(1)) and the space

HomH(π, 1) of linear forms λ : V → C satisfying λ(π(h)v) = λ(v), for all h ∈ H and v ∈ V .
Such linear forms λ are called H-invariant functionals. The explicit relation between Λ
and λ is Λ(v)(g) = λ(π(g)v), where g ∈ G and v ∈ V .

The relation between H-models and H-invariant functionals is entirely analogous to
the relation between Whittaker models and Whittaker functionals. One can hope for an
analogue of the uniqueness property of Whittaker models in the symmetric space setting.

Definition. We say that (G,H) has the multiplicity one property (or is a Gelfand pair) if
dimHomH(π, 1) ≤ 1 for all irreducible, admissible representations π.

Note that not everyone uses the terminology “Gelfand pair” in this way.

Definition. We say (G,H) is a geometric Gelfand pair if there exists an anti-auto-
morphism σ of G of order two such that HgσH = HgH for all g ∈ G.

The Gelfand/Kazhdan Lemma [6]. If there exists an anti-automorphism σ of G of
order two which fixes all bi-H-invariant distributions on G then (G,H) is a Gelfand pair.

The problem with this result is that, in principle, one needs to study all of the bi-
H-invariant distributions on G in order to satisfy the hypotheses of the lemma. However,
if (G,H) is a geometric Gelfand pair then the hypothese are automatically satisfied and
hence we have the following:

Corollary. If (G,H) is a geometric Gelfand pair then it is a Gelfand pair.

§3. The example (GL(n,E), GL(n, F )).– Assume E is a quadratic extension of F
and use the notation x 7→ x̄ for the nontrivial Galois automorphism of E/F . We consider
the pair (G,H), with G = GL(n,E) and H = GL(n, F ). This is a symmetric space over
F . If g ∈ G let ḡ be the matrix obtained by applying x 7→ x̄ to each entry of g. Then τ is
an automorphism of G of order two and H is the group of fixed points. It is easy to show
Hḡ−1H = HgH, for all g ∈ G. Hence, (G,H) is a geometric Gelfand pair.

The prototype example is the case in which n = 2 which I studied in my Ph.D. thesis
and in some subsequent papers motivated by the work of Jacquet/Lai [15] and
Harder/Langlands/Rapoport [13]. Flicker [2] generalized some of these results for arbi-
trary n. In some cases, he arrived at the appropriate conjectures relating distinguishedness
with base change from unitary groups and the existence of a pole for the Asai L-function
(a.k.a., twisted tensor L-function). For n = 2, there are two base change maps from
U(2, E/F ) to GL(n,E), each characterized by character relations analogous to Shintani’s
character relations which characterize quadratic base change for GL(2). Flicker showed
that the H-distinguished representations of G are precisely the representations which un-
stable lifts from U(2, E/F ). We also note that representations which are base change lifts
from U(2, E/F ) are characterized by the symmetry condition π̃ ' π̄, where π̄(g) = π(ḡ).
The connection with Asai L-functions for general n has recently been firmly established in
unpublished work of Kable [17] and, independently, Anandavardhanan and Tandon [1].
Their work builds on [13] and results developed by Flicker in several papers (starting with
[3]).
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A natural problem, which we will call the “classification problem,” is to explicitly
determine which irreducible, admissible representations of G are H-distinguished. Assume
for a moment longer that n = 2. For the nonsupercuspidal representations, it is fairly easy
to give explicit conditions on the inducing data for these representations which correspond
to distinguishedness. This was probably first done by Clozel in unpublished notes. (See
[2], [4] and [9] for more details.) For supercuspidal representations, a characterization of
distinguishedness in terms of Jacquet-Langlands ε-factors was given in [9]:

Proposition 1 [9]. Let ψ be a nontrivial character of E which is trivial on F . Then an
irreducible, supercuspidal representation π of G = GL(2, E) is H-distinguished if and only
if ε(1/2, π ⊗ χ, ψ) = 1 for all quasicharacters χ of E× which are trivial on F×.

The result in [9] is stated only under the assumption that the central character of
π is trivial, however, this assumption is totally unnecessary. Note that the criterion in
Proposition 1 is closely related to Corollary 2.4 in Saito’s paper [24] on Tunnell’s formula.

According to the work of Howe [14] (in the tame case) and Kutzko (in general), the
supercuspidal representations of G may be realized via compactly supported induction
from compact-mod-center subgroups. To give a satisfactory solution to the classification
problem for distinguished supercuspidal representations requires giving conditions on the
inducing data which corresponds to distinguishedness. This is partially done in the tame
case for general n in [12]. (Note that if p > n then all representations are tame.) Ac-
cording to Howe’s construction, each irreducible tame supercuspidal representation π of
G corresponds to a certain equivalence class of quasicharacters χ : L× → C× where L is
a degree n tamely ramified extension of E. The quasicharacter χ must be E-admissible
in the sense of Kutzko. If π̃ ' π̄, as is the case whenever π is H-distinguished, then it
is a basic fact that there must exist an automorphism σ of order two of L/F such that
σ(x) = x̄ for all x ∈ E and χ−1 = χ ◦ σ. Let L′ be the fixed field of σ. We say that
the pair (L/E, σ) is odd if the ramification degree e(L/E) is odd, L/L′ is unramified and
E/F is ramified. Otherwise, (L/E, σ) is even. Let χ

L/L′ and χ
E/F

be the class field theory
characters associated to L/L′ and E/F , respectively. The following result was proved in
collaboration with Fiona Murnaghan:

Theorem 2 [12]. Assume and χ = χ−1 ◦ σ is an E-admissible character of L× and π is
the associated irreducible, tame supercuspidal representation of G such that π̃ ' π ◦ τ .
If (L/E, σ) is even and χ|L′× = 1 or if (E/F, σ) is odd and χ|L′× = χ

L/L′ then π is H-

distinguished. If π is not H-distinguished and χ′ is a character of E× such that χL|L′× =
χ

L/L′ then π ⊗ χ′ is H-distinguished. Such characters χ′ always exist, for example, one

may take any character of E× whose restriction to F× is χ
E/F

.

A closely related result in the case in which E/F is unramified was obtained by
Dipendra Prasad [22] by totally different methods.

Murnaghan’s initial interest in such problems resulted from her joint work with Repka
[21] on the reduciblity of induced representations of unitary groups, following the approach
of Goldberg [7] and Shahidi [25]. Roughly speaking, G may be embedded as a Levi com-
ponent of a maximal parabolic subgroup of the quasisplit unitary group U(2n,E/F ). If π
is an irreducible, admissible representation of G then there is an associated induced repre-
sentation I(π) of U(2n,E/F ). Then I(π) is irreducible if and only if π is H-distinguished.
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When n = 2, this is evident in the work of Kazuko Konno [18], where all of the non-
supercuspidal representations of the unitary group are computed.

The H-distinguished representations of G also arise in connection with the generic
packet conjecture for unitary groups. A relative trace formula approach to this problem
is developed for n = 3 in [5]. An alternate approach to the generic packet conjecture is
given by Takuya Konno [19].

§4. The example (GL(n), U(n)).– Let E/F be a quadratic extension and G =
GL(n,E), as in the previous example. Now fix η ∈ G which is hermitian in the sense that
tη = η̄. Let H = {h ∈ G : hηth̄ = η} be the associated unitary group. One may expect
that (G,H) is Gelfand pair, since the analogous pair over a finite field is. Unfortunately,
it is not a Gelfand pair, though we will see that it comes very close.

Theorem 3 [11]. If π is an irreducible, tame supercuspidal representation of G then the
dimension of HomH(π, 1) is at most one.

Again, it is natural to ask whether distinguishedness can be characterized in terms of
a simple condition on the inducing data. We have:

Theorem 4 [11]. Let L be a tamely ramified degree n extension of E which is embedded,
via an E-embedding, in the ring M of n-by-n matrices with entries in E. Assume that ι
is the automorphism of M given by applying the nontrivial Galois automorphism of E/F
to the entries of each matrix in M . Let G = M× = GL(n,E) and T = L×. Suppose χ is
an admissible character of T and let π be the irreducible, supercuspidal representation of
G associated to χ by Howe’s construction. Let H be a unitary group in G associated to
some hermitian matrix η ∈ G. Then the following conditions are equivalent:

i. The space HomH(π, 1) is nonzero.
ii. π ∼ π ◦ ι.
iii. π is a base change lift from GL(n, F ).
iv. There exists an automorphism σ of L which agrees with ι on E and satisfies θ = θ ◦σ.
v. θ is trivial U(1, L/L′), where L′ is the fixed field of an automorphism of L of order

two which agrees with ι on E.

The method we use to solve the classification problem for tame supercuspidal repre-
sentations for (GL(n), U(n)) has worked, with some modifications, for other pairs (G,H),
as well. Using Jiu-Kang Yu’s building theoretic extension [26] of Howe’s construction, we
hope to extend our methods to essentially arbitrary pairs (G,H).

The situation for (GL(n), U(n)) motivates the following:

Definition. A pair (G,H) is a supercuspidal Gelfand pair if dimHomH(π, 1) ≤ 1 for all
irreducible supercuspidal representations π of G.

Fiona Murnaghan has recently found some examples of symmetric spaces which are
not supercuspidal Gelfand pairs. Before this, there was a general suspicion that such pairs
might not exist.

§5. The example (GL(n), GL(n/2) × GL(n/2)).– Assume n = 2m is even and let
G = GL(n, F ), where we write the elements of G as block matrices

(
a
c

b
d

)
, with a, b, c, d ∈
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M(m,F ). LetH ∼= GL(m,F )×GL(m,F ) be the subgroup ofG consisting of block diagonal
matrices. Jacquet and Rallis [16] have shown in this case that (G,H) is a Gelfand pair.
However, since (G,H) is not a geometric Gelfand pair, it was necessary for Jacquet and
Rallis to conduct a very difficult 50-page analysis of the bi-H-invariant distributions on G
in order to show that the hypotheses of the Gelfand/Kazhdan Lemma are satisfied.

We have the following block matrix identity:

(
bd−1c− a 0

0 d− ca−1b

)(
a b
c d

)−1 (−a 0
0 d

)
=

(
a b
c d

)

which is only valid when a and d are invertible. This shows that Hg−1H = HgH for
almost all g ∈ G.

Definition. (G,H) is almost a Gelfand pair if there exists an anti-automorphism σ of
order two such that HgσH = HgH, for almost all g ∈ G.

Theorem 5 [10]. Suppose α is an automorphism of order two of G such that HgαH =
Hg−1H for almost all g ∈ G. If π is an irreducible, H-distinguished supercuspidal represen-
tation of G then the contragredient π̃ of π is equivalent to the representation πα(g) = π(gα)
and dimHomH(π, 1) = dimHomH(π̃, 1) = 1.

Corollary. If (G,H) is almost a Gelfand pair then it must be a supercuspidal Gelfand
pair.

So, for (GL(n), GL(n/2)×GL(n/2)), this reduces Jacquet/Rallis’ lengthy argument to
the above matrix identity. Of course, Jacquet/Rallis’ result applies to arbitrary irreducible,
admissible representations and not just supercuspidal representations. We will discuss
some of the ingredients in the proof in the next section.

In the present context, Murnaghan and I [12] have an analogue of Theorem 2 which
gives a weak solution to the classification problem. Since it is rather technical to state, we
will not state it here.

We remark that distinguishedness may be correlated to the existence of a pole of the
exterior square L-function, in much the same way that distinguishedness for
(GL(n,E), GL(n, F )) is related to the existence of a pole of the Asai L-function. There
also is a relation with reducibility of induced representations of classical groups and it
is well known that the self-contragredient representations are expected to be lifts from
classical groups. We refer to [12] for details and references for these things.

§6. Character theory and the proof of Theorem 5.– If V is the space of π
and Ṽ is the space of π̃, then we note that V embeds in the space Ṽ ∗ of linear forms on
Ṽ . In particular, v ∈ V corresponds to the linear form v 7→ 〈v,−〉 on Ṽ . The pairing
〈−,−〉 is the natural pairing on V × Ṽ and it extends in an obvious way to a pairing on
(Ṽ ∗×Ṽ )∪(V ×V ∗). The elements of Ṽ ∗ are sometimes referred to as “generalized vectors”
associated to π. Similarly, V ∗ is the space of generalized vectors for π̃. If f ∈ C∞c (G) and
λ ∈ Ṽ ∗ then we may define π(f)λ ∈ Ṽ ∗ by

〈π(f)λ, ṽ〉 = 〈λ, π̃(f̌)ṽ〉,

5



where f̌(g) = f(g−1) and ṽ ∈ Ṽ . In fact, π(f)λ lies in V . Consequently, given generalized
vectors λ ∈ Ṽ ∗ and λ̃ ∈ V ∗ there is an associated distribution

Θλ,λ̃(f) = 〈π(f)λ, λ̃〉.

It is natural to refer to such distributions as generalized matrix coefficients because they
generalize the matrix coefficients fv,ṽ(g) = 〈π(g)v, ṽ〉, where g ∈ G, v ∈ V and ṽ ∈ Ṽ .

For harmonic analysis on H\G, the generalized matrix coefficients of most interest
are the coefficients Θλ,λ̃ for which λ ∈ HomH(π̃, 1) and λ̃ ∈ HomH(π, 1). We call these
spherical matrix coefficients.

If (G,H) is a Gelfand pair and π and π̃ are distinguished then, up to scalar multiples,
there is a unique nonzero spherical matrix coefficient of π. This spherical matrix coefficient
should be viewed as a symmetric space analogue of the character distributuion trπ(f) of
π. One can ask whether these objects enjoy the same analytic properties (such as local
integrability and smoothness on the regular set) established for the character distributions
by Harish-Chandra (using various results of Howe). Indeed this is the case for pairs of the
form (H(E),H(F )), where H is a connected reductive F -group and E/F is quadratic. (See
[8]) However, Rader and Rallis [23] have studied this problem for general pairs (G,H)
and they have shown the precise extent to which Harish-Chandra’s results fail to generlize
nicely.

Let us now give a sketch of the formal argument which underlies the proof of the
theorem. For the sake of convenience and to simplify our exposition, we now assume that
G has trivial center. Assume π is supercuspidal, as in the hypothesis of the theorem.
Note that if fv,ṽ is a matrix coefficient of π then, since π is supercuspidal, we have fv,ṽ ∈
C∞c (G). In addition, f̌v,ṽ = fṽ,v is a matrix coefficient of π̃. So if π is a supercuspidal
H-distinguished representation of G with spherical matrix coefficient Θλ,λ̃ and if fṽ,v is
a matrix coefficient of π̃ then the quantity Θλ,λ̃(fṽ,v) is well defined. A straightforward
generalization of the Schur orthogonality relations shows that

Θλ,λ̃(fṽ,v) = d(π)−1〈λ, ṽ〉〈v, λ̃〉,

where d(π) is the formal degree of π.
Unfortunately, Θλ,λ̃ is not a true matrix coefficient, however, it may be realized, in

a suitable sense, as a limit of matrix coefficients fwn,w̃n . For the moment, in order to
provide a formal heuristic, we will pretend that Θλ,λ̃ coincides with a matrix coefficient
fw,w̃, where w and w̃ are H-fixed vectors. To legitimize this heuristic, one must engage in
various technical manipulations involving approximations of Θλ,λ̃ by matrix coefficients.

Proceeding formally, we now let ϕ = fw,w̃fṽ,v ∈ C∞c (G). Rader and Rallis have
produced a symmetric space analogue of the Weyl integration formula which formally
looks like: ∫

G

ϕ(g) dg =
∑

T

1
wT

∫
|∆(t)|1/2fw,w̃(t)ΦT

fṽ,v
(t) dt,

where: (i) we are summing over classes of “Cartan subsets” T ofH\G, (ii) ∆ is a symmetric
space analogue of the Weyl discriminant, and (iii) ΦT

fṽ,v
(t) is a type of orbital integral of
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fṽ,v(t) which represents an average over the double coset HtH. So we have a fundamental
identity

d(π)−1〈λ, ṽ〉〈v, λ̃〉 =
∑

T

1
wT

∫
|∆(t)|1/2fw,w̃(t)ΦT

fṽ,v
(t) dt.

This identity, though we have obtained it by dubious means, is actually valid if fw,w̃ is
interpreted as the smooth function, given by Rader and Rallis, which represents Θλ,λ̃ on
the (G,H)-regular set.

Now let σ be the anti-involution gσ = (gα)−1, where α is as in the hypothesis of the
theorem. We observe that fṽ,v(gσ) = 〈v, π̃(gσ)ṽ〉 = 〈π(gα)v, ṽ〉 is a matrix coefficient of
πα(g) = π(gα). Since

d(π)−1〈λ, ṽ〉〈v, λ̃〉 =
∫

G

ϕ(g) dg =
∫

G

ϕ(gσ) dg

is nonzero for suitable v and ṽ and since this is an average of a matrix coefficient of π against
a matrix coefficient of πα, Schur orthogonality implies that π must be equivalent to π̃α.
Thus we may choose a nonzero intertwining operator I : V → Ṽ such that I(π(g)v) =
π̃α(g)I(v) for all g ∈ G and v ∈ V . Consequently,

fṽ,v(gσ) = 〈π(gα)v, ṽ〉 = 〈I−1(ṽ), π̃(g)I(v)〉 = fI(v),I−1(ṽ)(g).

It follows that ∫

G

ϕ(gσ) dg = d(π)−1〈λ, I(v)〉〈I−1(ṽ), λ̃〉.

This yields the identity
〈λ, ṽ〉〈v, λ̃〉 = 〈λ, I(v)〉〈I−1(ṽ), λ̃〉.

The theorem follows immediately from this identity, though this may not be obvious.
Indeed, fix ṽ such that 〈λ, ṽ〉 6= 0. Since we know that v may be chosen so that 〈v, λ̃〉 6= 0,
we see that 〈I−1(ṽ), λ̃〉 6= 0. Now letting v vary, we deduce that I(ker λ̃) = kerλ. This
seems to contradict the fact that λ and λ̃ were chosen independently. The only explanation
of this is that both HomH(π, 1) and HomH(π̃, 1) have dimension one and thus we essentially
have no choice when choosing λ and λ̃. This completes the formal argument. The precise
details of the proof of the theorem are in [10].

References

[1] U.K. Anandavardhanan and R. Tandon, “A note on the poles of the local twisted
tensor L-function,” preprint.

[2] Y. Flicker, “On distinguished representations,” J. reine angew. Math., 418 (1991),
139–172.

[3] Y. Flicker, “Twisted tensors and Euler products,” Bulletin de la Société Mathématique
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