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Introduction
In the study of modular forms of half integral weight, it is well known that

Kohnen’s plus space (a certain subspace of elliptic modular forms of half in-
tegral weight) of weight “even integer minus 1/2” is isomorphic to the space
of Jacobi forms of index 1 (cf. Eichler-Zagier[3] Theorem 5.4). Moreover,
Skoruppa[14] introduced the notion of skew holomorphic Jacobi forms which
satisfy a certain transformation formula like Jacobi forms but not holomor-
phic functions, and he constructed a linear isomorphism between skew holo-
morphic Jacobi forms of index 1 and Kohnen’s plus space of weight “odd in-
teger minus 1/2” in the case of degree 1. This notion of skew holomorphic Ja-
cobi forms was generalised for higher degree by Arakawa[1]. There are several
works about the Jacobi form of general degree (cf. [1],[2],[8],[10],[11],[15],[18]
etc), but there are few results about skew holomorphic Jacobi forms of gen-
eral degree except Arakawa[1].

The purpose of this article is to investigate skew holomorphic Jacobi
forms of general degree. This article is a summarisation of three papers of
Hayashida[4],[5],[6]. In Section 1 we describe the definition of skew holomor-
phic Jacobi forms following Arakawa[1]. Skew holomorphic Jacobi forms are
not holomorphic functions but vanish under a certain differential operator
∆M which will be defined in Section 1. In Section 2 we give an isomorphism
between plus space of general degree and the space of skew holomorphic Ja-
cobi forms of index 1 of general degree. In Section 3 we construct Klingen
type Eisenstein series of skew holomorphic Jacobi forms. In order to obtain
this construction, we used a certain differential operator ∆M. In Section 4
we give an analogue of the Zharkovskaya’s theorem for Siegel modular forms
of half integral weight.
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1 Skew holomorphic Jacobi forms

We denote Spn(R) the real symplectic group of size 2n. Let Hn denote Siegel
upper half space of degree n, and let Dn,l = Hn ×Mn,l(C).

Skew holomorphic Jacobi forms was first introduced by Skoruppa[14] as
function on D1,1, and he showed the isomorphism between Kohnen’s plus
space and the space of skew holomorphic Jacobi forms of index 1 in the case
of degree 1. This notion of skew holomorphic Jacobi forms was generalised
for higher degree by Arakawa[1]. In this section, we would like to describe
the definition of skew holomorphic Jacobi forms following Arakawa[1]. We
prepare some notations.

Let GJ
n,l be the Jacobi group, GJ

n,l is a subgroup of Spn+l(R) as follows,

GJ
n,l :=








∗ 0 ∗ ∗
∗ 1l ∗ ∗
∗ 0 ∗ ∗
0 0 0 1l


 ∈ Spn+l(R)





We put ΓJ
n,l = GJ

n,l ∩ Spn+l(Z).
We denote the action of Spn(R) on Hn by

M · Z := (AZ +B)(CZ +D)−1

where M = ( A B
C D ) ∈ Spn(R), and Z ∈ Hn.

Let M > 0 be a symmetric half integral matrix of size l. Now we describe
the definition of the skew holomorphic Jacobi forms.

Definition 1 (skew holomorphic Jacobi forms cf. [1]). Let F (τ, z) be
a function on Dn,l, holomorphic on Hn and real analytic on Mn,l(C). We say
F is a skew holomorphic Jacobi form of weight k of index M belongs to ΓJ

n,l,
if F satisfies the following two conditions :

(1) We put FM(Z) := F (τ, z) e(tr(Mτ ′)) for Z =

(
τ z
tz τ ′

)
∈ Hn+l, then

FM satisfies

FM(γ · Z) = det(CZ +D)
k−l| det(CZ +D)|lFM(Z) ,

for every γ = ( A B
C D ) ∈ ΓJ

n,l.

(2) F has the Fourier expansion as follows :

F (τ, z) =
∑

N∈Symn,R∈Mn,l(Z)

C(N,R) e(Nτ − i

2
(4N −RM−1tR)Im τ +t Rz) ,
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where we denote by Symn the set of all half integral symmetric matrices
of size n, and C(N,R) = 0 unless 4N −RM−1tR ≤ 0.

Moreover, if Fourier coefficients satisfy a condition that C(N,R) = 0 unless
4N −RM−1tR < 0, we say F is a skew holomorphic Jacobi cusp form.

We set differential operators δ
δτ

:=
(

1+δs,t

2
δ

δτs,t

)
, δ

δz
:=

(
δ

δzi,j

)
for (τ, z) ∈

Dn,l, where δs,t is the Kronecker’s delta symbol, and δ
δτs,t

:= 1
2

(
δ

δxs,t
− i δ

δys,t

)
,

where xs,t (resp. ys,t) is the real part (resp. the imaginary part) of τs,t. We
define a differential operator

∆M := 8πi
δ

δτ
− δ

δz
M−1t δ

δz
.

We note the following equivalence. If a function F on Dn,l satisfies the
condition (1) of the definition of skew holomorphic Jacobi forms, and if n > 1,
then the condition (2) is equivalent to the following condition

(2’) ∆M F = 0n.

We denote the vector space of skew holomorphic Jacobi forms (resp. skew
holomorphic Jacobi cusp forms) of weight k of index M by Jsk

k,M(ΓJ
n) (resp.

Jsk,cusp
k,M (ΓJ

n)).

2 Isomorphisms between skew holomorphic

Jacobi forms of index 1 and plus spaces

First, we shall describe the definition of Siegel modular forms of half integral
weight.

For positive integer q, we put

Γ
(n)
0 (q) := {M = ( A B

C D ) ∈ Spn(Z) | C ≡ 0 (mod q)}
is the congruence subgroup of the symplectic group Spn(Z).

We define a character ψ on Γ
(n)
0 (4), ψ is given by ψ(M) :=

( −4
det D

)
for

M = ( A B
C D ) ∈ Γ

(n)
0 (4).

We put the standard theta series θn(Z) and put a function j(M,Z) as
follows:

θn(Z) :=
∑

m∈Zn

e(tmZm), (Z ∈ Hn)

j(M,Z) :=
θn(M · Z)

θn(Z)
, (M ∈ Γ

(n)
0 (4), Z ∈ Hn),
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then this j(M,Z) satisfies

j(M,Z)2 = ψ(M) det(CZ +D) for any M = ( A B
C D ) ∈ Γ

(n)
0 (4) .

Let k be an integer, χ be a Dirichlet character modulo q, and 4|q. A
holomorphic function F (Z) on Hn is said to be a Siegel modular form of

weight k − 1/2 with character χ belongs to Γ
(n)
0 (q) if F satisfies

F (M · Z) = χ(detD)j(M,Z)2k−1F (Z) , for any M = ( A B
C D ) ∈ Γ

(n)
0 (q),

and in the case of n = 1 we need that the function F (Z) is holomorphic at all

cusps of Γ
(1)
0 (q). We denote the set of such functions by Mk−1/2(Γ

(n)
0 (q), χ).

If n = 0 then we denote Mk−1/2(Γ
(0)
0 (q), χ) = C for k > 0. Also, we denote

the set of cusp forms in Mk−1/2(Γ
(n)
0 (q), χ) by Sk−1/2(Γ

(n)
0 (q), χ).

Next, we define a subspace M+
k−1/2(Γ

(n)
0 (4), ψu) of Mk−1/2(Γ

(n)
0 (4), ψu)

(u = 0 or 1) by

M+
k−1/2(Γ

(n)
0 (4), ψu)

:=
{
h(τ) ∈Mk−1/2(Γ

(n)
0 (4), ψu) | the coefficients c(T ) = 0 ,

unless T ≡ −(−1)k+uµtµ mod 4Symn for some µ ∈ Zn
}
.

We also define S+
k−1/2(Γ

(n)
0 (4), ψu) by

S+
k−1/2(Γ

(n)
0 (4), ψu) := M+

k−1/2(Γ
(n)
0 (4), ψu) ∩ Sk−1/2(Γ

(n)
0 (4), ψu) .

We say that M+
k−1/2(Γ

(n)
0 (4), ψu) is the plus space.

Let M > 0 be a half integral symmetric matrix of size l and let R ∈
Mn,l(Z), we put the theta series

ϑR,M(τ, z) =
∑

λ∈Mn,l(Z)

e(tr
(M (

τ [(λ+R(2M)−1)] + 2tz(λ+R(2M)−1)
))

),

where τ [(λ+R(2M)−1)] =t (λ+R(2M)−1)τ(λ+R(2M)−1).
Let F (τ, z) ∈ Jsk

k,M(ΓJ
n), then F satisfies the condition (1) of the definition

of skew holomorphic Jacobi forms, we can see

F (τ, z + τλ+ µ) = e(−tr(M(tλτλ+ 2tλz)))F (τ, z)

for every λ, µ ∈Mn,l(Z). Hence, we have the following equation,

F (τ, z) =
∑

R∈Mn,l(Z)/(Mn,l(Z)(2M))

FR(τ)ϑR,M(τ, z) ,

4



where FR(τ) are uniquely determined and FR(−τ) are holomorphic functions
on Hn. If we set F (τ, z) =

∑
N,R′ C(N,R′)e(Nτ − (4N −R′M−1tR′)Im τ +t

R′z), then we can write FR by

FR(τ) =
∑

N∈symn

4N−RM−1tR≤0

C(N,R) e(
1

4
tr(4N −RM−1tR)τ) .

In this section, from here, we consider only the case l = 1, M = 1, and
we put ϑr := ϑr,1.

Let F (τ, z) =
∑

r∈(Z/2Z)n Fr(τ)ϑr(τ, z) ∈ Jsk
k,1(Γ

J
n). We define a holomor-

phic function σ(F )(τ) =
∑

r∈(Z/2Z)n Fr(−4 τ), then we have the following
theorem.

Theorem 1. σ(F ) is an element of M+
k−1/2(Γ

(n)
0 (4), ψk−1). Moreover, the

map σ : Jsk
k,1(Γ

J
n) → M+

k−1/2(Γ
(n)
0 (4), ψk−1) induces the linear isomorphism

over C. The space of skew holomorphic Jacobi cusp forms corresponds with
the space of cusp forms of plus space by this isomorphism. This isomorphism
map σ commutes with Hecke operators of both spaces.

We note that if degree n is odd and integer k is even, then it is easy to
see that Mk−1/2(Γ

(n)
0 (4), ψ) = Jsk

k,1(Γ
J
n) = {0}.

We denote the space of holomorphic Jacobi forms of weight k of index 1 of
degree n by Jk,1(Γ

J
n) (cf. Ibukiyama [8]), then the table of linear isomorphisms

between the plus space and the holomorphic (or skew holomorphic) Jacobi
forms of index 1 is given as follows.

M+
k−1/2(Γ

(n)
0 (4), ψu) ∼=

HHHHHHu
k

even odd

0 Jk,1(Γ
J
n) Jsk

k,1(Γ
J
n)

1 Jsk
k,1(Γ

J
n) Jk,1(Γ

J
n)

3 Klingen type Eisenstein series

We shall construct Klingen type Eisenstein series of skew holomorphic Jacobi
forms. Let r be an integer (0 ≤ r ≤ n). We prepare the following subgroups,

Γ[n,r] :=

{
g =

( A1 0 B1 B2
A3 A4 B3 B4
C1 0 D1 D2
0 0 0 D4

)
∈ Spn(Z) | A1, B1, C1, D1 ∈Mr(Z)

}
,

ΓJ
[n,r],l :=

{(
A 0 B 0
0 1l 0 0
C 0 D 0
0 0 0 1l

) (
1n 0 0 µ
tλ 1l

tµ κ
0 0 1n −λ
0 0 0 1l

)
∈ ΓJ

n,l | ( A B
C D ) ∈ Γ[n,r] ,

λ =
(

λ1
0

) ∈Mn,l(Z) , λ1 ∈Mr,l(Z)
}
.
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Let F (τ1, z1) ∈ Jsk,cusp
k,M (ΓJ

r ) and let k be an integer satisfies k ≡ l mod 2
(l is the size of M). We define a function F ∗ on Dn,l as

F ∗(τ, z) := F (τ1, z1) ,(3.1)

where τ =

(
τ1 τ2
tτ2 τ3

)
, z =

(
z1

z2

)
and (τ1, z1) ∈ Dr,l.

We consider the following function

Esk
n,r(F ; (τ, z)) =

∑

γ∈ΓJ
[n,r],l

\ΓJ
n,l

(F ∗|k,Mγ)(τ, z) , (τ, z) ∈ Dn.l.(3.2)

The above sum does not depend on the choice of the representative elements.
Because F is a cusp form, we can show the fact that there exists a constant
C which satisfies

|F (τ1, z1)| det(Y1)
k
2 e(−tr(Mtβ1(iY1)

−1β1)) < C,

for every (τ1, z1) ∈ Dr,l, where β1 and Y1 are the imaginary part of z1 and τ1
respectively. Hence, by the same calculation as Ziegler[18] Theorem2.5, we
can show the fact that if k > n+ l + r + 1 then Esk

n,r is uniformly absolutely
convergent in the wider sense on Dn,l. It is clear that Esk

n,r(F ; (τ, z)) satisfies
the condition (1) of the definition of skew holomorphic Jacobi forms of weight
k of index M belongs to ΓJ

n

We can show the following equation :

∆M
(
Esk

n,r(F ; (τ, z))
)

= 0n.(3.3)

Because this equation induces the shape of the Fourier expansion of
Esk

n,r(F ; (τ, z)), and by using Shimura correspondence and Köcher principle,
we can show the fact that Esk

n,r(F ; (τ, z)) satisfies the condition (2) of the
definition of skew holomorphic Jacobi forms. Hence, we have the following
theorem.

Theorem 2. Let M > 0 and F ∈ Jsk
k,M(ΓJ

r ). If k > n + l + r + 1 satisfies

k ≡ l mod 2, then Esk
n,r(F ; (τ, z)) is an element of Jsk

k,M(ΓJ
n).

We note that we can obtain the above theorem under the assumption on
M≥ 0 (cf.[4]).

We shall show that the Siegel operator of skew holomorphic Jacobi forms
has same properties as holomorphic Jacobi forms case (cf. Ziegler[18]).

For a function F (τ, z) on Dn,l, we define a function

Φn
r (F )(τ1, z1) := lim

t→+∞
F

((
τ1 0
0 it1n−r

)
, ( z1

0 )
)
, (τ1, z1) ∈ Dn,r.

Then Φn
r (F ) is a function on Dr,l. This Φn

r is called the Siegel operator.
By direct calculation, we have the following proposition.
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Proposition 3. Let F (τ, z) ∈ Jsk
k,M(ΓJ

n) be a skew holomorphic Jacobi form,

then Φn
r (F ) is also a skew holomorphic Jacobi form in Jsk

k,M(ΓJ
r ).

Moreover, we have the following theorem.

Theorem 4. If integer k satisfies k > n+ l + r + 1 and k ≡ l mod 2, then
we have Φn

r (Esk
n,r(F ; (τ, z))) = F (τ1, z1) for every F (τ1, z1) ∈ Jsk,cusp

k,M (ΓJ
r ) .

Hence, the Siegel operator Φn
r induces a surjective map from Jsk

k,M(ΓJ
n) to

Jsk,cusp
k,M (ΓJ

r ).

Now, we imitate some Arakawa’s work[2]. We assume the following con-
dition on M > 0.

(4.1) If M[x] ∈ Z for x ∈ (2M)−1Ml,1(Z), then necessarily, x ∈Ml,1(Z).

By the same argument with Arakawa [2] (Proposition 4.1, Theorem 4.2
of [2]), we deduce the following Proposition 5 and Theorem 6.

Proposition 5. Let F ∈ Jsk
k,M(ΓJ

n). Under the condition (4.1) on M, we

have F ∈ Jsk,cusp
k,M (ΓJ

n) if and only if Φn
n−1(F ) = 0.

Theorem 6. Assume that M satisfies the condition (4.1). Let k be a positive
integer which satisfies k > 2n + l + 1 and k ≡ l mod 2. Then we have
the direct sum decomposition Jsk

k,M(ΓJ
n) =

⊕n
r=0 J

sk,(r)
k,M (ΓJ

n), where J
sk,(r)
k,M =

{Esk
n,r(F ; (τ, z))|F ∈ Jsk,cusp

k,M (ΓJ
r )} .

In section 2 theorem 1, we obtained the isomorphism between the plus
space and the space of skew holomorphic Jacobi forms of index 1. Hence, by
using theorem 6, if k is an odd integer which satisfies k > 2n+2, we can also
obtain a similar decomposition for the plus space of degree n of weight k− 1

2

with trivial character. Namely, under these conditions, we can deduce the
fact that the plus space of weight k − 1

2
is spanned by Klingen-Cohen type

Eisenstein series (which corresponds to the Klingen type Eisenstein series of
skew holomorphic Jacobi form of index 1) and cusp forms.

4 Zharkovskaya’s theorem

In this section, we give an analogue of the Zharkovskaya’s theorem for Siegel
modular forms of half integral weight, and quote a conjecture.

Let q > 0 be an integer divisible by 4. Let F ∈ Mk−1/2(Γ
(n)
0 (q), χ) be an

eigenfunction for the action of a certain Hecke ring. This F has a Fourier
expansion

F (Z) =
∑

N∈Sym∗
n

f(N)e(NZ),
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where we denote by Sym∗
n the set of all semi positive definite half integral

symmetric matrices of size n. From the definition of Mk−1/2(Γ
(n)
0 (q), χ), it

follows that f(tUNU) = f(N) for every U ∈ SLn(Z).
Here, we describe a result of Zhuravlev[17]. Let λ be a completely multi-

plicative function which grows no faster than some power of argument, and
let N > 0 be a matrix in Sym∗

n.

Theorem 7 (Zhuravlev). When the real part of s is sufficiently large, The
following series has Euler expansion,

∑

M∈SLn(Z)\M+
n (Z)

(det M,q)=1

λ(detM)f(MN tM)

(detM)s+k−3/2
=

∏
p:prime

PF,p(N, λ, p
−s)

QF,p(λ, p−s)
,(4.1)

where we denote by M+
n (Z) all positive determinant matrices in Mn,n(Z), and

PF,p(N, λ, z) is the polynomial of z which degree is at most 2n, QF,p(λ, z) is
the polynomial of z which degree is 2n. Especially QF,p(λ, z) is not depend
on the choice of N . The polynomial QF,p(λ, z) was defined as follows,

QF,p(λ, z) =
n∏

i=0

(1− αi,pχ(p)λ(p)z)(1− α−1
i,pχ(p)λ(p)z),(4.2)

where α±1
i,p are the p-parameters of F .

We denote the Siegel operator by Φ. Oh-Koo-Kim [12] showed the exis-
tence of a commuting relation between Hecke operators and the Siegel op-
erator acting on the Siegel modular forms of half integral weight, and they
showed also the fact that if F ∈ Mk−1/2(Γ

(n)
0 (q), χ) is a Hecke eigen form

then Φ(F ) ∈Mk−1/2(Γ
(n−1)
0 (q), χ) is also a Hecke eigen form.

We put L(s, λ, F ) =
∏

(p,q)=1QF,p(λ, p
−s+k−3/2)−1 (see eq(4.1), eq(4.2)),

then we obtain the following theorem, this is an analogue of the theorem of
Zharkovskaya [16].

Theorem 8. We assume Φ(F ) 6= 0, then we have

L(s, λ, F ) = L1(s− n+ 1, λ, E2k−2n,χ2)L(s, λ,Φ(F )),

where we put

L1(s, λ, E2k−2n,χ2) :=
∏

p,(p,q)=1

(1− λ(p)p−s)−1(1− λ(p)χ(p)2p2k−2n−1−s)−1.

If k > n+ 1 then L1(s, λ, E2k−2n,χ2) is the L-function of Eisenstein series of
degree 1 of weight 2k − 2n with character χ2 twisted by λ.
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Above theorem was first observed by Hayashida-Ibukiyama [7] in the case
of n = 2, λ ≡ 1, and χ ≡ 1. Here, we have the case of higher degree with
character.

Let F ∈Mk−1/2(Γ
(2)
0 (4)) be a Hecke eigen form, and we assume Φ(F ) 6= 0,

then
L(s, F ) = L(s,Φ(F ))L(s, E2k−4),

up to Euler 2-factor. Let f ∈M2k−2(SL(2,Z)) be a Hecke eigen form which

corresponds to Φ(F ) ∈Mk−1/2(Γ
(1)
0 (4)) by Shimura correspondence, then we

have
L(s, F ) = L(s, f)L(s, E2k−4) .

Similar figure seems valid for the case of cusp forms. We quote a following
conjecture from Hayashida-Ibukiyama [7].

Conjecture 1 (cf. [7]). Let k be an integer, and let f ∈ S2k−2(SL(2,Z)),
g ∈ S2k−4(SL(2,Z)). We assume both f and g are normalised Hecke eigen

forms. Then there exits F ∈ S+
k−1/2(Γ

(2)
0 (4)), such that F is a Hecke eigen

form and satisfy
L(s, F ) = L(s, f)L(s− 1, g)

up to Euler 2-factor, and where L(s, f) and L(s, g) are usual L-functions of
f and g respectively.
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