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Abstract

This note reviews the connection between the existence of fractional weight au-
tomorphic forms on real Lie groups, and the existence of non-congruence subgroups.
It is intended to explain the simple results which are rarely even stated, and to avoid
the complicated question of precisely where and why the congruence subgroup prop-
erty fails. As a consequence, a new method is presented, for obtaining congruences
between Eisenstein series and cusp forms in half-integral weight.

Let G be a (real) connected Lie group with a connected cyclic cover

1 → µn → G̃ → G → 1.

Here µn denotes the group of n-th roots of unity in C. Suppose we have an arithmetic
subgroup Γ ⊂ G. We shall discuss the following questions:

does Γ lift to a subgroup of G̃?

does Γ have a subgroup of finite index which lifts to G̃?

Example. Suppose the group G is SL2(R). The fundamental group of G is Z, and so
for every n ∈ N there is a unique connected n-fold cover. For simplicity we shall assume
that the arithmetic subgroup Γ is torsion-free.

A. If Γ has cusps then Γ is a free group. Therefore Γ lifts to every cover of G.

B. If Γ is cocompact then Peterson showed (see [7]) that Γ lifts to the n-fold cover if
and only if n is a factor of the Euler characteristic χ(Γ). In particular for every n
there is a Γ which lifts.

Very roughly speaking, Peterson’s theorem is proved as follows. One finds a generator
σ ∈ H2(G,Z) corresponding to the universal cover of G. A subgroup Γ lifts to the n-fold
cover if and only if the image of σ in H2(Γ,Z) ∼= Z is a multiple of n. The image of σ
in H2(G,R) is represented by an invariant 2-form on the upper half-plane. This 2-form
turns out to be the Euler form. To find the image of σ in H2(Γ,Z) ∼= Z one integrates
the 2-form over a fundamental domain for Γ. Hence by the Gauss-Bonnet theorem the
image of σ in H2(Γ,Z) is χ(Γ). This implies the result.
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1 Fractional weight multiplier systems

Let C1 denote the groups of complex numbers with absolute value 1. Suppose w : G×G →
µn is a 2-cocycle representing the group extension G̃. By a weight w multiplier system on
Γ, we shall mean a function χ : Γ → C1 such that

χ(γ1γ2) = w(γ1, γ2)χ(γ1)χ(γ2).

In other words the image of w in Z2(Γ,C1) is the coboundary ∂χ. If an arithmetic
subgroup Γ lifts to G̃ then such a χ exists on Γ. We shall now prove a converse to this:

Proposition 1 If there is a weight w multiplier system on an arithmetic subgroup Γ ⊂ G
then there is an arithmetic subgroup Γ0 ⊂ Γ which lifts to G̃.

Proof. Suppose first that rkR(G) ≥ 2. In this case it is known (see [11]) that the
commutator subgroup Γ′ has finite index in Γ. From the exact sequence

1 → µn → C1 n→ C1 → 1

we obtain a long exact sequence containing:

H1(Γ,C1) → H2(Γ, µn) → H2(Γ,C1).

The image of w in H2(Γ,C1) is trivial, so w is the image of an element ϕ ∈ H1(Γ,C1).
However ϕ : Γ → C1 is just a character. Let Γ0 = ker(ϕ). It follows that the restriction
of w to Γ0 is trivial, so Γ0 lifts to G̃. Since Γ0 ⊃ Γ′, it follows that Γ0 is an arithmetic
subgroup of G.

The above argument fails when rkRG = 1 since Γ/Γ′ is often infinite in this case.
However since Γ is finitely generated, Γ/Γ′ is a finitely generated abelian group, and so is
of the form F ⊕ Zr, where F is a finite abelian group. We extend our sequence one step
to the left to give:

H1(Γ,C1)
×n→ H1(Γ,C1) → H2(Γ, µn) → H2(Γ,C1).

This gives:
0 → H1(Γ,C1)/n → H2(Γ, µn) → H2(Γ,C1).

Note that we have

H1(Γ,C1)/n = Hom(F ⊕ Zr,C1)/n = Hom(F,C1)/n.

This implies
0 → Hom(F,C1)/n → H2(Γ, µn) → H2(Γ,C1).

We may therefore choose ϕ : F ⊕ Zr → C1 to be trivial on Zr. Hence ker(ϕ) again has
finite index in Γ and the result follows as before. 2

2 A trivial case

Suppose for a moment that the covering group G̃ is a linear group. In this case there
is always some arithmetic subgroup Γ0 of G which lifts to G̃. To see this, choose any
arithmetic subgroup Γ of G and let Γ̃ be the preimage of Γ in G̃. Each element of the
kernel µn is in Γ̃. For each of these elements apart from the identity, we can choose a
congruence subgroup of Γ̃ not containing that element. Hence the intersection Γ0 of all
these congruence subgroups is a congruence subgroup with trivial intersection with µn.
Thus Γ0 is a lift to G̃ of a congruence subgroup of Γ.
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3 A reformulation

In view of the above remark, it makes sense to assume that the group G is an (alge-
braically) simply connected linear group and that the covering group G̃ is non-linear. We
shall make this restriction from now on.

In order to fix notation, we shall recall the definition of an arithmetic subgroup of the
Lie group G. Suppose k is a totally real field with real places v1, . . . , vr and let G/k be an
algebraic group such that

(i) G(kv1) is isomorphic to G, and

(ii) G(kvi
) is compact for i = 2, . . . , r.

We shall write G(O) for the projection of G(O) onto G. By an arithmetic subgroup of G
we mean a subgroup of G commensurable with some G(O). As usual we let k∞ = k⊗QR.

Proposition 2 Let G/R and G/k be as above.

(i) Every topological cover G̃(k∞) of G(k∞) is of the form

G̃⊕ G(kv2)⊕ . . .⊕ G(kvr),

for some unique cover G̃ → G.

(ii) An arithmetic subgroup Γ lifts from G(k∞) to G̃(k∞) if and only if its projection in
G lifts to G̃.

Proof. Part (ii) is immediate from (i). To prove (i), we must show that for i > 1, the
compact group G(kvi

) is (topologically) simply connected. Note that G(kvi
) is a compact

real form of G(C) = G(C), and is hence a maximal compact subgroup of G(C). By the
Iwasawa decomposition of G(C), we know that G(C) is homotopic to G(kvi

). However as
G/R is (algebraically) simply connected, we know that G(C) is simply connected. 2

4 Metaplectic covers

Let G be a linear algebraic group over an algebraic number field k. We shall write A for
the adèle ring of k. Let A be a finite Abelian group. By a metaplectic extension of G by
A, we shall mean a topological central extension:

1 → A → G̃(A) → G(A) → 1
↖ ↑

G(k)
,

which splits on the subgroup G(k) of k-rational points of G. Suppose we have such

an extension and let G̃(k∞) be the pre-image of G(k∞) in ˜G(A). We therefore have an
extension of Lie groups:

1 → A → G̃(k∞) → G(k∞) → 1.

We shall show that this extension splits on a congruence subgroup of G(k∞).
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To see this we let Af denote the ring of finite adèles of k. As the map pr : G̃(Af ) →
G(Af ) is a topological covering, there is a neighbourhood U1 of the identity in G(Af ) such
that pr−1(U1) is a disjoint union of homeomorphic copies of U1. We may therefore choose
a continuous section τ : U1 → Û1, where Û1 is the copy of U1 which contains the identity
element of G̃(Af ). Now define for α, β ∈ U1, σ(α, β) = τ(α)τ(β)τ(αβ)−1. Clearly σ is
continuous on U1 × U1 and has values in A. Furthermore σ(1, 1) is the identity element
of A. Hence there is a neighbourhood U2 of the identity in G(Af ) such that σ is trivial
on U2 × U2. Now choose U3 ⊂ U2 to be a compact open subgroup of G(Af ). On U3 the
section τ satisfies τ(αβ) = τ(α)τ(β) and so the extension splits on U3. Restricting the
metaplectic extension we obtain:

1 → A → G̃(k∞) o τ(U3) → G(k∞)⊕ U3 → 1 .

(Remark: it is widely believed that the local factors of metaplectic groups always com-
mute. This belief is false; some counterexamples are described in [8].) As U3 commutes
with G(k∞), it follows that the action of τ(U3) by conjugation on G̃(k∞) is trivial in a
neighbourhood of the identity of G̃(k∞). Therefore τ(U3) acts by permuting the connected
components of G̃(k∞). It follows that there is a subgroup U4 of finite index in U3, such
that τ(U4) commutes with G̃(k∞). We therefore have

1 → A → G̃(k∞)⊕ τ(U4) → G(k∞)⊕ U4 → 1 .

Now consider the congruence subgroup:

Γ = G(k) ∩
(
G(k∞)⊕ U4

)
.

As the metaplectic extension splits on G(k), we have by restriction:

1 → A → G̃(k∞)⊕ τ(U4) → G(k∞)⊕ U4 → 1
↖ ↑

Γ
.

Factoring out by U4 and τ(U4) in the above diagram, we obtain as required:

1 → A → G̃(k∞) → G(k∞) → 1
↖ ↑

Γ
.

2

5 The congruence subgroup property

Let G/k be an absolutely simple and (algebraically) simply connected algebraic group over
an algebraic number field k. We shall abbreviate k∞ = k ⊗Q R. Assume also that G(k∞)
is not topologically simply connected. The group G will be said to satisfy the congruence
subgroup property if every arithmetic subgroup of G(k) is a congruence subgroup.

The question of whether congruence subgroups exist or not has been reformulated by
Serre as follows. By the strong approximation theorem, we have

G(Af ) = lim
←(Γcongruence)

G(k)/Γ.
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Now define
Ĝ(Af ) = lim

←(Γarithmetic)
G(k)/Γ.

There is a surjective map Ĝ(Af ) → G(Af ). The kernel C(G) of this map is called the
congruence kernel. The congruence kernel is trivial if and only if all arithmetic subgroups
are congruence subgroups. Serre has conjectured ([15]), that C(G) is a finite subgroup of

the centre of Ĝ(Af ) if and only if rkR(G(k∞)) ≥ 2. Serre’s conjecture in known for most
groups of real rank ≥ 2. In particular the conjecture is known for all isotropic groups
apart from groups of type 2E6,1.

If Serre’s conjecture holds for G of real rank ≥ 2, then our assumption that G(k∞) is
not simply connected implies that

C(G) ∼= Hom(G(k)′/G(k)′,C1),

where G(k)′ is the commutator subgroup of G(k) and G(k)′ is its closure with respect
to the subspace topology on G(k) induced from G(Af ). In particular, if G(k) is perfect
then C(G) is trivial. Furthermore the triviality of C(G) would follow from a conjecture of
Platonov and Margulis (see [14]). This Conjecture is known in most cases. More precisely
we have:

Theorem 1 (Congruence Subgroup Property) Suppose G/k is absolutely simple and
(algebraically) simply connected, but G(k∞) is not topologically simply connected. Sup-
pose also that

∑
v|∞ rkvG ≥ 2. If either G/k is isotropic but not of type 2E6,1, or G/k is

anisotropic but not of type, E6 or 3,6D4, and not an outer form of type 2An then G satisfies
the congruence subgroup property

The results and conjectures referred to above are more fully described in the useful
survey [14].

6 A partial converse

We shall now prove a partial converse of the result of §4.

Theorem 2 Let let G/k be absolutely simple and simply connected. Suppose there is a
topological central extension

1 → A → G̃(k∞) → G(k∞) → 1,

which splits on some arithmetic subgroup Γ0. If G satisfies the congruence subgroup prop-
erty then this extension is the restriction to G(k∞) of a metaplectic extension of G.

Remark 1 In fact with some extra work one could replace the condition that all arith-
metic subgroups are congruence subgroups by the weaker condition that the congruence
kernel is finite. However, since G(k∞) is not topologically simply connected, it is conjec-
tured that C(G) is either infinite or trivial.

Remark 2 The theorem is essentially due to Deligne ([4]). Deligne makes the assumption
that G(k) is perfect, which is slightly stronger than the congruence subgroup property here.
However the assumptions are at least conjecturally equivalent.
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Proof. By the strong approximation theorem, G(k) is a dense subgroup of G(Af ). We
may therefore identify

G(Af ) = lim
←

G(k)/Γ,

where the limit is taken over the congruence subgroups, or equivalently over the arithmetic
subgroups. We also define

G̃(Af ) = lim
←

G̃(k)/τ(Γ),

where G̃(k) is the preimage of G(k) in G̃(k∞); Γ ranges over congruence subgroups of Γ0

and τ : Γ0 → G̃(k∞) is the splitting of the extension on Γ0. For the moment we shall
assume that G̃(A(S)) is a group.

The canonical projections G̃(k)/τ(Γ) → G(k)/Γ induce a projection G̃(A(S)) → G(A(S)).
As G̃(A(S)) is a completion of G̃(k) it follows that we have a commutative diagramme:

1 → A → G̃(k∞) → G(k∞) → 1
|| ↑ ↑

1 → A → G̃(k) → G(k) → 1
|| ↓ ↓

1 → A → G̃(Af ) → G(Af ) → 1.

Finally we define

G̃(A) =
(
G̃(k∞)⊕ G̃(Af )

)
/∆,

where ∆ = {(a, a) : a ∈ A}. As (A⊕ A)/∆ ∼= A, we have a central extension:

1 → A → G̃(A) → G(A) → 1.

The restriction of this extension to G(k∞) is our original extension. It remains show that
this extension is metaplectic.

Choose any section s : G(k) → G̃(k) and define t : G(k) →
(
G̃(k)⊕ G̃(k)

)
/∆ by

t(α) = (s(α), s(α))∆. As the extensions are central we have s(α)s(β)s(αβ)−1 ∈ A. Hence
t(α)t(β)t(αβ)−1 ∈ ∆, so t is a homomorphism. This proves the theorem apart from the
assertion that G̃(A(S)) is actually a group. 2

Remark 3 As the above theorem fails for the group SL2/Q, and we have not yet used the

congruence subgroup property, we may deduce that in this case the completion S̃L2(Af ) is
not a group.

6.1 A remark on profinite limits

Suppose G is an abstract group and we have a directed system F of subgroups Γ ⊂ G.
We shall call F normal if for every g ∈ G and every Γ ∈ F the subgroup g−1Γg contains
an element of F. If F is a normal filtration then the profinite limit

Ḡ = lim
←Γ∈F

G/Γ.

is a group (with the group operation continuous and compatible with the canonical map
G → Ḡ).
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To complete the proof of the above theorem we must show that the system of subgroups

F = {τ(Γ) : Γ is a congruence subgroup of Γ0}
is normal in G̃(k). Choose any g̃ ∈ G̃(k) and any congruence subgroup Γ ⊆ Γ0. Let g be
the projection of g̃ in G(k). We define a section τ g : Γg → G̃(k) by τ g(g−1γg) = g̃−1τ(γ)g̃.
Clearly the image of τ g is (τ(Γ))g̃.

The intersection Γ∩Γg is a congruence subgroup. Furthermore on Γ∩Γg we have two
splittings τ and τ g. As our extension is central we easily verify that

τ g(γ) = ϕ(γ)τ(γ), γ ∈ Γ ∩ Γg,

where ϕ : Γ ∩ Γg → A is a homomorphism. Finally let Γ1 = ker ϕ. As A is finite, Γ1

is an arithmetic subgroup of Γ0. Hence, by the congruence subgroup property, Γ1 is a
congruence subgroup. The sections τ and τ g coincide on Γ1. Therefore τ(Γ1) ⊆ τ g(Γg̃) =
τ(Γ)g̃. 2

6.2 The classification of metaplectic extensions.

The above theorem is useful because the mataplectic extensions of absolutely simple, sim-
ply connected groups have been classified. For such a group G one defined the metaplectic
kernel M(G) to be the kernel of the restriction

H2(G(A),C1) → H2(G(k),C1).

This group is conjectured to be isomorphic to the Pontryagin dual of the group of roots
on unity in the base field k. This conjecture is proved in almost all cases (see [13]). Thus
if G(k) is not topologically simply connected then (in almost all cases) the metaplectic
kernel has order 2. As a consequence we obtain the following.

Theorem 3 Let G/R be absolutely simple and simply connected and let G̃ → G be a
connected n-fold cyclic cover. Let Γ be a congruence subgroup of G such that every sub-
group of finite index in Γ is a congruence subgroup. Furthermore, in the case that G is a
special unitary group, assume that the construction of Γ does not involve is a non-abelian
division algebra. If Γ lifts to G̃ then n ≤ 2.

Proof. The special unitary case we have excluded is the only case in which the meta-
plectic kernel is not known. Let σ ∈ H2(G,µn) correspond to the extension. As the
extension is part of a metaplectic extension, we know that the image of σ in H2(G,C1)
has order at most 2. However we have an exact sequence

H1(G,C1) → H2(G,µn) → H2(G,C1).

As G is perfect, it follows that σ has order at most 2 in H2(G,µn). 2

7 Examples

The descriptions of fundamental groups of Sp2n, SU and SO given below are taken from
[16]. The results for Spin(p, q) may be found in [6].
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7.1 Symplectic groups

The symplectic group Sp2r(R) of rank r is absolutely simple and algebraically simply
connected. However it’s topological fundamental group is Z. Hence Sp2r(R) has an n-fold
cover for every n ∈ N. If r = 1 then Sp2r(R) = SL2(R) and it follows from Peterson’s
result that all fractional weights occur. However if r ≥ 2, then we only have forms of
half-integral weight. This was pointed out in [4].

7.2 Spin groups

Let p ≥ q ≥ 1. The spin group Spin(p, q) has rank q. The group Spin(2, 2) is isomorphic
to SL2(R)⊕ SL2(R), so is not absolutely simple.

If p ≥ q ≥ 3 then the topological fundamental group of Spin(p, q) is µ2, so we have
only a double cover of Spin(p, q).

For p ≥ 3 the group Spin(p, 2) is absolutely simple and simply connected. The funda-
mental group is Z, so this group has an n-fold cover for every n. The congruence subgroup
property holds in this case. Hence we have only half-integral weight forms on Spin(p, 2).

7.3 Orthogonal groups

Let p ≥ q ≥ 1. The special orthogonal group SO(p, q) has rank q. The group has two
connected components. Let O+(p, q) denote the connected component of the identity. For
p ≥ 3 the fundamental group of O+(p, 2)o is Z/2⊕ Z.

The group Spin(p, 2) is the double cover of O+(p, 2)o corresponding to the infinite

cyclic subgroup of Z⊕ Z/2 generated by (1, 1). Thus the unique double cover S̃pin(p, 2)
of Spin(p, 2) is the cover of O+(p, 2) corresponding to the subgroup generated by (2, 0).

This shows that S̃pin(p, 2) is a Z/2⊕ Z/2-cover of O+(p, 2) (rather than a Z/4-cover).
If we had a form of fractional weight on O+(p, 2), then we could pull the form back to

a fractional weight on Spin(p, 2). However this form would be a function on S̃pin(p, 2).
Hence the original form would have to be of half-integral weight.

7.4 Congruences between modular forms

We shall end by pointing out a consequence of the above result using Borcherds products.
Recall that a nearly holomorphic modular form for SL2(Z) is a holomorphic function f(q)
on the upper half-plane, which has the usual transformation behaviour, but which may
have a pole at ∞. In other words the Fourier expansion is allowed a finite number of
negative terms:

f(q) =
∑

nÀ−∞
bnq

n.

Let f be a nearly holomorphic form of weight 1 − l/2, normalized so that bn ∈ Z for all
n < 0. Corresponding to such an f there is an automorphic form Ψ on SO(2, l)o given
by a Borcherds product (see [2],[3]). The weight of Ψ is b0/2. As we know that there are
only half-integral weight forms on SO(2, l)o (l ≥ 3), we deduce the following:

Corollary 1 Let f(q) =
∑

bnq
n be a nearly holomorphic form on SL2(Z) negative weight.

If bn ∈ Z for n < 0 then b0 ∈ Z.
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For a nearly holomorphic form f , we shall call the negative part of its Fourier expansion
the principal part. The following result is proved in [3].

Theorem 4 Let b−1, . . . , b−n ∈ C. There is a nearly holomorphic form of (integral)
weight 2 − k and principal part b−1q

−1 + . . . + b−nq
−n if and only if for every weight k

cusp form f(q) =
∑

aiq
i, we have

n∑
i=1

aib−i = 0.

If such a nearly holomorphic form exists then its constant term is given by

b0 =
n∑

i=1

cibi,

where E(q) = 1 +
∑∞

i=1 ciq
i is the weight k Eisenstein series, normalized so as to have

constant term 1.

Using this characterization, we may reformulate our corollary as follows.

Corollary 2 Let E be the (integral) weight k level 1 Eisenstein series normalized so that
the coefficients are integers with no common factor. Then there is a cusp form f such
that the coefficients of f are congruent to those of E modulo the constant term of E.

The above result can be obtained by much more elementary methods; in fact it follows
immediately from the fact that E4 and E6 have constant term 1. One can however obtain
a similar result for the vector-valued, half-integral weight forms studied in [3] in the same
way. Such congruences have been proved for scalar valued forms of weight 3

2
and prime

level in [10]. However as far a I know for general half-integral weight, this is a new result.
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