
ON FUNCTORIALITY OF ZELEVINSKI INVOLUTIONS
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Let F be a p-adic field and G a connected reductive algebraic group
defined over F . For simplicity, we assume that G is quasi-split. We
denote by WF the Weil group of F . Let LG = Ĝ o WF be the L-
group of G. We denote by LG the set of standard Levi subgroups
of G. For M ∈ LG, we denote by r(M) the semisimple split F -
rank of M . Let Π(G) be the set of equivalence classes of irreducible
admissible representations of G(F ) and C[Π(G)] the space of virtual
characters of G(F ). The parabolic induction defines a homomorphism
iGM : C[Π(M)] −→ C[Π(G)] and the (normalized) Jacquet functor de-
fines a homomorphism rGM : C[Π(G)] −→ C[Π(M)]. Following S. Kato
[11], we define the Zelevinski involution DG by

DG =
∑

M∈LG
(−1)r(M)iGM ◦ rGM .

Let {M} be the set of associate standard Levi subgroups of M . We
say that π ∈ Π(G) is of type {Mπ} if rGMπ

(π) is a non-zero linear
combination of supercuspidal representations of Mπ(F ). We put rπ =
r(Mπ). For π ∈ Π(G), we define

dG(π) = (−1)rπDG(π).

A.-M. Aubert [4, 5] proved that dG(π) is irreducible. Thus the Zelevin-
ski involution preserves the irreducibility. It seems natural to con-
sider the relation between the Zelevinski involution and the conjec-
tural Langlands functoriality. Nevertheless the Zelevinski involution
does not preserve the L-packets. We consider the A-packets conjec-
tured by J. Arthur [3, Conjecture 6.1]. For a Langlands parameter
φ : WF × SU2(C) −→ LG, we denote by Πφ(G) the corresponding
conjectural L-packet. Although SU2(C) is isomorphic to SL2(C), we
denote the second factor of this group by SU2(C) in order to distin-
guish it from the factor SL2(C) used to define the Arthur parameters
in [3]. Let

ψ : WF × SU2(C)× SL2(C) −→ LG

be an Arthur parameter of G. We put

Sψ = Cent(ψ, Ĝ),

Sψ = Sψ/S
0
ψ · ZΓ

Ĝ
,

where S0
ψ is the identity component of Sψ and ZΓ

Ĝ
is the subgroup of

the center ZĜ of Ĝ consisting of the elements fixed by Γ = Gal(F/F ).
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Let Πψ(G) be the conjectural A-packet of ψ and Πφψ(G) the L-packet
corresponding to ψ. We fix Whittaker data χ of G(F ). This determines
the base point πχ ∈ Πφψ(G) as in [3, §6]. For s ∈ Sψ and π ∈ Πψ(G),
we define 〈s, π|πχ〉 as in [3, Conjecture 6.1]. Then it is conjectured
that 〈 · , π|πχ〉 is an irreducible character of Sψ. We say that a vir-
tual character θ ∈ C[Π(G)] is stable if θ is stable as a distribution
on G(F ). Let C[Π(G)]st be the space of stable virtual characters of
G(F ) and C[Πψ(G)] the subspace of C[Π(G)] generated by Πψ(G). We
put C[Πψ(G)]st = C[Π(G)]st ∩ C[Πψ(G)]. As F is a p-adic field, the
following hypothesis is believed.

Hypothesis 1. The map

π ∈ Πψ(G) −→ 〈 · , π|πχ〉 ∈ Π(Sψ)

is injective, where Π(Sψ) is the set of irreducible characters of Sψ, and

dimC[Πψ(G)]st = 1.

In this article, we assume the Arthur conjecture [3, Conjecture 6.1]
and this hypothesis.

Now we turn to the Zelevinski involution. We identify SU2(C) with
SL2(C) and define d(ψ) by

d(ψ)(w × t× u) = ψ(w × u× t),

w × t× u ∈ WF × SU2(C)× SL2(C).

Then d(ψ) is an Arthur parameter of G constructed from ψ by inter-
changing the role of SU2(C) and SL2(C).

Conjecture 2.
dG(Πψ(G)) = Πd(ψ)(G).

Since Sψ = Sd(ψ), we may identify Sψ with Sd(ψ). We denote the base
point in Πφd(ψ)

(G) by πd,χ.

Conjecture 3. There exists a one-dimensional character µ of Sψ which
satisfies

〈s,dG(π)|πd,χ〉 = µ(s)〈s, π|πχ〉,
for all s ∈ Sψ.

If Sψ = {1}, then Πψ(G) = {πχ} and Πd(ψ)(G) = {πd,χ}. The
following conjecture is a special case of Conjecture 2 .

Conjecture 4. If ψ satisfies Sψ = {1}, then

dG(πχ) = πd,χ.

In general, nevertheless, dG(πχ) may not be equivalent to πd,χ. If
G = SL2 and if ψ corresponds to an induced representation of G which
is a direct sum of two irreducible tempered representations, then dG
interchanges these two representations. Thus dG(πχ) 6= πd,χ.
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In the case that G = GLn, Conjecture 2 follows from the results
of C. Moeglin and J.-L. Waldspurger [20]. Recently, K. Konno and
T. Konno have checked that Conjecture 2 is compatible with their
candidates for the A-packets of G = U(2, 2).

Conjecture 3 implies that the Zelevinski involutions behave well un-
der the endoscopic transfers. Thus it turns our attention to the relation
between the Zelevinski involutions and the endoscopic transfers. Since
iGM(C[Π(M)]st) ⊂ C[Π(G)]st and rGM(C[Π(G)]st) ⊂ C[Π(M)]st, we have

DG(C[Π(G)]st) = C[Π(G)]st.

Let (H, H, s, ξ) be (standard) endoscopic data. For the sake of brevity,
we assume thatH ∼= LH. Unfortunately the existence of the endoscopic
transfer is still hypothetical. In this article, to define the endoscopic
transfer of virtual characters, we assume the fundamental lemma for
groups [1, Hypothesis 3.1] and for Lie algebras [21, Conjecture 1.3].
Let

TranGH : C[Π(H)]st −→ C[Π(G)]

be the endoscopic transfer from H to G. Let A0 (resp. AH,0) be a
maximal split torus of G (resp. H). We put a(G) = dim(A0) and
a(H) = dim(AH,0). Then we have the following theorem.

Theorem 5. Assume the fundamental lemma for groups and for Lie
algebras. Then we have

DG ◦ TranGH = (−1)a(G)−a(H) TranGH ◦DH .

By using this theorem, we can reduce Conjecture 2 to Conjecture 4.
Moreover, we can show that Conjecture 4 implies the following formula;

〈s,dG(π)|πd,χ〉 = 〈s,dG(πχ)|πd,χ〉〈s, π|πχ〉,
where 〈 · ,dG(πχ)|πd,χ〉 is a one-dimensional character of Sψ. This is
Conjecture 3.

To prove Theorem 5, we show some properties of the double cosets
of the Weyl groups (a generalization of [7, Proposition 2.7.7]) and an
analogue of the geometric lemma [6, Lemma 2.12].

We fix an F -splitting (B0, T0, {Xα}) ofG, an F -splitting (BH,0, TH,0, {Yα})
of H, a Γ-splitting (B, T , {Xα̌}) of Ĝ and a Γ-splitting (BH , TH , {Yα̌})
of Ĥ. Then we may identify T̂0 (resp. T̂H,0) with T (resp. TH). We
may assume that A0 ⊂ T0 and that AH,0 ⊂ TH,0. We say that a
subtorus of A0 is standard if it is equal to the split component of the
center of a standard Levi subgroup of G. We assume that s ∈ T ,
ξ(TH) = T and ξ(BH) ⊂ B. Let i0 : TH,0 −→ T0 be the dual homomor-
phism of ξ−1 : T −→ TH . We may assume that i0(AH,0) is a standard
subtorus of A0. We identify AH,0 with the image i0(AH,0) in A0. Put
MH = Cent(AH,0, G).
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We discuss the properties of the double cosets of the Weyl groups
with respect to the endoscopic groups. Let

Ω(G) = Norm(A0, G)/Cent(A0, G),

Ω(H) = Norm(AH,0, H)/Cent(AH,0, H),

be the Weyl groups. We denote the set of roots of (G,A0) (resp.
(H,AH,0)) by R(G) = R(G,A0) (resp. R(H) = R(H,AH,0)). For
ωH ∈ Ω(H), there exists a unique ωG ∈ Ω(G) which satisfies the fol-
lowing three conditions.

1) ωG(AH,0) = AH,0,
2) ωG|AH,0 = ωH ,
3) ωG(R+(MH)) > 0.

By identifying ωH with ωG, we may regard Ω(H) as a subgroup of
Ω(G). For M ∈ LG, we put

Ω(G)M,H = {ω ∈ Ω(G)|ω(AH,0) ⊃ AM},
where AM is the split component of the center of M . We also put

D̃M = {ω ∈ (Ω(G)M,H)−1|ω(R+(M)) > 0}.
Let α ∈ R+(H) and ω ∈ (D̃M)−1. Choose α̃ ∈ R+(G) whose restriction
to AH,0 is α. We say that ωα is positive (and write ωα > 0) if ωα̃ is
contained in R+(G). It is not hard to show that the positivity of ωα
does not depend on the choice of α̃. We define DM,H by

DM,H = {ω ∈ (D̃M)−1|ω(R+(H)) > 0}.
Lemma 6. (1) The set DM,H is a system of representatives for

Ω(M)\Ω(G)M,H/Ω(H).

(2) For ω ∈ DM,H , put

Mω = Cent((ω ◦ i0)−1(AM), H),

then Mω is a standard Levi subgroup of H.

For L ∈ LH , we put

DM,H,L = {ω ∈ DM,H |Mω = L}
and

aM,H,L = ]DM,H,L.

Then we have the following formula, which is a generalization of [7,
Proposition 2.7.7].

Proposition 7.
∑

M∈LG
(−1)r(M)aM,H,L = (−1)a(G)−a(H) · (−1)r(L).
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Let LMω be the L-group of Mω. Then we may regard LMω as a
subgroup of LH. Since G is quasi-split, we may regard Ω(G) as a sub-
group of Ω(G, T0). The choice of the splittings defines an isomorphism

Ω(G, T0) −→ Ω(Ĝ, T ). We choose a representative n̂ω ∈ Norm(T , Ĝ)
of

ω ∈ Ω(G) ⊂ Ω(G, T0) ∼= Ω(Ĝ, T ).

We put sω = Int n̂ω(s) and ξω = Int n̂ω ◦ ξ. Then (LMω,Mω, sω, ξω)
is endoscopic data of M . We choose absolute transfer factors of these
endoscopic data and choose Haar measures of standard Levi subgroups
and tori suitably. The following formula is an analogue of the formula
of Bernstein–Zelevinski [6, Lemma 2.12].

Proposition 8. Assume the fundamental lemma for groups and for
Lie algebras. Then we have

rGM ◦ TranGH =
∑

ω∈DM,H
TranMMω

◦rHMω
.
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