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§0 Introduction.

Throughout this paper, let k be a p-adic field. Let G be an algebraic group defined over
k, G = G(k), K a special good maximal bounded subgroup of G, X a G-homogeneous
affine algebraic variety defined over k, and X = X(k). We write the action of G on X
by (g, x) 7−→ g ? x. Denote by C∞(K\X) the set of left K-invariant C-valued functions
on X. The Hecke algebra H(G,K) acts on C∞(K\X) from the left by the convolution
product, which we write (f, Ψ) 7−→ f ∗Ψ. A nonzero function Ψ ∈ C∞(K\X) is called a
spherical function if it is an H(G,K)-common eigenfunction, which means, there exists
a C-algebra map λ : H(G,K) −→ C satisfying

f ∗Ψ = λ(f)Ψ for f ∈ H(G,K).

Spherical functions are very interesting objects to investigate. The explicit expressions
of spherical functions on p-adic groups have been given by I.G.Macdonald [Mac]. Later
on, W.Casselman has reformulated them by representation theoretical method ([Cas]),
for which there is an interpretative article written by P.Cartier([Car]). W. Casselman
and J.Shalika carried forward this method to obtain explicit expressions of Whittaker
functions associated to p-adic reductive group ([CasS]).

F.Sato and the author have investigated spherical functions on certain symmetric
spaces; the space of alternating forms ([HS1]) and the spaces of hermitian and symmetric
forms ([H1]-[H3]). In these cases, spherical functions can be regarded as generating
functions of local densities of representations of forms by forms of the same kind. Hence,
as an application, explicit formulas of local densities have been given( [HS1], [HS2], [H3],
[H4]).

In a similar method to [CasS], S. Kato has announced explicit expressions for spherical
functions on certain spherical homogeneous spaces obtained by general linear groups([K2]),
and S.Kato, A.Murase and T.Sugano have obtained explicit expressions for Whittaker-
Shintani functions (spherical functions ) of certain spherical homogeneous spaces ob-
tained by special orthogonal groups([KMS]). For the spaces which they investigated, the
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space of spherical functions attached to each Satake parameter, in other words, corre-
sponding to each eigenvalue, is of dimension 1.

On the other hand, in a similar method to [Cas], the author has given an expression
of spherical functions of certain spherical homogeneous spaces for which the dimension
of the space of spherical functions is not necessarily one ([H3, Proposition 1.9] ), and
applied it to the space of unramified hermitian forms and given the explicit expression of
spherical functions (the dimension is 2n according to the size n of forms). This result has
also used by K.Takano and S.Kato to give an explicit expression of spherical functions
for the space GL(n, k′)/GL(n, k), where k′ is an unramified quadratic extension of k. In
this case the space of spherical functions has dimension one([Tak]).

In the following, we investigate spherical functions on the following space:

G = Sp2 × (Sp1)
2, X = Sp2,

where (Sp1)
2 is imbedded into Sp2 and the action is given by

g̃ ? x = g1x
tg2, for g̃ = (g1, g2) ∈ Sp2 × (Sp1)

2, x ∈ Sp2,

(for the precise definition, see the beginning of Section 1). This X is a spherical homo-
geneous G-space, which means X has a Zariski open orbit for a Borel subgroup B of G,
and X is not a G-symmetric space.

For this case, we will use the same result in [H3] in order to obtain a explicit formula of
spherical functions. The space of spherical functions attached to each Satake parameter
is of dimension 4. In [KMS], SO(n) × SO(n − 1)-space SO(n) is considered, which is
spherical and has an open Borel orbit over k for every n, and the case when n = 5
is isogeneous to the present case. But there seems to have no direct correspondence
between respective explicit formulas of spherical functions. Finally, Sp2n× (Spn)2-space
Sp2n is no longer spherical for n ≥ 2.

We shall give a brief summary of our results. Taking a set {di | 1 ≤ i ≤ 4} of ba-
sic relative B-invariants (cf. (1.5)) and characters χ of k×/(k×)2, we construct typical
spherical functions (cf. (1.6))

ω(x; χ; s) =
∫

K
χ(

4∏

i=1

di(k ? x))
4∏

i=1

|di(k ? x)|si dk, (x ∈ X, s ∈ C4),

where | | is the absolute value on k and dk is the Haar measure on K, and the integral
of the right hand side is absolutely convergent if Re(si) ≥ 0 (1 ≤ i ≤ 4) and analytically
continued to a rational function in qs1 , . . . , qs4 , where q is the residual number of k. We
introduce a new variable z related to s by

z1 = s1 + s2 + s3 + s4 + 2, z2 = s3 + s4 + 1,
z3 = s1 + s3 + 1, z4 = s2 + s3 + 1,

and write ω(x; χ; z) in stead of ω(x; χ; s).
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These ω(x; χ; z) areH(G,K)-common eigenfunctions correspond to the sameC-algebra
homomorphism λz : H(G,K) −→ C, which gives the Satake transform

λz : H(G,K)
∼−→ C[q±z1 , q±z2 , q±z3 , q±z4 ]W (Proposition 1.1),

where W is the Weyl group of G.
Under the assumption that k has odd residual characteristic, our main results are the

following.
[1] To give a complete se of representatives of K-orbits in X (Theorem 1).
[2] For each χ, to give a rational function Fχ(z) for whichFχ(z) · ω(x; χ; z) belongs to

C[q±
z1
2 , q±

z2
2 , q±

z3
2 , q±

z4
2 ] and W -invariant (Theorem 2).

[3] To give an explicit formula for ω(x; χ; z) (Theorem 3).
[4] Employing spherical functions as kernel function, we give an H(G,K)-module iso-

morphism (spherical transform)

S(K\X)
∼−→

(
C[q±z1 , q±z2 , q±z3 , q±z4 ]W ⊕

4∏

i=1

(q
zi
2 + q−

zi
2 ) · C[q±z1 , q±z2 , q±z3 , q±z4 ]W

)2

.

Especially, S(K\X) is a free H(G,K)-module of rank 4, and we give a free basis (The-
orem 4).

[5] Eigenvalues for spherical functions are parametrized by z ∈
(
C/2π

√−1
log q

Z
)4

/W . The

space of spherical functions on X corresponding to z ∈ C4 has dimension 4 and a basis
is given explicitly (Theorem 5).

Professor S. Böcherer has suggested to the author the significance of the investigation
of this space Sp2 from the view point of its relation to the global Gross-Prasad conjecture
for SO(5) (cf. [GR]). The explicit Hecke module structure of the Schwartz space of it
would be helpful for the question whether the vanishing of the period integral on spherical
vectors implies the vanishing of the period integral on the full modular representation
space. The author would like to express her gratitude to him for these useful discussion.

Notation: Throughout this paper, we denote by k a nonarchimedian local field of
characteristic 0. Denote by O the ring of integers in k, p the maximal ideal in O, π a
fixed prime element of k, q the cardinality of O/p and | | the normalized absolute value
on k. For convenience of notation, we understand |0|s = 0 for s ∈ C with Re(s) > 0.
For an algebraic set Y defined over k, we use the corresponding letter Y for the set of
k-rational points Y(k).

As usual, we denote by C, R, Q, Z and N, respectively, the complex number field,
the real number field, the rational number field, and the set of natural numbers.
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§1 The spherical homogeneous space Sp2.

Set

Spn =
{
x ∈ GL2n

∣∣∣ txJnx = Jn

}
, Jn =

(
1n

−1n

)
, (1.1)

and let G = Sp2 × (Sp1)
2 and we embed (Sp1)

2 = (SL2)
2 into Sp2 by

(

(
a b
c d

)
,

(
e f
g h

)
) 7−→




a b
e f

c d
g h


 .

Hereafter, we understand empty places in matrices mean 0-entries.
Take X = Sp2, and consider the action of G on X defined by

g̃ ? x = g1x
tg2, g̃ = (g1, g2) ∈ G, x ∈ X.

We set the Borel subgroup B = B1 × B2 of G by

B1 =




∗ ∗
0 ∗ ∗

0
∗ 0
∗ ∗


 ⊂ Sp2, B2 =




∗ 0
∗ 0

∗ ∗
∗ ∗


 ⊂ (Sp1)

2. (1.2)

Let us write an element b ∈ B as

b = (




∗ ∗
∗

b1 0
c b2







1
1

x1 x2

x2 x3

0
1

1


 ,




1
1

y1

y2

1
1







b3

b4

∗
∗


),

where the entries at marked ∗ are automatically determined. Then the left invariant
Haar measure on B(k) is given by

db =
|b3| |b4|
|b1| |b2|2

· |db1| |db2| |dc| |dx1| |dx2| |dx3| |db3| |db4| |dy1| |dy2| (1.3)

and the modulus character δ ( d(bb′) = δ−1(b′)db) is δ(b) = |b1|−4 |b2|−2 |b3|−2 |b4|−2.
Let W = W1×W2 be the Weyl group of G with respect to the maximal torus consisting

of diagonal matrices in G, which is isomorphic to (C2¤< (C2)
2) × (C2)

2, and we fix
generators {wi | 1 ≤ i ≤ 4} of W by their action on the maximal torus

wi : (b1, b2, b3, b4) 7−→





(b2, b1, b3, b4) if i = 1
(b1, b

−1
2 , b3, b4) if i = 2

(b1, b2, b
−1
3 , b4) if i = 3

(b1, b2, b3, b
−1
4 ) if i = 4.

(1.4)
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A set of basic relative B-invariants and corresponding characters of B is given as

follows. Let x =

(
A B
C D

)
∈ X with 2 by 2 matrices A,B,C and D and we write

A =

(
A1 A2

A3 A4

)
∈ M2 for simplicity. Set

d1(x) = C1, φ1(b) = b1b3

d2(x) = C2, φ2(b) = b1b4

d3(x) = det C = C1C4 − C2C3, φ3(b) = b1b2b3b4

d4(x) = (det C (C−1D))3 = C1D3 − C3D1, φ4(b) = b1b2,

(1.5)

then {di | 1 ≤ i ≤ 4} forms a basis for relative B-invariants and X(B) =< φi | 1 ≤
i ≤ 4 > becomes the group of rational characters of B which corresponds to relative
B-invariants.

Let K = G(O) and H(G,K) be the Hecke algebra of G = G(k) with respect to K.

We consider the following integral. For x ∈ X, s ∈ C4 and a character χ of k×
/

(k×)2,

ω(x; s; χ) =
∫

K
χ(

4∏

i=1

di(k ? x))
4∏

i=1

|di(k ? x)|si dk, (1.6)

where dk is the normalized Haar measure on K. The right hand of (1.6) is absolutely
convergent for Re(si) ≥ 0 (1 ≤ i ≤ 4) and analytically continued to rational functions in
qs1 , . . . , qs4 , which is a H(G,K)-common eigenfunction with respect to the convolution
product (cf. [H3, Remark 1.1, Proposition 1.1 ] ).

It is convenient to introduce a new variable z which is related to s as follows




z1 = s1 + s2 + s3 + s4 + 2

z2 = s3 + s4 + 1

z3 = s1 + s3 + 1

z4 = s2 + s3 + 1,





s1 = 1
2
(z1 − z2 + z3 − z4 − 1)

s2 = 1
2
(z1 − z2 − z3 + z4 − 1)

s3 = 1
2
(−z1 + z2 + z3 + z4 − 1)

s4 = 1
2
(z1 + z2 − z3 − z4 − 1),

(1.7)

and we write also
ω(x; χ; s) = ω(x; χ; z),

if there is no danger of confusion. It is easy to see

4∏

i=1

|di(bg ? x)|si = (ξδ
1
2 )(b) ·

4∏

i=1

|di(g ? x)|si , (b ∈ B, g ∈ G, x ∈ X),

where

ξ(b) = |b1|s1+s2+s3+s4+2 |b2|s3+s4+1 |b3|s1+s3+1 |b4|s2+s3+1 = |b1|z1 |b2|z2 |b3|z3 |b4|z4
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for b = (



∗ ∗
0

b1

b2


 ,




b3

b4
0

∗ ∗


) ∈ B. The Weyl group W acts on the set

{z1, z2, z3, z4} through its action on the character ξ of B, and we have

wi(z1, z2, z3, z4) =





(z2, z1, z3, z4) for i = 1
(z1,−z2, z3, z4) for i = 2
(z1, z2,−z3, z4) for i = 3
(z1, z2, z3,−z4) for i = 4.

(1.8)

The following statements can be calculated directly, though they are a special case of
Satake transform of algebraic groups [Si] and spherical functions on homogeneous spaces
[H3, Proposition 1.1].

Proposition 1.1 For every f ∈ H(G,K), let

f̃(z) =
∫

G
f(g)ξ−1δ

1
2 (p(g))dg,

where dg is the Haar measure on G normalized by
∫

K
dg = 1 and g = p(g)k ∈ G = BK.

Then, by the map f 7−→ f̃(z), we have

H(G,K) ∼= C[qz1 + q−z1 + qz2 + q−z2 , (qz1 + q−z1)(qz2 + q−z2), qz3 + q−z3 , qz4 + q−z4 ],

and for every f ∈ H(G,K)

(f ∗ ω( ; χ; z))(x) = f̃(z) · ω(x; χ; z) (x ∈ X).

We recall the Bruhat decomposition of X = Sp2

X =
⊔

w∈W1

B1wB1, (1.9)

where W1 is the Weyl group of Sp2 and the symbol t means disjoint union. It is easy
to see that

B1 =
⊔

s,t

Es,tBS, with BS = tB2, Es,t =




1 s
1

st t
t
1
−s 1


 ,

where s, t runs over the algebraic closure k of k, so we get for each w ∈ W1 that

B1wB1 =
⋃

s,t

B1wEs,tBS =
⋃

s,t

B ? wEs,t . (1.10)
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Set

w0 =




1
1

−1
−1


 ( = w2w1w2w1 ∈ W ).

The following Proposition tells us that our space is spherical homogeneous.

Proposition 1.2 The set

Y =

{
x ∈ X

∣∣∣∣∣
4∏

i=1

di(x) 6= 0

}

is an open B-orbit over the algebraic closure of k

Y = B ? x0 with x0 =




1 0
1 1

−1 1
0 −1

−1 1
1 0


 (= w0E−1,−1).

Further, the B-orbit decomposition of the set of k-rational points in Y is given by

Y(k) =
⊔

u∈k×/(k×)2
Yu,

where

Yu =

{
x ∈ X

∣∣∣∣∣
4∏

i=1

di(x) ≡ u mod (k×)2

}
3 w0E−1,−u =




0
1 0
1 1

−1 1
0 −1

−u u
u 0


 .

Remark. By Proposition 1.2 and the injectivity of Poisson integral (cf. [K1]), we see
that ω(x; χ; z) is not identically zero for generic z and linearly independent for characters
χ. Indeed, we will see that the space of spherical functions has dimension 4 and we give
a basis by modifying ω(x; χ; z) for various χ (cf. Theorem 5 in Section 5).

Before closing this section, we confirm the assumption (A2) of [H3]. Denote by H the
stabilizer Gx0 of x0 in G and consider the action of B×H on G by

(b, h) ∗ g = bgh−1 (b, h) ∈ B×H, g ∈ G,

then X ∼= G/H as G-sets. Further, we see that BH = (B×H) ∗ 1 is an open orbit in G
and G is decomposed into a finite number of B×H-orbits.

For g ∈ G, denote by B(g) the image of the stabilizer (B × H)g by the projection
B×H −→ B. Then we have

Lemma 1.3 For each g ∈ G, g /∈ BH, there exists a rational character in X(B) which
is nontrivial on B(g).
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§2 Cartan decomposition

Hereafter we assume that k has odd residual characteristic. In this section we consider
“Cartan decomposition” of X, that is we give a complete set of representatives of K-
orbits in X.

To state the result, we introduce some notation: Let

Λ =
{

(λ1, λ2, λ3, λ4) ∈ Z4 ∪ (
1

2
+ Z)4

∣∣∣∣ λ1 ≥ λ2 ≥ 0, λ3 ≥ 0, λ4 ≥ 0
}

,

Λ∗ = {λ ∈ Λ | λ1 > λ2 > 0, λ3 > 0, λ4 > 0} , (2.1)

and for λ ∈ Λ and ξ ∈ O× set

π(λ;ξ) =




−πλ1+λ3

ξπλ2+λ3 −πλ2+λ4

π−λ1−λ3 ξπ−λ1−λ4

π−λ2−λ4

ξπ−λ1+λ3 π−λ1+λ4

π−λ2+λ3




=




πλ1

πλ2

π−λ1

π−λ2







−1
ξ −1

1 ξ
1

ξ 1
1







π−λ3

π−λ4

πλ3

πλ4




Then our main result is the following.

Theorem 1 Let

R̃ =

{
π(λ;ξ)

∣∣∣∣∣
λ ∈ Λ, ξ ∈ O×/(O×)2

ξ = 1 unless λ ∈ Λ∗

}
,

then R̃ makes a complete set of representatives of K-orbits in X.

In order to prove Theorem 1, we first construct another complete set of representatives.
We introduce some more notation. Set K1 = Sp2(O) and K2 = (Sp1(O))2(⊂ K1), then
it suffices to consider the representatives of double cosets in the space K1\X/K2. Set

T(x,y,z,w) =




x−1 −x−1y−1z
y−1

x
z y





 12

w
w

12




=




x−1 −x−1y−1z
y−1

−x−1y−1zw x−1w
y−1w

x
z y




and for a, b, c, d ∈ Z and ε ∈ O×, set

A(a,b) = T(πa,πb,0,0), B(a,b,c) = T(πa,πb,πc,0),

C(a,b,d) = T(πa,πb,0,πd), D(a,b,c,d;ε) = T(πa,πb,επc,πd).
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Proposition 2.1 The set R =
4⊔

i=1

Ri is a complete set of representatives of K\X, where

R1 =
{
A(a,b)

∣∣∣ a ≥ 0, b ≥ 0
}

, R2 =
{
B(a,b,c)

∣∣∣ a > c ≥ 0, b ≥ 0
}

,

R3 =

{
C(a,b,d)

∣∣∣∣∣
a > 0, b > 0, a + b > d ≥ 0
a ≥ b if d = 0

}
,

R4 =

{
D(a,b,c,d;ε)

∣∣∣∣∣
a > c, b + c > d, b + d > c, c + d > b

ε ∈ O×
/

(O×)2

}
.

Remark 2.1. (1) One proves that every K-orbit has a representative in the set R by
Lemmas 2.2 and 2.3. It is possible but tedious to show directly that there occurs no
K-equivalence within R, so we take another way.

We will see (in Corollary 5.3) that spherical functions ω(x, χ, z) take different values
at each element of R, by using their explicit formulas. Since spherical functions are
K-invariant function, it means that each element in R belongs to the different K-orbit
in X, and we see that R is a complete set of representatives of K-orbit of X. Thus we
establish Proposition 2.1.

(2) The set R4 corresponds bijectively to the set

R̃∗ =
{
π(λ;ξ)

∣∣∣ λ ∈ Λ∗, ξ ∈ O×/(O×)2
}

. (2.2)

(3) In a direct calculation, the assumption on the residual characteristic is needed
only for the proof that there occurs no K-equivalence within R4. For the even residual
characteristic case, we have to choose a suitable subset within R4 (or within R̃∗).

Lemma 2.2 Set R′ = R1 ∪R2 ∪R′
3 ∪R′

4 with

R′
3 =

{
C(a,b,d)

∣∣∣ a ≥ 0, b ≥ 0, d ≥ 0
}

,

R′
4 =

{
D(a,b,c,d;ε)

∣∣∣ a > c ≥ 0, b ≥ 0, d ≥ 0, ε ∈ O×/
(O×)2

}
.

Then every K-orbit in X has a representative in R′.

Lemma 2.3 Because of the following relations, one can replace R′
3 and R′

4 by R3 and
R4, respectively.

C(a,b,d) ∼K A(a,b) if d ≥ a + b. (2.3)

C(a,0,d) ∼K B(a,0,d). (2.4)

C(0,b,d) ∼K B(b−d,d,0) if b ≥ d. (2.5)

C(a,b,0) ∼K C(b,a,0). (2.6)

D(a,b,c,d;ε) ∼K B(a,b,d) if d ≥ b + c. (2.7)

D(a,b,c,d;ε) ∼K C(c,a+b−c,d) if b ≥ c + d. (2.8)

D(a,b,c,d;ε) ∼K C(a,b,d) if c ≥ b + d. (2.9)
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Now we make each element of R correspond systematically to an element in R̃. Set

D̃(a,b,c,d;x) =

(
0 −12

12 0

)
·D(a,b,c,d;ε) =




0
−πa 0
−επc −πb

π−a −επ−a−b+c

0 π−b

−επ−a−b+c+d π−a+d

π−b+d 0


 ,

then
π(λ;ξ) = D̃(a,b,c,d;ε)

for

a = λ1 + λ3, b = λ2 + λ4, c = λ2 + λ3, d = λ3 + λ4,

λ1 =
2a + b− c− d

2
, λ2 =

b + c− d

2
, λ3 =

−b + c + d

2
, λ4 =

b− c + d

2
,

ε = −ξ.

Then R corresponds bijectively to R̃, in particular R4 corresponds to R̃∗.

§3 Functional equations and rationality of spherical

functions

The functional equations for ω(x; z; χ) and ω(x; z; wi(χ)) for wi ∈ W, 1 ≤ i ≤ 4 can
be obtained by taking suitable parabolic subgroup Pi containing B and prehomogeneous
space (Pi × GL1,X × M2,1), for the details see [H5, §3]. Then we have the following
theorem, which gives us some information on the location of poles and zeros of spherical
functions.

Theorem 2 For each character χ of k×/(k×)2, set

Fχ(z) = Gχ(z)
/

G(z),

where

G(z) = (1− q−z1+z2−1)(1− q−z1−z2−1)
4∏

i=1

(1− q−zi−1),

Gχ(z) =





{(+−−−)(−+ +−)(−+−+)(−+−−)(−−++)(−−+−)
× (−−−+)(−−−−)}ε if χ(O×) = 1 and χ(π) = ε

q−
3z1+z2+z3+z4

2 if χ(O×) 6= 1,

and
(ε1ε2ε3ε4)ε = 1− εq

1
2
(ε1z1+ε2z2+ε3z3+ε4z4−1) (εi = +,−, ε = 1,−1).

Then Fχ(z) · ω(x; z; χ) belongs to C[q±
z1
2 , q±

z2
2 , q±

z3
2 , q±

z4
2 ] and is invariant under the

action of the Weyl group W of G.
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§4 Explicit expressions of spherical functions

In this section we give explicit expressions of spherical functions ω(x; χ; z) for each ele-
ment in R̃ following the method of [H3, §1]. Since spherical functions are K-invariant,
it is enough to give such formulas for the representatives of K\X. In Section 2, we have
given a set R̃ of representatives of K\X and left the proof that there is no K-equivalence
within R̃, which will be proved through the explicit formula ω(x; χ; z) in Corollary 5.5.

Set

P(x; χ; z) =
∫

U
χ(

4∏

i=1

di(u ? x))
4∏

i=1

|di(u ? x)|si du, (4.1)

where the variable z ∈ C4 is related to s ∈ C4 by (1.7), U is the Iwahori subgroup of G

compatible with B and du is the Haar measure on U normalized by
∫

U
du = 1. The right

hand side of (4.1) is absolutely convergent for Re(si) ≥ 0 (1 ≤ i ≤ 4) and analytically
continued to a rational function in qs1 , . . . , qs4 .

Applying [H3, Proposition 1.9] to our case, we have the following.

Proposition 4.1 Let G(z) and Gχ(z) be as in Theorem 2, and set

H(z) = (1− q−z1+z2)(1− q−z1−z2) ·
4∏

i=1

(1− q−zi),

where the variable z ∈ C4 is related to s ∈ C4 by (1.7). Then we have

ω(x; χ; z) =
1

(1 + q−1)4(1 + q−2)
· G(z)

Gχ(z)
· ∑

σ∈W

σ

(
Gχ(z)

H(z)
· P(x; χ; z)

)
.

We set
R̃+ =

{
π(λ;ξ)

∣∣∣ λ ∈ Λ, ξ ∈ O×/(O×)2
}

,

and calculate P(x; χ; z) for x ∈ R̃+.

Proposition 4.2 For π(λ;ξ) ∈ R̃+, we have

P(π(λ;ξ); χ; z) = χ(ξ)χ(π)2λ1q−‖λ‖−λ1 · q<λ,z>,

where ‖λ‖ =
∑4

i=1 λi and < λ, z >=
∑4

i=1 λizi.

The following Proposition is an easy consequence of Propositions 4.1 and 4.2.

Proposition 4.3 Let χ be nontrivial on O× and x ∈ X be K-equivalent to some element
in R̃ \R̃∗. Then ω(x; χ; z) = 0.

11



For an element σ of the Weyl group W , we set ε(σ) = 1 (resp. −1) if σ is expressed
by a product of even (resp. odd) numbers of {w1, w2, w3, w4}.

By Proposions 4.1, 4.2 and 4.3, we obtain our main results on explicit expressions of
spherical functions.

Theorem 3 For each λ ∈ Λ, ξ ∈ O× and character χ of k×
/

(k×)2, set

cλ,ξ,χ(z) =
χ(ξ)χ(π)2λ1q−‖λ‖−λ1

(1 + q−1)4(1 + q−2)
· G(z)

Gχ(z)
· 1

H0(z)
,

where G(z)
/

Gχ(z) = Fχ(z)−1 is given in Theorem 2 and

H0(z) = (qz1 − qz2)(1− q−z1−z2) ·
4∏

i=1

(q
zi
2 − q

−zi
2 )

(
= q

3z1+z2+z3+z4
2 ·H(z)

)
;

so if χ is nontrivial on O×, G(z)
/

Gχ(z)H0(z) coincides with the c-function G(z)
/

H(z)
of G. Then the explicit formulas of spherical functions are given in the following.

(i) If χ is trivial on O×, we have

ω(π(λ,ξ); χ; z) = cλ,1,χ(z) · ∑

σ∈W

ε(σ) · σ
(
Gχ(z) · q<λ̃,z>

)
,

where λ̃ = (λ1 + 3
2
, λ2 + 1

2
, λ3 + 1

2
, λ4 + 1

2
)(∈ Λ∗).

(ii) Let χ be nontrivial on O×. Then ω(π(λ;ξ); χ; z) = 0 unless λ ∈ Λ∗, and if λ ∈ Λ∗,
we have

ω(π(λ;ξ); χ; z)

= cλ,ξ,χ(z) ·
((

qλ1z1 − q−λ1z1

) (
qλ2z2 − q−λ2z2

)
−

(
qλ2z1 − q−λ2z1

) (
qλ1z2 − q−λ1z2

))

× ∏

i=3,4

(
qλizi − q−λizi

)
.

§5 Spherical Fourier transform

Let S(K\X) be set of K-invariant Schwartz-Bruhat functions on X:

S(K\X) = {ϕ ∈ C∞(K\X) | compactly supported} ,

and we introduce the spherical transform on S(K\X) in the following. Set

Ψ1(x; z) = F1(z) · ω(x; 1; z), Ψ2(x; z) = Fχ∗(z) · ω(x; χ∗; z),

12



where 1 is the trivial character and χ∗ is the character for which χ∗(π) = 1 and χ∗(ε) =(
ε
p

)
for ε ∈ O×, and Fχ(z) is the function defined in Theorem 2. By Theorem 2, we

know that Ψi(x; z), i = 1, 2 belong to

C[q±
z1
2 , q±

z2
2 , q±

z3
2 , q±

z4
2 ]W (= C0, say).

On the other hand, as we saw in Proposition 1.1, H(G,K) is isomorphic to C0 by Satake
isomorphism.

Now we define the spherical Fourier transform on S(K\X) for i = 1, 2

Fi : S(K\X) −→ C[q±
z1
2 , q±

z2
2 , q±

z3
2 , q±

z4
2 ]W (= C0, say)

ϕ 7−→ Fi(ϕ)(z)

by

Fi(ϕ)(z) =
∫

X
ϕ(x) ·Ψi(x; z)dx,

where dx is the normalized G-invariant measure on X. Since Fi satisfies for every
f ∈ H(G,K)

Fi(f ∗ ϕ)(z) =
˜̌
f (z) · Fi(ϕ)(z), f̌(g) = f(g−1),

Fi is an H(G,K)-module homomorphism, i = 1, 2.

Let us recall the sets Λ and Λ∗ defined in the beginning of Section 2. Set Λ0 = Λ \Λ∗.
For λ ∈ Λ, denote by ϕλ the characteristic function of the K-orbit containing π(λ;1) and
by ϕλ∗ the characteristic function of the K-orbit containing π(λ;ξ) for ξ ∈ O×, ξ /∈ (O×)2.
Then S(K\X) is generated by {ϕλ | λ ∈ Λ0} ∪ {ϕλ, ϕλ∗ | λ ∈ Λ∗}.

For simplicity, we set

η(z) =
4∏

i=1

(
q

zi
2 + q−

zi
2

)
, C = C0 ⊕ η(z) · C0,

here we regard C0 and C as free H(G,K)-modules through the Satake transform.

Our main theorem is the following.

Theorem 4 Set

S1 = < ϕλ | λ ∈ Λ0 >C + < ϕλ + ϕλ∗ | λ ∈ Λ∗ >C,

S2 = < ϕλ − ϕλ∗ | λ ∈ Λ∗ >C .

Then S(K\X) = S1 ⊕ S2 as an H(G,K)-module, and Fj induces the H(G,K)-module
isomorphism Sj

∼= C for j = 1, 2.
In particular, S(K\X) is a free H(G,K)-module of rank 4 with basis

{
ϕλ

∣∣∣∣ λ = (0, 0, 0, 0), (
1

2
,
1

2
,
1

2
,
1

2
)
}
∪

{
ϕλ − ϕλ∗

∣∣∣∣ λ = (
3

2
,
1

2
,
1

2
,
1

2
), (2, 1, 1, 1)

}
.
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It is clear that KerF1 ⊃ S2, KerF2 ⊃ S1 and F2 is injective on S2. Theorem 5 follows
from Propositions 5.1 and 5.2 below.

Proposition 5.1 For λ ∈ Λ∗, set

m̃λ(z) =
∑

σ∈W

σ

(
q<λ,z>

H0(z)

)
.

Then

F2(ϕλ − ϕλ∗) ≡ m̃λ(z) (modC×),

m̃λ(z) ∈ C0 (resp. η(z)C0) if λ1 ∈ 1
2

+ Z (resp. λ1 ∈ Z), and

m̃λ(z) =





1 if λ = (3
2
, 1

2
, 1

2
, 1

2
)

η(z) if λ = (2, 1, 1, 1).

In Particular, F2 gives an H(G,K)-module isomorphism S2
∼= C.

Proposition 5.2 For λ ∈ Λ, set

Kλ(z) =
∑

σ∈W

σ

(
G1(z) · q<λ,z>

H0(z)

)
.

Then,

F1(ϕλ) = F1(ϕλ∗) ≡ K
λ̃
(z) (modC×), λ̃ = (λ1 +

3

2
, λ2 +

1

2
, λ3 +

1

2
, λ4 +

1

2
),

and λ ∈ Λ∗, Kλ(z) can be expressed as

Kλ(z) = cλm̃λ(z) +
∑

µ∈Λ∗
λÂµ

cµ m̃µ(z), with some cλ ∈ C×, cµ ∈ C,

where λ Â µ means that ‖λ‖ > ‖µ‖ or ‖λ‖ = ‖µ‖ , λ1 > µ1. In Particular, F1 gives an
H(G,K)-module isomorphism S1

∼= C. In particular

Since ω(x; χ∗; z) vanishes on R̃0 = R̃\R̃∗ and takes a different value at each element
of R̃∗ and ω(x; 1; z) takes a different value at each element of R̃0, we conclude the proof
of Cartan decomposition given in Section 2.

Corollary 5.3 The set R̃, as well as R, is a complete set of representatives of K-orbit
in X.

Finally, we give a parametrization of spherical functions. The characters on k×/(k×)2

are given by {1, χ∗, χπ, χ∗π}, where χπ(π) = −1, χπ(O×) = 1 and χ∗π = χ∗χπ. We set
for each χ

Ψχ(x; z) = Fχ(z) · ω(x; χ; z),

so Ψχ∗(x; z) = Ψ2(x; z) in the previous notation.
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Theorem 5 Eigenvalues for spherical functions are parametrized by z ∈
(
C/2π

√−1
log q

Z
)4

/W

through the Satake transform H(G,K) −→ C, f 7−→ f̃(z) (cf. Proposition 1.1). The
set
{

Ψ1(x; z) + Ψχπ(x; z), Ψχ∗(x; z)−Ψχ∗π(x; z),
Ψ1(x; z)−Ψχπ(x; z)

η(z)
,

Ψχ∗(x; z) + Ψχ∗π(x; z)

η(z)

}

forms a basis of the space of spherical functions on X corresponding to z ∈ C4.
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