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GROUPS

東大数理　石井 卓 (Taku Ishii)

§1. Class one Whittaker functions

(1.1) Definitions and notation Let G be a semisimple Lie group with finite center
and g its Lie algebra. Fix a maximal compact subgroupK ofG and put k = Lie(K). Let
p be the orthogonal complement of k in g and θ the corresponding Cartan involution.
For a maximal abelian subalgebra a of p and α ∈ a∗, put gα = {X ∈ g | [H,X] =
α(H)X for all H ∈ a} and ∆ = ∆(g, a) the restricted root system. Denoted by ∆+

the positive system in ∆ and Π the set of simple roots. Then we have an Iwasawa
decomposition g = n ⊕ a ⊕ k with n =

∑
α∈∆+ gα. Let G = NAK be the Iwasawa

decomposition corresponding to that of g. We denote by W the Weyl group of the root
system ∆.

Let P0 = MAN be the minimal parabolic subgroup of G with M = ZK(A). For
a linear form ν ∈ a∗C = a∗ ⊗R C, define a character eν on A by eν(a) = exp(ν(log a))
(a ∈ A). We call the induced representation

πν = L2-IndGP0
(1M ⊗ eν+ρ ⊗ 1N)

the class one principal series representation of G. Here ρ = 1
2

∑
α∈∆+ mαα (mα =

dim gα).
Let U(gC) and U(aC) be the universal enveloping algebras of gC and aC, the com-

plexifications of g and a respectively. Set

U(gC)K = {X ∈ U(gC) | Ad(k)X = X for all k ∈ K}.
Let p be the projection U(gC) → U(aC) along the decomposition U(gC) = U(aC) ⊕
(nU(gC) + U(gC)k). Define the automorphism γ of U(aC) by γ(H) = H + ρ(H) for
H ∈ aC. For ν ∈ a∗C, define the algebra homomorphism χν : U(gC)K → C by

χν(z) = ν(γ ◦ p(z))
for z ∈ U(gC)K . Note that χν is trivial on U(g)K ∩ U(g)k and the restriction of χν
to the center Z(gC) of U(gC) coincides with the infinitesimal character of the class
one principal series representation πν . Let η be a unitary character of N . Since
n = [n, n]⊕∑

α∈Π gα, η is determined by the restriction ηα := η|gα (α ∈ Π). The length
|ηα| of ηα is defined as |ηα|2 =

∑
1≤i≤mα

η(Xα,i), where the root vector Xα,j is chosen
as B(Xα,i, θXα,j) = −δi,j (1 ≤ i, j ≤ mα). Here B( , ) is the Killing form on g. In this
article we assume that η is nondegenerate, that is, ηα 6= 0 for all α ∈ Π.

Definition 1.1 Under the above notation, a smooth function w = wν,η on G is called
class one Whittaker function if
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(i) w(ngk) = η(n)w(g), for all n ∈ N , g ∈ G and k ∈ K,

(ii) Zw = χν(Z)w, for all Z ∈ U(gC)K .

We denote by Wh(ν, η) the space of class one Whittaker functions and Wh(ν, η)mod

the subspace consisting of moderate growth functions.

Remark. Because of the Iwasawa decomposition, w ∈ Wh(ν, η) is determined by its
restriction w|A to A. We call w|A the radial part of w.

(1.2) M and W -Whittaker functions

Theorem 1.2 The dimension of the space Wh(ν, η) is the order of the Weyl group W
and the the dimension of Wh(ν, η)mod is at most one. Moreover the unique (up to
constant) element in Wh(ν, η)mod is given by Jacquet integral :

W (ν, η; g) =

∫

N

a(s−1
0 ng)ν+ρη(n)−1dn.

Here s0 is the longest element in W and g = n(g)a(g)k(g) the Iwasawa decomposition
of g ∈ G.

Hashizume ([3]) gave a basis of Wh(ν, η) and express the Jacquet integral as a linear
combination of the basis functions. Let 〈 , 〉 be the inner product on a∗C induced by
the Killing form B( , ). We denote by L the set of linear functions on aC of the form∑

α∈Π nαα with nα ∈ Z≥0.
For each λ ∈ L, we can define the rational function aλ on a∗C as follows. Put

a0(ν) = 1 and determine aλ for λ ∈ L\{0} by

(1.1) (〈λ, λ〉+ 2〈λ, ν〉)aλ(ν) = 2
∑

α∈Π |ηα|2aλ−2α(ν),

inductively. Here we assumed that 〈λ, λ〉+ 2〈λ, ν〉 6= 0 for all λ ∈ L\{0}.
Definition 1.3 For ν ∈ a∗C and unitary character η of N , define a series M(ν, η; a) on
A by

M(ν, η; a) = aν+ρ
∑

λ∈L
aλ(ν)a

λ (a ∈ A)

and extend it to the function on G by

M(ν, η; g) = η(n(g))M(ν, η; a(g)).

Definition 1.4 We denote by ′a∗C the set of elements ν ∈ a∗C satisfying the following:

(i) 〈λ, λ〉+ 2〈λ, sν〉 6= 0 for all λ ∈ L\{0} and s ∈ W ,

(ii) sν − tν /∈ {∑α∈Πmαα | mα ∈ Z} for all s 6= t ∈ W .

Theorem 1.5 ([3, Theorem 5.4]) Let ν ∈ ′a∗C. Then the set {M(sν, η; g) | s ∈ W}
forms a basis of Wh(ν, η).

We call W (ν, η; g) (resp. M(ν, η; g)) W -Whittaker function (resp. M -Whittaker func-
tion). Let us recall the linear relation between W and M -Whittaker functions.
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Proposition 1.6 ([4, cf. Ch IV]) Let c(ν) be the Harish Chandra c-function. Then

c(ν) :=

∫

N

a(s−1
0 n)ν+ρdn

=
∏

α∈∆+
0

2
mα−m2α

2

( π

〈α, α〉
)mα+m2α

2 Γ(να)Γ(1
2
(να + mα

2
))

Γ(να + mα

2
)Γ(1

2
(να + mα

2
+m2α))

.

Here ∆+
0 = {α ∈ ∆+ | 1

2
α /∈ ∆}.

Definition 1.7 For η ∈ N̂ , ν ∈ a∗C and s ∈ W , we define γ(s; ν, η) as follows. If s = sα
(α ∈ Π), the simple reflection,

γ(s; ν, η) =
( |ηα|

2
√

2〈α, α〉
)2να Γ(1

2
(−να + mα

2
+ 1))Γ(1

2
(−να + mα

2
+m2α))

Γ(1
2
(να + mα

2
+ 1))Γ(1

2
(−να + mα

2
+m2α))

.

For s ∈ W and α ∈ Π such that l(sαs) = l(s) + 1, then

γ(sαs; ν, η) = γ(s; ν, η)γ(sα; sν, η).

Here l(s) means the length of s.

Theorem 1.8 ([3, Theorem 7.8]) If ν ∈ ′a∗C,

W (ν, η; g) =
∑
s∈W

γ(s0s; ν, η)c(s0sν)M(sν, η; g).

Problem : Find explicit formulas of W (ν, η; g) and M(ν, η; g).

Known results (G is real semisimple) :

(1) G is real rank 1 : W (resp. M)-Whittaker functions can be written by modified
K (resp. I)-Bessel functions.

(2) G = SL(n,R) : In case of n = 3, Tahtajan-Vinogradov ([14]) and Bump ([1])
obtained explicit formulas of W and M -Whittaker functions. For general n, Stade
([11]) found a recursive integral formula ofW -Whittaker function and I ([7]) proved
a similar recursive formula of M -Whittaker function conjectured in [13]. When
n = 4, Stade ([12]) also gave a explicit formula of aλ(ν) by solving the recurrence
relation (1.1) and his formula included (terminating) generalized hypergeometric
series 4F3(1) (cf. [7]).

(3) G = Sp(2,R), SOo(2, q)(q ≥ 3) : As for W -Whittaker function on Sp(2,R), Niwa
([9]) obtained the formula (3.5) in section (3.1). In the similar way to Proskurin’s
evaluation of Jacquet integral for G = Sp(2,C) ([10]), I ([5]) found the integral
expression (3.7). The explicit formula (3.4) of M -Whittaker function is also ob-
tained in [5]. These results can be extended to SOo(2, q) in [6] (so(2, 3) ∼= sp(2,R),
so(2, 4) ∼= su(2, 2)).
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Extending the work of Niwa, we consider the problem in case of G = Spn(R) and
SOn,n in this article.

(1.3) Structure theory for Spn(R) and SOn,n We give precise description of the
notation in the above subsections. Let G1 and G2 be algebraic groups over Q defined
as

G1 = SOn,n =

{
g ∈ SL2n

∣∣∣ tg
(

Jn
Jn

)
g =

(
Jn

Jn

)}
,

and

G2 = Spn =

{
g ∈ SL2n

∣∣∣ tg
(

Jn
−Jn

)
g =

(
Jn

−Jn

)}
.

Here Jn =




1

· · ·
1


 (n×n matrix). Hereafter we use the notation in sections (1.1)

and (1.2) with subscript 1 for G1 := G1(R) = SOn,n and 2 for G2 := G2(R) = Spn(R).

< Iwasawa decompositions >

a1 = {diag(a1, . . . , an,−an, . . . ,−a1) | ai ∈ R},
a2 = {diag(t1, . . . , tn,−tn, . . . ,−t1) | ti ∈ R},
A1 = {diag(a1, . . . , an, a

−1
n , . . . , a−1

1 ) | ai > 0},
A2 = {diag(t1, . . . , tn, t

−1
n , . . . , t−1

1 ) | ti > 0},

Ni =





(
n0 ∗
0 Jn

tn−1
0 Jn

)
∈ Gi

∣∣∣n0 =




1 ∗
. . .

0 1







.

< principal series >

ν = (ν1, . . . , νn) ∈ a∗i,C (i = 1, 2),

ρ1 = ρ
(n)
1 = (n− 1, n− 2, . . . , 1, 0), ρ2 = ρ

(n)
2 = (n, n− 1, . . . , 2, 1).

< Weyl groups > W1 = Sn n (Z/2Z)n−1, W2 = Sn n (Z/2Z)n.

< unitary characters >

η1(u) = exp
(
2π
√−1(u1,2 + u2,3 + · · ·+ un−1,n + un−1,n+1)

)
,

η2(u) = exp
(
2π
√−1(u1,2 + u2,3 + · · ·+ un−1,n + un,n+1)

)
,

for u = (uk,l) ∈ Ni.

< ci(ν) and γi(s; ν, η) >

c1(ν) = π
n(n−1)

2

∏
1≤i<j≤n

Γ(
νi−νj

2
)Γ(

νi+νj

2
)

Γ(
νi−νj+1

2
)Γ(

νi+νj+1

2
)
,

c2(ν) =
π

n2

2

2
n
2

∏
1≤i≤n

Γ(νi

2
)

Γ(νi+1
2

)

∏
1≤i<j≤n

Γ(
νi−νj

2
)Γ(

νi+νj

2
)

Γ(
νi−νj+1

2
)Γ(

νi+νj+1

2
)
,
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c1(s0sν)γ1(s0s; ν, η1) = π
n(n−1)

2
+〈ν, ρ1〉 s

[
π〈ν, ρ1〉

∏
1≤i<j≤n Γ(

−νi+νj

2
)Γ(

−νi−νj

2
)
]

∏
1≤i<j≤n Γ(

νi−νj+1

2
)Γ(

νi+νj+1

2
)

,

c2(s0sν)γ2(s0s; ν, η2) = 2−
n
2 π

n2

2
+〈ν, ρ2〉− 1

2

Pn
i=1 νi

· s
[
π〈ν, ρ2〉−

1
2

Pn
i=1 νi

∏
1≤i≤n Γ(−νi

2
)
∏

1≤i<j≤n Γ(
−νi+νj

2
)Γ(

−νi−νj

2
)
]

∏
1≤i≤n Γ(νi+1

2
)
∏

1≤i<j≤n Γ(
νi−νj+1

2
)Γ(

νi+νj+1

2
)

.

§2. Symplectic orthogonal theta lifts and main theorem

(2.1) Weil representation and theta lift Let k be a local field and ψ a nontrivial
character of k. For a finite dimensional k-vector space Z equipped with symplectic
form 〈 , 〉, put

Sp(Z, k) = {g ∈ GL(Z, k) | 〈z1g, z2g〉 = 〈z1, z2〉, ∀z1, z2 ∈ Z}.

Let Z = Z+ + Z− be a polarization, that is, Z± are maximal isotropic subspace of Z.
Let ωψ be the Weil representation of S̃p(Z, k) on S (Z+), the space of Schwartz-Bruhat
functions on Z+. When k is a global field and ψ a nontrivial character on k\A, we can

also define Weil representation ωψ of S̃p(Z,A) on S (Z+
A).

Let k be a global field and X a 2n-dimensional k-vector space of column vectors

with symmetric form ( , ) given by (x, y) = tx

(
Jn

Jn

)
y. Then G1(k) = SOn,n(k)

acts on X from the left and preserves ( , ). Also let Y be a 2n-dimensional k-vector

space of row vectors with symplectic form 〈 , 〉 given by 〈x, y〉 = x

(
Jn

−Jn

)
ty. Then

G2(k) = Spn(k) acts on Y from the right and preserves 〈 , 〉. The space Z := X⊗Y has
a symplectic form ( , ) ⊗ 〈 , 〉 and we have a homomorphism SOn,n(A) × Spn(A) →
Sp(Z,A). Let {e1, . . . , en, e−n, . . . , e−1} be the standard basis of X. Then X+ =
Span{e1, . . . , en} and X− = Span{e−n, . . . , e−1} give a polarization of X. Also take
the standard basis of Y by {ε1, . . . , εn, ε−n, . . . , ε−1} and put Y + = Span{ε1, . . . , εn},
Y − = Span{ε−n, . . . , ε−1}. We choose a polarization of Z by Z± = X⊗Y ± and denote∑n

i=1 xi ⊗ εi ∈ Z+ by (x1, . . . , xn).

For ωψ and φ ∈ S (Z+
A), define the theta series θφψ on G1(A)×G2(A) by

θφψ(g1, g2) =
∑

z∈Z+
k

ωψ(g1, g2)φ(z).

Let σ be an irreducible cuspidal automorphic representation of G1(A). For a cusp
form f ∈ σ, put

F φ
f (g2) =

∫

G1(k)\G1(A)

θφψ(g1, g2)f(g1)dg1.

It is known that F φ
f defines a cusp form on G2(A) and the space Θψ(σ) = 〈F φ

f | f ∈
σ, φ ∈ S (Z+

A)〉 is called the theta lift of σ with respect to ψ.
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(2.2) Whittaker coefficients To describe Whittaker coefficient, we fix unitary char-
acters ψ1 and ψ2 of N1(A) and N2(A) as follows (cf. section (1.3)).

ψ1(u) = ψ(u1,2 + u2,3 + · · ·+ un−1,n + un−1,n+1),

ψ2(u) = ψ(u1,2 + u2,3 + · · ·+ un−1,n + un,n+1)

for u = (uk,l) ∈ Ni(A). We say an irreducible cuspidal representation σi on Gi(A) has
a nontrivial ψ−1

i -Whittaker coefficient, if the integral

Wf (gi) =

∫

Ni(k)\Ni(A)

f(ngi)ψ
−1
i (n)dn

does not vanish for some f ∈ σi. Ginzburg, Rallis and Soudry ([2]) proved the follow-
ing:

Proposition 2.1 ([2, Proposition 3.5]) We assume that the irreducible cuspidal rep-
resentation σ of G1(A) has a nontrivial ψ−1

1 -Whittaker coefficient. Then the theta
lift Θψ(σ) to G2(A) is nontrivial and has a ψ−1

2 -Whittaker coefficient. Moreover, the

ψ−1
2 -Whittaker coefficient of F φ

f ∈ Θψ(σ) is

(2.1) WFφ
f
(g2) =

∫

E(A)\G1(A)

ωψ(g1, g2)φ(u0)Wf (g1)dg1.

Here E is the stabilizer of u0 = (e1, . . . , en−1, en + e−n) ∈ Z+.

If we decompose the right hand side of (2.1) to the local factors, the integral
∫

E(R)\G1(R)

ωψ(g1, g2)φ(u0)W (g1)dg1.

is expected to represent the Whittaker function on Spn(R). Here W is the Whittaker
function on SOn,n. Then, if we take

φ(X) = exp[−π(tr(tXX))],

and compute the integral by using the formulas of Weil representation, we can propose
the following:

Theorem 2.2 For a ∈ A1 and t ∈ A2, put

θ(a, t) = exp
[
−π

{( t21
a2

1

+
a2

1

t22

)
+ · · ·+

( t2n−1

a2
n−1

+
a2
n−1

t2n

)
+

( t2n
a2
n

+ t2na
2
n

)}]
.

Then, for ν ∈ ′a∗1,C ∩ ′a∗2,C,

(2.2)
π−

1
2

Pn
i=1 νi

(2π)
n
2

n∏
i=1

Γ
(νi + 1

2

) · t−ρ2W2(ν; t) =

∫

(R≥0)n

θ(a, t) · a−ρ1W1(ν; a)
n∏
i=1

dai
ai
.

The right hand side of (2.2) represent a Whittaker function, however, to see that it is
just the Whittaker function we want to seek, it seems to need further argument. For
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example, if we use the similar result of [2] from Spn to SOn+1,n+1, we obtain Whittaker
function on SOn+1,n+1 from one on Spn(R) (see (3.11)). Though in this formula, the
parameter of principal series is not general (νn+1 = 0). Then in case of n = 2, Niwa
proved this theorem by checking the right hand side (=(3.5)) satisfy the system of
partial differential equation for Sp2(R)-Whittaker function by using computer. But in
case of general n, the explicit form of differential equation is not known. So we first
prove the lifting of M -Whittaker functions (which also seems to be interesting result)
and by using Theorem 1.7 we establish the lifting of W -Whittaker functions.

(2.3) Lifting ofM-Whittaker functions We first write down the recurrence relation
(1.1) explicitly.

Proposition 2.3 Let

M1(ν; a) = aν+ρ1
∑

m=(m1,...,mn)∈(Z≥0)n

c1,m(ν)
(
2π
a1

a2

)2m1· · ·
(
2π
an−1

an

)2mn−1

(2πan−1an)
2mn

be the radial part of M-Whittaker function on SOn,n. If ν ∈ ′a∗1,C, the coefficients
c1,m(ν) are determined by the following recurrence relation:

[
4
( n∑
i=1

m2
i −

n−2∑
i=1

mimi+1 −mn−2mn

)

+ 2
(n−1∑
i=1

mi(νi − νi+1) +mn(νn−1 + νn)
)]
c1,m(ν) =

n∑
i=1

c1,m−ei
(ν),

(2.3)

with ei = (0, . . . , 1, . . . , 0).

Proposition 2.4 Let

M2(ν; t) = tν+ρ2
∑

k=(k1,...,kn)∈(Z≥0)n

c2,k(ν)
(
2π
t1
t2

)2k1· · ·
(
2π
tn−1

tn

)2kn−1

(2πt2n)
2kn

be the radial part of M-Whittaker function on Spn(R). If ν ∈ ′a∗2,C, the coefficients
c2,k(ν) are determined by the following recurrence relation:

[
4
(n−1∑
i=1

k2
i + 2k2

n −
n−2∑
i=1

kiki+1 − 2kn−1kn

)

+ 2
(n−1∑
i=1

ki(νi − νi+1) + 2knνn

)]
c2,k(ν) =

n−1∑
i=1

c2,k−ei
(ν) + 2c2,k−en(ν).

(2.4)

From the above propositions we can prove the following:

Theorem 2.5 If ν ∈ ′a∗1,C ∩ ′a∗2,C,

c2,k(ν) =
1∏n

i=1(
νi

2
+ 1)ki
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·
∑

m∈S(k)

(−1)m1+···+mn−1 4
Pn

i=1(mi−ki)
∏n−1

i=1 (−ki+1 − νi+1

2
)mi

· c1,m(ν)

(k1 −m1)! . . . (kn−2 −mn−2)!(kn−1 −mn−1 −mn)!(kn −mn)!
.

Here we use the notation

S(k) =

{
m ∈ Zn

≥0

∣∣∣ 0 ≤ m1 ≤ k1, . . . , 0 ≤ mn−2 ≤ kn−2,
0 ≤ mn−1, mn−1 +mn ≤ kn−1, 0 ≤ mn ≤ kn

}

and (a)n = Γ(a+ n)/Γ(a).

By using this Theorems 2.5 and 1.7, we compute the right hand side of (2.2), then we
can reach the Theorem 2.2 after somewhat complicated but elementary calculus.

§3. Examples of explicit formulas

From now on we adopt the notation W
(n)
1 (ν; a) (resp. W

(n)
2 (ν; t)) for the radial part of

W -Whittaker function on SOn,n (resp. Spn(R)), etc.

(3.1) From SO2,2 to Sp2(R)

Proposition 3.1

(3.1) M
(2)
1 (ν; a) = aν1+1

1 aν22

∑
m1,m2≥0

(πa1/a2)
2m1(πa1a2)

2m2

m1!m2!(
ν1−ν2

2
+ 1)m1(

ν1+ν2
2

+ 1)m2

.

Proposition 3.2 W
(2)
1 (ν; a) has the following expressions.

(3.2) c
(2)
1 a1K ν1−ν2

2

(
2π
a1

a2

)
K ν1+ν2

2
(2πa1a2),

(3.3) c
(2)
1 a1

∫

(R≥0)2
exp

[
−π

{a2
1

t2
+

( t2
a2

2

+a2
2t

2
)
+

( t2
b2

+t2b2
)}]

·bν1
( a1a2b

t2(1 + a2
2b

2)

)ν2 dt
t

db

b
,

with some constant c
(2)
1 .

From the above two propositions, we have the followings:

Proposition 3.3

M
(2)
2 (ν; t) = tν1+2

1 tν2+1
2

∑
m1,m2≥0

3F2

( −m2, −m1 − ν1
2
, m1 + ν1

2
+ 1

ν1
2

+ 1, ν2
2

+ 1

∣∣∣∣ 1

)

· (πt1/t2)
2m1(πt22)

2m2

m1!m2! (
ν1−ν2

2
+ 1)m1(

ν1+ν2
2

+ 1)m2

.

(3.4)

Proposition 3.4 W
(2)
2 (ν; t) has following integral expressions.

c
(2)
2 t21t2

∫

(R≥0)2
exp

[
−π

{( t21
a2

1

+
a2

1

t22

)
+

( t22
a2

2

+ t22a
2
2

)}]

·K ν1−ν2
2

(
2π
a1

a2

)
K ν1+ν2

2
(2πa1a2)

da1da2

a1a2

,

(3.5)
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c
(2)
2 t21t2

∫

(R≥0)4
exp

[
−π

{( t21
a2

1

+
a2

1

t22

)
+

( t22
a2

2

+ t22a
2
2

)
+
a2

1

u2
+

(u2

a2
2

+ a2
2u

2
)

+
(u2

b2
+ u2b2

)}]
· bν1

( a1a2b

u2(1 + a2
2b

2)

)ν2 da1da2

a1a2

du

u

db

b
,

(3.6)

1

4
c
(2)
2 t

2+
ν1
2

1 t
1− 3ν2

2
2

∫

(R≥0)2
K ν1

2

(
2π
t1
t2

√
1 + x+ y

)
K ν2

2

(
2πt22

√
(1 + 1/x)(1 + 1/y)

)

·
( x2y2

1 + x+ y

)ν1
4
(x(1 + x)

y(1 + y)

)ν2
4 dxdy

xy
,

(3.7)

with some constant c
(2)
2 .

Remark. As mentioned before, (3.5) is the result of [9] and (3.7) is of [5]. The
equivalence of these two expressions can be checked by way of (3.6) and slight change
of variables.

(3.2) From SO3,3 to Sp3(R) By virtue of so3,3
∼= sl4(R), we can find the integral

expressions of W
(3)
1 (ν; a) by the result of Stade ([11]) for W -Whittaker functions on

SL(n,R).

Proposition 3.5 W
(3)
1 (ν; a) can be written as follows.

c
(3)
1 a2

1a2

∫

(R≥0)2
K ν1+ν2

2

(
2πa2a3

√
1 + u−2

1

)
K ν1+ν2

2

(
2π
a2

a3

√
1 + u2

2

)

·K ν1+ν2
2

(
2π
a1

a2

√
(1 + u2

1)(1 + u−2
2 )

)
K ν1−ν2

2

(
2π
a1

a2

u1

u2

)

·
( a3

u1u2

)ν3 du1du2

u1u2

,

(3.8)

c
(3)
1 a2

1a2

∫

(R≥0)6
exp

[
−π

{a2
1

t21
+

( t21
a2

2

+
a2

2

t22

)
+

( t22
a2

3

+ a2
3t

2
2

)
+

( t21
b21

+
b21
t22

)

+
( t22
b22

+ t22b
2
2

)
+
b21
s2

+
(s2

b22
+ b22s

2
)

+
(s2

c2
+ s2c2

)}]

·cν1
( b1b2c

s2(1 + b22c
2)

)ν2( a1a2a3b1b2
t21t

2
2(1 + a2

3b
2
2)

)ν3 dt1dt2
t1t2

db1db2
b1b2

ds

s

dc

c
,

(3.9)

with some constant c
(3)
1 .

Proposition 3.6 W
(3)
2 (ν; t) is of the form

c
(3)
2 t31t

2
2t3

∫

(R≥0)5
K ν1+ν2

2

(
2πa2a3

√
1 + u−2

1

)
K ν1+ν2

2

(
2π
a2

a3

√
1 + u2

2

)

·K ν1+ν2
2

(
2π
a1

a2

√
(1 + u2

1)(1 + u−2
2 )

)
K ν1−ν2

2

(
2π
a1

a2

u1

u2

)

· exp
[
−π

{( t21
a2

1

+
a2

1

t22

)
+

( t22
a2

2

+
a2

2

t23

)
+

( t23
a2

3

+ t23a
2
3

)}]

·
( a3

u1u2

)ν3 du1du2

u1u2

da1da2da3

a1a2a3

,

(3.10)
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with some constant c
(3)
2 .

Remark. We also have a formula for M
(3)
2 (ν; t) by using the formula in [12], however,

our result is not satisfactory form now.

(3.3) Conjecture for general n [2, Proposition 2.7] also computed Whittaker coef-
ficient of theta lift from Spn to SOn+1,n+1. In view of the result, it seems to hold

a−ρ
(n+1)
1 W

(n+1)
1 ((ν1, . . . , νn, 0); a)

= c

∫

Rn
≥0

θ̃(a, t) · t−ρ(n)
2 W

(n)
2 ((ν1, . . . , νn); t)

n∏
i=1

dti
ti
,

(3.11)

where

θ̃(a, t) = exp
[
−π

{a2
1

t21
+

( t21
a2

1

+
a2

2

t22

)
+ · · ·+

( t2n−1

a2
n−1

+
a2
n

t2n

)
+

( t2n
a2
n+1

+ a2
n+1t

2
n

)}]
.

It may be impossible to extend (ν1, . . . , νn, 0) → (ν1, . . . , νn+1) by adding some terms
containing νn+1 to the integrand, however, we can propose the following conjecture
from the results for n = 2, 3 ((3.3), (3.9)).

Conjecture 3.7 Let b = diag(b1, . . . , bn+1, b
−1
n+1, . . . , b

−1
1 ). Then W

(n+1)
1 ((ν1, . . . , νn+1); b)

has the following expressions.

c bρ
(n+1)
1

∫

(R≥0)2n

θ̃(b, t)θ(t, a) · a−ρ(n)
1 W

(n)
1 ((ν1, . . . , νn); a)

·
( b1 · · · bn+1a1 · · · an

(t1 · · · tn)2(1 + b2n+1a
2
n)

)νn+1
n∏
i=1

dti
ti

dai
ai
,

(3.12)

c bρ
(n+1)
1

∫

(R≥0)n

n−1∏
i=1

Kνn+1

(
2π

bi
bi+1

√(
1 +

a2
i−1

b2i

)(
1 +

b2i+1

a2
i

))

·Kνn+1

(
2πbnbn+1

√(
1 +

a2
n−1

b2n

)(
1 +

a2
n

b2n+1

)(
1 +

1

a2
nb

2
n+1

))

· a−ρ(n)
1 W

(n)
1 ((ν1, . . . , νn); a)

( a2
n + b2n+1

1 + a2
nb

2
n+1

)νn+1
2

n∏
i=1

dai
ai
,

(3.13)

with some constant c.
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