CAP automorphic representations of low rank groups *

Takuya KONNO ${ }^{\dagger}$

April 22, 2003

Abstract

In this talk, I report my recent joint work with K. Konno on non-tempered automorphic representations on low rank groups [KK]. We obtain a fairly complete classification of such automorphic representations for the quasisplit unitary groups in four variables.

1 CAP forms

The term CAP in the title is a short hand for the phrase "Cuspidal but Associated to Parabolic subgroups". This is the name given by Piatetski-Shapiro [PS83] to those cuspidal automorphic representations which apparently contradict the generalized Ramanujan conjecture. More precisely, let G be a connected reductive group defined over a number field F, and G^{*} be its quasisplit inner form. We write $\mathbb{A}=\mathbb{A}_{F}$ for the adéle ring of F. An irreducible cuspidal representation $\pi=\bigotimes_{v} \pi_{v}$ is a CAP form if there exists a residual discrete automorphic representation $\pi^{*}=\bigotimes_{v} \pi_{v}^{*}$ such that, at all but finite number of v, π_{v} and π_{v}^{*} share the same absolute values of Hecke eigenvalues.

It is a consequence of the result of Jacquet-Shalika JS81a, JS81b and MoeglinWaldspurger [MW89] that there are no CAP forms on the general linear groups. On the other hand, for a central division algebra D of dimension n^{2} over F^{\times}, the trivial representation of $D^{\times}(\mathbb{A})$ is clearly a CAP form which shares the same local component, at any place v where D is unramified, with the residual representation $\mathbf{1}_{G L(n, \mathbb{A})}$. On the other hand, a quasisplit unitary group $U_{E / F}(3)$ of 3 -variables already have non-trivial CAP forms, which can be obtained as θ-lifts of some automorphic characters of $U_{E / F}(1)$ GR90], [GR91]. But the first and the most well-known example of CAP forms are the analogues of the θ_{10} representation by Howe-Piatetski-Shapiro [Sou88] and the Saito-Kurokawa representations of $S p_{4}$ PS83. Also Gan-Gurevich-Jiang obtained very interesting example

[^0]of CAP forms on the split group of type G_{2} [GGJ02] (see also the article by Gan in this volume).

In any case, the local components of CAP forms at almost all places are non-trivial Langlands quotients by definition, and hence non-tempered in an apparent way. To put such forms into the framework of Langlands' conjecture, J. Arthur proposed a series of conjectures Art89. The conjectural description is through the so-called A-parameters, homomorphisms ψ from the direct product of the hypothetical Langlands group \mathcal{L}_{F} of F with $S L(2, \mathbb{C})$ to the L-group ${ }^{L} G$ of G Bor79]:

$$
\psi: \mathcal{L}_{F} \times S L(2, \mathbb{C}) \longrightarrow{ }^{L} G
$$

considered modulo \widehat{G}-conjugation. We write $\Psi(G)$ for the set of \widehat{G}-conjugacy classes of A-parameters for G. By restriction, we obtain the local component

$$
\psi_{v}: \mathcal{L}_{F_{v}} \times S L(2, \mathbb{C}) \rightarrow{ }^{L} G_{v}
$$

of ψ at each place v. Here the local Langlands group $\mathcal{L}_{F_{v}}$ is defined in [Kot84, §12], and ${ }^{L} G_{v}$ is the L-group of the scalar extension $G_{v}=G \otimes_{F} F_{v}$. The local conjecture, among other things, associates to each ψ_{v} a finite set $\Pi_{\psi_{v}}\left(G_{v}\right)$ of isomorphism classes of irreducible unitarizable representations of $G\left(F_{v}\right)$, called an A-packet. At all but finite number of $v, \Pi_{\psi_{v}}\left(G_{v}\right)$ is expected to contain a unique unramified element π_{v}^{1}. Using such elements, we can form the global A-packet associated to ψ

$$
\Pi_{\psi}(G):=\left\{\begin{array}{l|ll}
\bigotimes_{v} \pi_{v} & \begin{array}{ll}
\text { (i) } & \pi_{v} \in \Pi_{\psi_{v}}\left(G_{v}\right), \forall v ; \\
\text { (ii) } & \pi_{v}=\pi_{v}^{1}, \forall^{\prime} v
\end{array}
\end{array}\right\}
$$

Arthur's conjecture predicts the multiplicity of each element in $\Pi_{\psi}(G)$ in the discrete spectrum of the right regular representation of $G(\mathbb{A})$ on $L^{2}\left(G(F) \mathfrak{A}_{G} \backslash G(\mathbb{A})\right)$. Here \mathfrak{A}_{G} is the maximal \mathbb{R}-vector subgroup in the center of the infinite component $G\left(\mathbb{A}_{\infty}\right)$ of $G(\mathbb{A})$.

We say an A-parameter ψ is of CAP type if
(i) ψ is elliptic. This is the condition for $\Pi_{\psi}(G)$ to contain an element which occurs in the discrete spectrum.
(ii) $\left.\psi\right|_{S L(2, \mathbb{C})}$ is non-trivial.

According to the conjecture, the CAP automorphic representations of $G(\mathbb{A})$ is contained in some of the global A-packets associated to such A-parameters. In this talk, we shall classify the CAP forms by such parameters along the line of Arthur's conjecture, in the case of the quasisplit unitary group $U_{E / F}(4)$ of four variables. Although our description of such forms tells nothing about the character relations conjectured in [Art89], it is quite explicit and fairly complete. We hope to apply this to certain analysis of the cohomology of the Shimura variety attached to $G U_{E / F}(4)$.

2 Parameter consideration

Global case Take a quadratic extension E / F of number fields and write σ for the generator of the Galois group of this extension. Let $G=G_{n}:=U_{E / F}(n)$ be the quasisplit
unitary groups in n variables associated to E / F. Later we shall mainly be concerned with the case $n=4$. The L-group ${ }^{L} G$ is the semi-direct product of $\widehat{G}=G L(n, \mathbb{C})$ by the absolute Weil group W_{F} of F, where W_{F} acts through $W_{F} / W_{E} \simeq \operatorname{Gal}(E / F)$ by

$$
\rho_{G}(\sigma) g=\operatorname{Ad}\left(I_{n}\right)^{t} g^{-1}, \quad I_{n}:=\left(\begin{array}{llll}
& & & 1 \\
& & -1 & \\
& (-1)^{n-1} & &
\end{array}\right)
$$

Thus an A-parameter ψ for G is determined by its restriction to $\mathcal{L}_{E} \times S L(2, \mathbb{C})$, which is just a completely reducible representation:

$$
\left.\psi\right|_{\mathcal{L}_{E} \times S L(2, \mathrm{C})}=\bigoplus_{i=1}^{r} \varphi_{\Pi_{i}} \otimes \rho_{d_{i}} .
$$

Here Π_{i} is an irreducible cuspidal representation of $G L\left(m_{i}, \mathbb{A}_{E}\right)$ enjoying the following properties:

- $\sigma\left(\Pi_{i}\right):=\Pi_{i} \circ \sigma$ is isomorphic to the contragredient Π_{i}^{\vee}.
- Its central character $\omega_{\Pi_{i}}$ restricted to \mathbb{A}^{\times}equals $\omega_{E / F}^{n-d_{i}-m_{i}+1}$, where $\omega_{E / F}$ is the quadratic character associated to E / F by the classfield theory.
- Some condition on the order of its twisted Asai L-functions at $s=1$.
ρ_{d} is the d-dimensional irreducible representation of $S L(2, \mathbb{C})$. We note that ψ is elliptic if and only if its irreducible components $\varphi_{\Pi_{i}} \otimes \rho_{d_{i}}$ are distinct to each other. The S-group

$$
\mathcal{S}_{\psi}(G):=\pi_{0}(\operatorname{Cent}(\psi, \widehat{G}) / Z(\widehat{G}))
$$

is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{r-1}$, where $\pi_{0}(\bullet)$ stands for the group of connected components. This plays a central role in the conjectural multiplicity formula.

Local case Similar description for the A-packets of the unitary group $G=G_{n}$ associated to a quadratic extension E / F of local fields is also valid. For each A-parameter ψ, we have the associated non-tempered Langlands parameter

$$
\phi_{\psi}: \mathcal{L}_{F} \ni w \longmapsto \psi\left(w,\left(\begin{array}{cc}
|w|_{F}^{1 / 2} & 0 \\
0 & |w|_{F}^{-1 / 2}
\end{array}\right)\right) \in{ }^{L} G
$$

Here the "absolute value" $\left.\left|\left.\right|_{F}\right.$ on \mathcal{L}_{F} is the composite $|\right|_{F}: \mathcal{L}_{F} \rightarrow W_{F}^{\text {ab }} \stackrel{\text { rec }}{\rightarrow} F^{\times} \xrightarrow{\|_{F}} \mathbb{R}_{+}^{\times}$. (rec denotes the reciprocity map in the local classfield theory.) In Arthur's conjecture, it was imposed that the L-packet $\Pi_{\phi_{\psi}}(G)$ associated to ϕ_{ψ} should be contained in $\Pi_{\psi}(G)$. We also have the S-group $\mathcal{S}_{\psi}(G)$ as in the global case. We postulate the following:

Assumption 2.1. There exists a bijection $\Pi_{\psi}(G) \ni \pi \longmapsto\left(\bar{s} \mapsto\langle\bar{s}, \pi\rangle_{\psi}\right) \in \Pi\left(\mathcal{S}_{\psi}(G)\right)$. Here $\Pi\left(\mathcal{S}_{\psi}(G)\right)$ is the set of isomorphism classes of irreducible representations of $\mathcal{S}_{\psi}(G)$.

Now for $n=4$, the possibilities of $\left\{\left(d_{i}, m_{i}\right)\right\}_{i}$ for elliptic A-parameters with non-trivial $S L(2, \mathbb{C})$-component are given as follows.
(1) Stable cases. $\{(4,1)\},\{(2,2)\}$.
(2) Endoscopic cases.
(a) $\{(3,1),(1,1)\}$;
(b) $\{(2,1),(1,2)\}$;
(c) $\{(2,1),(2,1)\}$;
(d) $\{(2,1),(1,1),(1,1)\}$.

In the cases (1), (2.a), it follows from Assumption [2.1] that $\Pi_{\phi_{\psi}}(G)=\Pi_{\psi}(G)$, and we know from [Kon98] that all the contribution of the corresponding global A-packets belong to the residual spectrum. On the other hand, $\Pi_{\psi}(G) \backslash \Pi_{\phi_{\psi}}(G)$ is expected to be non-empty in the rest cases. We shall use the local θ-correspondence to construct the missing members.

3 Local θ-correspondence

Local Howe duality First let us recall the local θ-correspondence. We consider an m dimensional (non-degenerate) hermitian space $(V,()$,$) and n$-dimensional skew-hermitian space $(W,\langle\rangle$,$) over E$. We write $G(V)$ and $G(W)$ for the unitary groups of V and W, respectively. If we define the symplectic space ($\mathbb{W},\langle\langle\rangle$,$\rangle) by$

$$
\mathbb{W}:=V \otimes_{E} W, \quad\left\langle\left\langle v \otimes w, v^{\prime} \otimes w^{\prime}\right\rangle\right\rangle:=\frac{1}{2} \operatorname{Tr}_{E / F}\left[\left(v, v^{\prime}\right) \sigma\left(\left\langle w, w^{\prime}\right\rangle\right)\right],
$$

Then $(G(V), G(W))$ form a so-called dual reductive pair in the symplectic group $S p(\mathbb{W})$ of this symplectic space:

$$
\iota_{V, W}: G(V) \times G(W) \ni\left(g, g^{\prime}\right) \longmapsto g \otimes g^{\prime} \in S p(\mathbb{W}) .
$$

Fixing a non-trivial character ψ_{F} of F, we have the metaplectic group of \mathbb{W} which is a central extension

$$
1 \longrightarrow \mathbb{C}^{1} \longrightarrow M p_{\psi_{F}}(\mathbb{W}) \longrightarrow S p(\mathbb{W}) \longrightarrow 1 .
$$

This admits a unique Weil representation $\omega_{\psi_{F}}$ on which \mathbb{C}^{1} acts by the multiplication [RR93]. For each pair $\underline{\xi}=\left(\xi, \xi^{\prime}\right)$ of characters of E^{\times}satisfying $\left.\xi\right|_{F \times}=\omega_{E / F}^{n},\left.\xi^{\prime}\right|_{F \times}=\omega_{E / F}^{m}$, we have the corresponding lifting $\widetilde{\iota}_{V, W, \underline{\xi}}: G(V) \times G(W) \rightarrow M p_{\psi_{F}}(\mathbb{W})$ of $\iota_{V, W}$:

The composite $\omega_{V, W, \underline{\xi}}:=\omega_{\psi} \circ \widetilde{\iota}_{V, W, \underline{\xi}}$ is the Weil representation of the dual reductive pair $(G(V), G(W))$ associated to $\underline{\xi}$. It is the product of the Weil representations $\omega_{W, \underline{\xi}}$ of $G(V)$ and $\omega_{V, \xi^{\prime}}$ of $G(W)$.

We write $\mathscr{R}\left(G(V), \omega_{W, \xi}\right)$ for the set of isomorphism classes of irreducible admissible representations of $G(V)$ which appear as quotients of $\omega_{W, \xi}$. For $\pi_{V} \in \mathscr{R}\left(G(V), \omega_{W, \xi}\right)$, the maximal π_{V}-isotypic quotient of $\omega_{V, W, \underline{\xi}}$ is of the form $\pi_{V} \otimes \Theta_{\xi}\left(\pi_{V}, W\right)$ for some smooth representation $\Theta_{\underline{\xi}}\left(\pi_{V}, W\right)$ of $G(W)$. Similarly we have $\mathscr{R}\left(G(W), \omega_{V, \xi^{\prime}}\right)$ and $\Theta_{\underline{\xi}}\left(\pi_{W}, V\right)$ for each $\pi_{W} \in \mathscr{\mathscr { R }}\left(G(W), \omega_{V, \xi^{\prime}}\right)$. The local Howe duality conjecture, which was proved by R. Howe himself if F is archimedean How89 and by Waldspurger if F is a nonarchimedean local field of odd residual characteristic Wal90, asserts the following:
(i) $\Theta_{\xi}\left(\pi_{V}, W\right)$ (resp. $\Theta_{\xi}\left(\pi_{W}, V\right)$) is an admissible representation of finite length of $G(W)$ (resp. $G(V))$, so that it admits an irreducible quotient.
(ii) Moreover its irreducible quotient $\theta_{\xi}\left(\pi_{V}, W\right)$ (resp. $\theta_{\xi}\left(\pi_{W}, V\right)$) is unique.
(iii) $\pi_{V} \mapsto \theta_{\underline{\xi}}\left(\pi_{V}, W\right), \pi_{W} \mapsto \theta_{\underline{\underline{\xi}}}\left(\pi_{W}, V\right)$ are bijections between $\mathscr{R}\left(G(V), \omega_{W, \xi}\right)$ and $\mathscr{R}\left(G(W), \omega_{V, \xi^{\prime}}\right)$ converse to each other.

Adams' conjecture A link between the local θ-correspondence and A-packets is given by the following conjecture of J. Adams Ada89. Suppose $n \geq m$. Then we have an L-embedding $i_{V, W, \underline{\xi}}:{ }^{L} G(V) \rightarrow{ }^{L} G(W)$ given by

$$
i_{V, W, \underline{\xi}}(g \rtimes w):= \begin{cases}\xi^{\prime} \xi^{-1}(w)\left(\begin{array}{ll}
g & \\
& \mathbf{1}_{n-m}
\end{array}\right) \times w & \text { if } w \in W_{E} \\
\left(\begin{array}{ll}
J_{n-m}^{n-m-1}
\end{array}\right) \rtimes w_{\sigma} & \text { if } w=w_{\sigma}\end{cases}
$$

where w_{σ} is a fixed element in $W_{F} \backslash W_{E}$ and

$$
J_{n}:=\left(\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & \ddots & \\
& & & (-1)^{n-1}
\end{array}\right)
$$

Let $\mathrm{T}: S L(2, \mathbb{C}) \rightarrow \operatorname{Cent}\left(i_{V, W, \xi}, \widehat{G}(W)\right)$ be the homomorphism which corresponds to a regular unipotent element in $\operatorname{Cent}\left(i_{V, W, \underline{\xi},}, \widehat{G}(W)\right) \simeq G L(n-m, \mathbb{C})$ (the tail representation of $S L(2, \mathbb{C})$). Using this, we define the $\bar{\theta}$-lifting of A-parameters by

$$
\theta_{V, W, \underline{\xi}}: \Psi(G(V)) \ni \psi \longmapsto\left(i_{V, W, \underline{\xi}} \circ \psi^{\vee}\right) \cdot T \in \Psi(G(W)) .
$$

Conjecture 3.1 ([Ada89] Conj.A). The local θ-correspondence should be subordinated to the map of A-packets: $\Pi_{\psi}(G(V)) \mapsto \Pi_{\theta_{V, W, \mathrm{\xi}}(\psi)}(G(W))$.

Here we have said subordinated because $\mathscr{R}\left(G(V), \omega_{W, \xi}\right)$ is not compatible with A packets, that is, $\Pi_{\psi}(G(V)) \cap \mathscr{R}\left(G(V), \omega_{W, \xi}\right)$ is often strictly smaller than $\Pi_{\psi}(G(V))$. But when these two are assured to coincide, we can expect more:

Conjecture 3.2 ([Ada89] Conj.B). For V, W in the stable range, that is, the Witt index of W is larger than m, we have

$$
\Pi_{\theta_{V, W, \underline{\xi}}(\psi)}(G(W))=\bigcup_{V ; \operatorname{dim}_{E} V=m} \theta_{\underline{\xi}}\left(\Pi_{\psi}(G(V)), W\right)
$$

Now we note that our situation is precisely that of Conj. 3.2 with $m=2$ and $W=$ $V \oplus-V$. Moreover, we find that the A-parameters in the cases (2.b), (2.c), (2.d) in § 2 are exactly those of the form

$$
\theta_{V, W, \underline{\xi}}(\psi), \quad \psi \in \Psi(G(V)) .
$$

ε-dichotomy We explain the construction of the A-packets when F is non-archimedean. We need one more ingredient.

Proposition 3.3 (ε-dichotomy). Suppose $\operatorname{dim}_{E} V=2$ and write W_{1} for the hyperbolic skew-hermitian space $\left(E^{2},\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right)$. Take an L-packet Π of $G_{2}(F)=G(W)$ and $\tau \in \Pi$ [Rog90, Ch.11].
(i) $\tau \in \mathscr{R}\left(G(W), \omega_{V, \xi^{\prime}}\right)$ if and only if

$$
\varepsilon\left(1 / 2, \Pi \times \xi \xi^{\prime-1}, \psi_{F}\right) \omega_{\Pi}(-1) \lambda\left(E / F, \psi_{F}\right)^{-2}=\omega_{E / F}(-\operatorname{det} V) .
$$

Here the ε-factor on the right hand side is the standard ε-factor for G_{2} twisted by $\xi \xi^{\prime-1}$ defined by the Langlands-Shahidi theory [Sha90]. ω_{Π} is the central character of the elements of Π and $\lambda\left(E / F, \psi_{F}\right)$ is Langlands' λ-factor Lan70].
(ii) If this is the case, we have $\theta_{\underline{\xi}}(\tau, V)=\left(\xi^{-1} \xi^{\prime}\right)_{G(V)} \tau_{V}^{V}$. Here $\left(\xi^{-1} \xi^{\prime}\right)_{G(V)}$ denotes the character of $G(V)$ given by the composite

$$
G(V) \xrightarrow{\text { det }} U_{E / F}(1, F) \ni z / \sigma(z) \mapsto \xi^{-1} \xi^{\prime}(z) \in \mathbb{C}^{\times} .
$$

τ_{V} stands for the Jacquet-Langlands corresponden ${ }^{⿴ 囗}$ of τ.
This is a special case of the ε-dichotomy of the local θ-correspondence for unitary groups over p-adic fields, which was proved for general unitary groups (at least for supercuspidal representations) in [HKS96]. But since we need to combine this with our description of the residual spectrum Kon98, we have to use the Langlands-Shahidi ε factors instead of Piatetski-Shapiro-Rallis's doubling ε-factors adopted by them. By this reason, we deduced this proposition from the analogous result for the unitary similitude groups Har93] combined with the following description of the base change for G_{2}.

Lemma 3.4. Let $\widetilde{\pi}=\omega \otimes \pi^{\prime}$ be an irreducible admissible representation of the unitary similitude group $G U_{E / F}(2) \simeq\left(E^{\times} \times G L(2, F)\right) / \Delta F^{\times}$, and write $\Pi(\widetilde{\pi})$ for the associated L-packet of $G_{2}(F)$ consisting of the irreducible components of $\left.\widetilde{\pi}\right|_{G_{2}(F)}$. Then the standard base change of $\Pi(\widetilde{\pi})$ to $G L(2, E)$ Rog90, 11.4] is given by $\omega(\operatorname{det}) \pi_{E}^{\prime}$, where π_{E}^{\prime} is the base change lift of π^{\prime} to $G L(2, E)$ [Lan80].

[^1]Now we construct the A-packets. Our construction is summarized in the following picture.

Each A-parameter of our concern is of the form

$$
\left.\psi\right|_{\mathcal{L}_{E} \times S L(2, \mathbb{C})}=\left.\psi_{1}\right|_{\mathcal{L}_{E} \times S L(2, \mathbb{C})} \oplus\left(\xi^{\prime} \xi^{-1} \otimes \rho_{2}\right),
$$

where ψ_{1} is some A-parameter for G_{2}. Take $\tau \in \Pi_{\psi_{1}}\left(G_{2}\right)$ and let $(V,()$,$) be the 2-$ dimensional hermitian space such that the condition of Prop. 3.3 (i) holds. If we write $\pi_{V}:=\theta_{\underline{\xi}}(\tau, V) \simeq\left(\xi \xi^{\prime-1}\right)_{G(V)} \tau_{V}^{\vee}$, then the result of Kud86] tells us $\pi_{+}:=\theta_{\underline{\xi}}\left(\pi_{V}, W_{2}\right)$, $\left(\tau \in \Pi_{\psi_{1}}\left(G_{2}\right)\right)$ form the local residual L-packet $\Pi_{\phi_{\psi}}\left(G_{4}\right)$. We now suppose that there exists a Jacquet-Langlands corresondent $\pi_{V^{\prime}} \simeq\left(\xi \xi^{\prime-1}\right)_{G\left(V^{\prime}\right)} \tau_{V^{\prime}}^{V}$ of π_{V} on the unitary group $G\left(V^{\prime}\right)$ of the other (isometry class of) 2-dimensional hermitian space. Then Prop. 3.3 (i) tells us that $\pi_{V^{\prime}} \notin \mathscr{R}\left(G\left(V^{\prime}\right), \omega_{W_{1}, \xi}\right)$. Yet its local θ-lifting $\pi_{-}:=\theta_{\underline{\xi}}\left(\pi_{V^{\prime}}, W_{2}\right)$ to the larger group $G_{4}(F)$ still exists. This is the so-called early lift or the first occurrence. Following Conj. 3.2, we define

$$
\Pi_{\psi}\left(G_{4}\right):=\left\{\pi_{ \pm} \mid \tau \in \Pi_{\psi}\left(G_{2}\right)\right\}
$$

This gives sufficiently many members of the packet as predicted by Assumption 2.1.
Example 3.5. (i) Suppose $\Pi_{\psi_{1}}\left(G_{2}\right)$ is an L-packet consisting of supercuspidal elements. For $\tau \in \Pi_{\psi_{1}}\left(G_{2}\right)$, π_{+}is the Langlands quotient $J_{P_{1}}^{G_{4}}\left(\xi^{\prime} \xi^{-1}| |_{E}^{1 / 2} \otimes \tau\right)$, where P_{1} is a parabolic subgroup with the Levi factor $\mathrm{R}_{E / F} \mathbb{G}_{m} \times G_{2}$. On the other hand the early lift π_{-}of the supercuspidal τ is again supercuspidal. Thus $\Pi_{\psi}\left(G_{4}\right)$ consists of non-tempered members and supercuspidal elements.
(ii) On the contrary, we take $\xi=\xi^{\prime}$ and consider $\Pi_{\psi_{1}}\left(G_{2}\right)$ consists of either the Steinberg representation $\delta_{G_{2}}$ or the trivial representation $\mathbf{1}_{G_{2}}$.

- $\delta_{G_{2}}$ lifts to $\pi_{V}=\mathbf{1}_{G(V)}$, where V is anisotropic. $\pi_{V^{\prime}}=\delta_{G_{2}} \cdot \pi_{+}=J_{P_{1}}^{G_{4}}\left(| |_{E}^{1 / 2} \otimes \delta_{G_{2}}\right)$ and π_{-}is an irreducible tempered but not square integrable representation.
- $\mathbf{1}_{G_{2}}$ lifts to $\pi_{V}=\mathbf{1}_{G(V)}$ but V is hyperbolic this time. $\pi_{V^{\prime}}$ is again $\mathbf{1}_{G\left(V^{\prime}\right)}$ but this should be viewed as the Jacquet-Langlands correspondent of the A-packet $\left\{\mathbf{1}_{G(V)}\right\}$. We have $\pi_{+}=J_{P_{2}}^{G_{4}}\left(I_{\mathbf{B}}^{G L(2)_{E}}(\mathbf{1} \otimes \mathbf{1})|\operatorname{det}|_{E}^{1 / 2}\right)$, where P_{2} is the so-called Siegel parabolic subgroup with the Levi factor $G L(2, E)$. Obviously $\pi_{-}=J_{P_{1}}^{G_{4}}\left(\|_{E}^{1 / 2} \otimes \delta_{G_{2}}\right)$. This last representation is shared by the two packets considered here.

Real case We end this section by some comments on the case $E / F=\mathbb{C} / \mathbb{R}$. Similar results are obtained by applying the argument of Adams-Barbasch AB95. In fact, the local θ-correspondence between unitary groups of the same size is described quite explicitly and in full generality in Pau98. Their argument also works in the present case. Let me explain some example.

We write $G_{p, q}=U(p, q)$. For a regular integral infinitesimal character $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ for $G_{1,1}$, consider the extended L-packet:

$$
\Pi_{\lambda}=\left\{\delta_{1,1}^{+}, \delta_{1,1}^{-}, \delta_{2,0}, \delta_{0,2}\right\}
$$

consisting of the discrete series representation of various $G_{p, q}$ with the infinitesimal character λ. The subscript p, q indicates that $\delta_{p, q}^{\bullet}$ lives on $G_{p, q}$. We can write $\xi^{\prime} \xi^{-1}(z)=(z / \bar{z})^{n}$, $\forall z \in \mathbb{C}$ for some $n \in \mathbb{Z}$. An analogue of Prop. 3.3 in the real case asserts that the local θ-correspondence under the Weil representation $\omega_{V, W, \xi}$ gives a bijection

$$
\theta_{\underline{\xi}}: \Pi_{\lambda} \xrightarrow{\sim} \Pi_{n-\lambda},
$$

where $n-\lambda=\left(n-\lambda_{2}, n-\lambda_{1}\right)$.
If λ is sufficiently regular, by which we mean $\left|\lambda_{i}-n\right|>1$, then it is proved by J.S. Li [Li90] that $\theta_{\underline{\xi}}\left(\theta_{\underline{\xi}}\left(\delta_{1,1}^{ \pm}\right), W_{2}\right)$ is a non-tempered cohomological representation $A_{\mathfrak{q}}\left(\lambda^{\prime}\right)$, where the Levi factor of the θ-stable parabolic subalgebra \mathfrak{q} is $\mathfrak{u}(1,1) \oplus \mathfrak{u}(1)^{2}$. As for the other elements $\delta_{p, q} \in \Pi_{n-\lambda}, \theta_{\xi}\left(\delta_{p, q}, W_{2}\right)$ is a discrete series representation $A_{\mathfrak{q}}\left(\lambda^{\prime}\right)$. This time \mathfrak{q} has the Levi factor $\mathfrak{u}(2) \oplus \mathfrak{u}(1)^{2}$. The resulting A-packet $\theta_{\underline{\xi}}\left(\Pi_{n-\lambda}\right)$ is exactly the cohomological A-packet defined by Adams-Johnson [AJ87].

For the complete list of the packets both in the archimedean and non-archimedean case, see our paper [KK.

One can easily check that the S-groups in the cases (2.b), (2.c), (2.d) satisfy $\mathcal{S}_{\psi}\left(G_{4}\right) \simeq$ $\mathcal{S}_{\psi_{1}}\left(G_{2}\right) \times \mathbb{Z} / 2 \mathbb{Z}$. Now we define the bijection in Assumption 2.1 by

- $\left\langle\bar{s}, \pi_{ \pm}\right\rangle_{\psi}:=\langle\bar{s}, \tau\rangle_{\psi_{1}}$ on $\bar{s} \in \mathcal{S}_{\psi_{1}}\left(G_{2}\right) ;$
- $\left\langle, \pi_{ \pm}\right\rangle_{\psi}$ on $\mathbb{Z} / 2 \mathbb{Z}$ equals the sign character if π_{-}and trivial character otherwise.

For the other cases, only the first one in this definition is enough to give a complete bijection. This finishes our local task.

Remark 3.6. In the above, we do not mention the definition of the pairing $\langle,\rangle_{\psi_{1}}$. There are several choices for this, and we can choose one by fixing a non-trivial character ψ_{F} of F [LL79]. Also we did not specify the correspondence $\pi_{V} \mapsto \pi_{V^{\prime}}$, which is again a subtle problem. In fact, we need to make a choice of (absolute) transfer factor as in LLL79] which again involves a choice of ψ_{F} (appearing in $\lambda\left(E / F, \psi_{F}\right)$ in the transfer factor). Using this specific transfer, we label the members of endoscopic L-packets of anisotropic unitary group. The correspondence $\pi_{V} \mapsto \pi_{V^{\prime}}$ can be described in terms of these data, but we do not go into details here.

4 Multiplicity formula

We now go back to the global situation where E / F is a quadratic extension of number fields. We note that there always exists a homomorphism $\mathcal{S}_{\psi}\left(G_{4}\right) \ni \bar{s} \mapsto \bar{s}(v) \in \mathcal{S}_{\psi_{v}}\left(G_{4, v}\right)$. We can now state the main result of this talk. Although we treat only the number field case, we believe the result holds also over function fields of one variable over a finite field of odd characteristic.

Theorem 4.1. Let ψ be an A-parameter of CAP type for $G_{4}=U_{E / F}(4)$. As was explained in §园, we form the global A - packet $\Pi_{\psi}\left(G_{4}\right):=\bigotimes_{v} \Pi_{\psi v}\left(G_{4, v}\right)$. Then the multiplicity $m(\pi)$ of $\pi=\bigotimes_{v} \pi_{v} \in \Pi_{\psi}\left(G_{4}\right)$ in $L^{2}(G(F) \backslash G(\mathbb{A}))$ is given by

$$
m(\pi)=\frac{1}{\left|\mathcal{S}_{\psi}\left(G_{4}\right)\right|} \sum_{\bar{s} \in \mathcal{S}_{\psi}\left(G_{4}\right)} \epsilon_{\psi}(\bar{s}) \prod_{v}\left\langle\bar{s}(v), \pi_{v}\right\rangle_{\psi_{v}},
$$

where the sign character ϵ_{ψ} is defined by

$$
\epsilon_{\psi}= \begin{cases} & \text { if } \psi_{1} \text { is a stable L-parameter } \\ \operatorname{sgn}_{\mathcal{S}_{\psi}\left(G_{4}\right)} & \text { and } \varepsilon\left(1 / 2, \psi_{1} \otimes \xi \xi^{\prime-1}\right)=-1 \\ 1 & \text { otherwise }\end{cases}
$$

Here $\varepsilon\left(s, \psi_{1} \otimes \xi \xi^{\prime-1}\right)$ is the Artin root number attached to ψ_{1}, which equals the standard ε-function for $\Pi_{\psi_{1}}\left(G_{2}\right) \times \xi \xi^{\prime-1}$.

The proof divides into two parts. Our local construction together with the global θ correspondence shows that the multiplicity is no less than the right hand side. Note that we also relies on the multiplicity formula of Labesse-Langlands for unitary groups in two variables [LL79, Rog90. Then we prove a characterization of the image of such θ-lifts by poles of certain L-functions, which gives the converse inequality. This also shows that all the CAP forms for $U_{E / F}(4)$ are obtained in the above as the contribution of the A-packets we constructed. In particular the A-packets contains the sufficiently many members at least for global purposes, so that our Assumption 2.1 is justified.

References

[AB95] Jeffrey Adams and Dan Barbasch. Reductive dual pair correspondence for complex groups. J. Funct. Anal., 132(1):1-42, 1995.
[Ada89] Jeffrey Adams. L-functoriality for dual pairs. Astérisque, (171-172):85-129, 1989. Orbites unipotentes et représentations, II.
[AJ87] Jeffrey Adams and Joseph F. Johnson. Endoscopic groups and packets for nontempered representations. Composit. Math., 64:271-309, 1987.
[Art89] James Arthur. Unipotent automorphic representations: conjectures. Astérisque, (171-172):13-71, 1989. Orbites unipotentes et représentations, II.
[Bor79] A. Borel. Automorphic L-functions. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pages 27-61. Amer. Math. Soc., Providence, R.I., 1979.
[GGJ02] Wee Teck Gan, Nadya Gurevich, and Dihua Jiang. Cubic unipotent Arthur parameters and multiplicities of square integrable automorphic forms. Invent. Math., 149:225-265, 2002.
[GR90] Stephen S. Gelbart and Jonathan D. Rogawski. Exceptional representations and Shimura's integral for the local unitary group U(3). In Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), pages 19-75. Weizmann, Jerusalem, 1990.
[GR91] Stephen S. Gelbart and Jonathan D. Rogawski. L-functions and Fourier-Jacobi coefficients for the unitary group U(3). Invent. Math., 105(3):445-472, 1991.
[Har93] Michael Harris. L-functions of 2×2 unitary groups and factorization of periods of Hilbert modular forms. J. Amer. Math. Soc., 6(3):637-719, 1993.
[HKS96] Michael Harris, Stephen S. Kudla, and William J. Sweet. Theta dichotomy for unitary groups. J. Amer. Math. Soc., 9(4):941-1004, 1996.
[How89] Roger Howe. Transcending classical invariant theory. J. Amer. Math. Soc., 2:535-552, 1989.
[JS81a] H. Jacquet and J.A. Shalika. On Euler products and the classification of automorphic forms, I. Amer. J. Math., 103(3):499-558, 1981.
[JS81b] H. Jacquet and J.A. Shalika. On Euler products and the classification of automorphic forms, II. Amer. J. Math., 103(4):777-815, 1981.
[KK] Kazuko Konno and Takuya Konno. CAP automorphic representations of $U_{E / F}(4)$ I. Local A-packets. Preprint, (Kyushu Univ. 2003 No. 4), downloadable from http://knmac.math.kyushu-u.ac.jp/~tkonno/.
[Kon98] T. Konno. The residual spectrum of $U(2,2)$. Trans. Amer. Math. Soc., 350(4):1285-1358, 1998.
[Kot84] Robert E. Kottwitz. Stable trace formula: cuspidal tempered terms. Duke Math. J., 51(3):611-650, 1984.
[Kud86] Stephen S. Kudla. On the local theta-correspondence. Invent. Math., 83(2):229255, 1986.
[Lan70] R. P. Langlands. On Artin's L-function. Rice Univ. Studies, 56:23-28, 1970.
[Lan80] Robert P. Langlands. Base change for GL(2). Princeton University Press, Princeton, N.J., 1980.
[Li90] Jian-Shu Li. Theta lifting for untiary representations with nonzero cohomology. Duke Math. J., 61(3):913-937, 1990.
[LL79] J.-P. Labesse and R. P. Langlands. L-indistinguishability for $S L(2)$. Canad. J. Math., 31(4):726-785, 1979.
[MW89] C. Mœglin and J.-L. Waldspurger. Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup. (4), 22(4):605-674, 1989.
[Pau98] Annegret Paul. Howe correspondence for real unitary groups. J. Funct. Anal., 159(2):384-431, 1998.
[PS83] I. I. Piatetski-Shapiro. On the Saito-Kurokawa lifting. Invent. Math., 71(2):309338, 1983.
[Rog90] Jonathan D. Rogawski. Automorphic representations of unitary groups in three variables. Princeton University Press, Princeton, NJ, 1990.
[RR93] R. Ranga Rao. On some explicit formulas in the theory of Weil representation. Pacific J. Math., 157(2):335-371, 1993.
[Sha90] Freydoon Shahidi. A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups. Ann. of Math. (2), 132(2):273-330, 1990.
[Sou88] David Soudry. The CAP representations of $G S p(4, \mathbb{A})$. J. reine angew. Math., 383:87-108, 1988.
[Wal90] J.-L. Waldspurger. Démonstration d'une conjecture de dualité de Howe dans le cas p-adique, $p \neq 2$. In Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), pages 267-324. Weizmann, Jerusalem, 1990.

[^0]: *Note of the talk at the conference "Automorphic forms and representations of algebraic groups over local fields", RIMS, Kyoto Univ. 23 January, 2003
 ${ }^{\dagger}$ Graduate School of Mathematics, Kyushu University, 812-8581 Hakozaki, Higashi-ku, Fukuoka, Japan
 E-mail: takuya@math.kyushu-u.ac.jp
 URL: http://knmac.math.kyushu-u.ac.jp/~tkonno/
 The author is partially supported by the Grants-in-Aid for Scientific Research No. 12740019, the Ministry of Education, Science, Sports and Culture, Japan

[^1]: ${ }^{1}$ In fact, the Jacquet-Langlands correspondence for unitary groups in two variables is defined only for L-packets and not for each member of the packets LL79. We know that $\tau \mapsto \tau_{V}$ certainly defines a bijection between Π and its Jacquet-Langlands correspondent. But we do not specify the bijection explicitly here. See Rem. 3.6 also.

