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1. Introduction

1

Let G be a connected simple linear algebraic group defined over a number field
F . It is a basic problem in the theory of automorphic forms to describe the spectral
decomposition of the unitary representation L2(G(F )\G(A)) of G(A). Such a unitary
representation possesses an orthogonal decompostion

L2(G(F )\G(A)) = L2
disc ⊕ L2

cont

into the direct sum of its discrete spectrum and its continuous spectrum. Let us write:

L2
disc =

⊕
π

mdisc(π) · π.

It is known that the discrete multiplicities mdisc(π) are finite. The discrete spectrum
has a further orthogonal decomposition

L2
d(G(F )\G(A)) = L2

cusp ⊕ L2
res

where L2
cusp is the subspace of cusp forms, and L2

res is the so-called residual spectrum.
Let us write:

L2
cusp = ⊕̂πmcusp(π) · π and L2

res = ⊕̂πmres(π) · π.

In this talk, we consider the following two simple-minded questions:

(A) Does there exist π such that mcusp(π) ·mres(π) 6= 0?

(B) Can the collection of non-negative integers {mcusp(π)} be unbounded?

Here are some prior results on these questions:

(i) When G = PGLn, the results of Jacquet-Shalika [JS] and the multiplicity one
theorem imply that mdisc(π) ≤ 1 and thus the answers are negative for both questions.

(ii) When G = SL2, it is a recent result of Ramakrishnan [R] that mdisc(π) ≤ 1.

(iii) For a more general classical group G , it is known that mcusp(π) can be > 1.
Examples of such failure of multiplicity one were constructed by Labesse-Langlands
[LL] for the inner forms of SL2, by Blasius [B] for SLn (with n ≥ 3) and by Li [L]
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for quaternionic unitary groups. However, in these examples, the multiplicities are
bounded above by a number depending only on the given G.

In this talk, I will discuss the following theorem, which was obtained jointly with N.
Gurevich and D.-H. Jiang in [GGJ]:

Theorem 1.1. When G = G2, both questions A and B have positive answers. More
precisely, for each finite set S of places of F , with #S ≥ 2, there is an irreducible
unitary representation πS of G2(A) with

{
mres(πS) = 1,

mdisc(πS) ≥ 1
6
(2#S + (−1)#S2).

The representations πS of the theorem are very degenerate: their local components
are non-tempered and non-generic. They are the so-called unipotent representations.
This may lead one to think that the phenomenon of unbounded cuspidal multiplicities
only happens for very degenerate representations. However, as we explain in Section
3, it should already occur for representations in tempered L-packets. We shall discuss
in Section 5 how we intend to construct these tempered representations of arbitrarily
high cuspidal multiplicities.

In fact, the unboundedness of discrete multiplicities for G2 is a consequence of a
famous conjecture of J. Arthur (see [A1] and [A2]). Hence, we shall begin by reviewing
his conjecture in the following section.

2. My Understanding of Arthur’s Conjecture

In this section, we shall briefly discuss Arthur’s conjecture on L2
disc(G(F )\G(A)).

For simplicity, we assume that G is split, simple and simply-connected, so that the

dual group Ĝ is adjoint. We begin by introducing some notations.

Let LF denote the Langlands group of F (whose existence is still conjectural). For
the purpose of understanding Arthur’s conjecture, there is no loss in pretending that
LF is the absolute Galois group of F . For each place v of F , one also has a local group
LFv , and there should be a natural class of embeddings LFv ↪→ LF . The group LFv is
actually known to exist: it is the Weil group if v is archimedean and the Weil-Deligne
group if v is finite.

By an Arthur parameter for G, we mean a Ĝ-conjugacy class of homomorphisms

ψ : LF × SL2(C) −→ Ĝ

so that the following conditions hold:

• ψ(LF ) is bounded in Ĝ;
• the centralizer Sψ of the image of ψ is finite.
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Given ψ, Arthur defined a quadratic character εψ of Sψ. In the examples we will look
at later, εψ turns out to be the trivial character. Hence we will not bother to go into
the general definition here.

We will describe the conjecture in the statements A, B and C below.

(A) There is a decomposition:

L2
disc(G(F )\G(A)) =

⊕

ψ

L2[ψ],

indexed by the Arthur parameters for G.

Fix a parameter ψ. We must now describe the G(A)-module L2[ψ]. Using the
embedding LFv ↪→ LF , we obtain local parameters

ψv : LFv × SL2(C) ↪→ Ĝ.

Let us set:

• Sψv = the finite group of components of the centralizer of the image of ψv.
• Sψ,A =

∏
v Sψv , a compact group.

• ∆ : Sψ −→ Sψ,A, the natural diagonal map.

(B) For each place v of F , there is a finite subset Aψv of unitary representations of
G(Fv) associated to ψv; this is the so-called local Arthur packet. This finite set is
indexed by the irreducible characters of Sψv :

Aψv = {πηv : ηv ∈ Ŝψv}.
Moreover, it should satisfy the following conditions:

• for almost all v where ψv|LFv
is unramified, π1v is the irreducible unramified

representation with Satake parameter

sψv := ψv

(
Frobv ×

(
q
1/2
v

q
−1/2
v

))
.

• a particular linear combination of the characters of the πηv ’s is a stable distri-
bution.

• certain identities involving transfer to endoscopic groups hold.

Here we have not described the last two conditions precisely as they will not be relevant
for us in this talk.

If η =
⊗

v ηv is an irreducible character of Sψ,A, then we may set

πη =
⊗

v

πηv .

This is possible because for almost all v, ηv = 1v and π1v is required to be unramified
by the above. We can now state the last statement of Arthur’s conjecture:



4 WEE TECK GAN

(C) The G(A)-submodule L2[ψ] has a decomposition given by:

L2[ψ] =
⊕

η∈dSψ,A

mη · πη

where

mη = 〈ε, ∆∗(η)〉Sψ

is the multiplicity of ε in the representation ∆∗(η) of Sψ.

This concludes our discussion of Arthur’s conjecture.

3. The Example of G2

Now we examine the special case when G = G2 so that Ĝ = G2(C). We shall write
down some Arthur parameters for G2 and see what Arthur’s conjecture says for them.
Essentially, the only fact we need to know about G2 is the following:

Lemma 3.1. G2(C) contains a subgroup isomorphic to SO3(C)× S3, where S3 is the
symmetric group on 3 letters. Moreover, the centralizer of SO3(C) is precisely S3.

The map SL2(C) → SO3(C) ↪→ G2(C) corresponds via the Jacobson-Morozzov
theorem to the subregular unipotent orbit in G2(C). With this lemma in hand, we can
now write down our first family of Arthur parameters.

3.1. Cubic unipotent parameters. Let E be an étale cubic F -algebra. Then E
corresponds to a conjugacy class of maps

ρE : LF −→ Gal(F/F ) −→ S3.

Using ρE and the natural projection map from SL2(C) to SO3(C), we set:

ψE : LF × SL2(C) −→ S3 × SO3(C) ↪→ G2(C).

The maps ψE are the cubic unipotent Arthur parameters.

For simplicity, we shall only consider the case when E = E0 is the split algebra
F × F × F . In this case, ρE0 is the trivial map, and so we have:

{
SψE0

= SψE0
,v = S3

SψE0
,A = S3(A).

The map Sψ → Sψ,A is simply the natural embedding S3(F ) ↪→ S3(A).

What does Arthur’s conjecture say for the parameter ψE0? Well, statement B pre-
dicts that for each place v, the corresponding local Arthur packet has 3 members
indexed by the irreducible characters of S3. So we have:

AψE0
= {π1v , πrv , πεv}
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where εv is the sign character of S3 and rv is the 2-dimensional one. Further, for S a
finite set of places of F , let

ηS = (⊗v∈Srv)
⊗

(⊗v/∈S1v) .

Then statement C predicts that the representation

πS := πηS
= (⊗v∈Sπrv)

⊗
(⊗v/∈Sπ1v)

occurs in L2[ψE0 ] with multiplicity equal to the multiplicity of the trivial representation
in r ⊗ r ⊗ ....⊗ r (#S times). A quick computation gives:

mdisc(πS) ≥ 1

6
· (2#S + (−1)#S2),

which is one of the main claims of Theorem 1.1. Thus Arthur’s conjecture predicts
the existence of a family of representations {πS} whose discrete multiplicities are un-
bounded as #S →∞.

3.2. Some Tempered Parameters. Now we consider some tempered Arthur pa-
rameters, i.e. those for which ψ is trivial on SL2(C). Let us start with a cuspidal
representation τ of PGL2 such that

τv =

{
Steinberg representation for v ∈ Sτ ;

an unramified representation for v /∈ Sτ

for some finite set Sτ of finite places of F . Conjecturally, τ corresponds to a map
φτ : LF −→ SL2(C). Because of our assumptions, the map φτ is surjective; in fact,
for v ∈ Sτ , the local parameter φτv is already surjective, since it corresponds to the
Steinberg representation.

Now we construct an Arthur parameter for G2 using φτ as follows:

ψτ : LF −→ SL2(C) → SO3(C) ↪→ G2(C).

Then we have: {
Sψτ = Sψτ ,v = S3 for all v ∈ Sτ .

Sψτ ,v = {1} for all v /∈ Sτ .

In particular, statement B in Arthur’s conjecture predicts that the local packets have
the following form:

Aψτ ,v =

{
{π′1v

, π′rv
, π′εv

} if v ∈ Sτ ;

{π′1v
} if v /∈ Sτ .

Moreover, the representations in the local packets should be tempered.

In fact, the parameter ψτ is an example of Langlands parameter considered by
Lusztig. Hence, in this case, the local packet Aψτ ,v has already been defined, and
it does consist of 3 discrete series representations (see [GrS]).
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Finally, if we set

πτ =
(⊗v∈Sτ π

′
rv

) ⊗ (⊗v/∈Sτ π
′
1v

)
,

then statement C in Arthur’s conjecture implies that

mdisc(πτ ) ≥ 1

6
· (2#Sτ + (−1)#Sτ 2).

In fact, since the representation π′τ is tempered, it cannot occur in the residual spec-
trum, and so we have

mcusp(πτ ) ≥ 1

6
· (2#Sτ + (−1)#Sτ 2).

Now one can find cuspidal representations τ of PGL2 of the above type and with Sτ

as big as one wishes (using the trace formula for example). Hence, Arthur’s conjecture
predicts that one can find a family of tempered representations of G2(A) whose cuspidal
multiplicities are unbounded.

4. Construction of Unipotent Cusp Forms

In this section, we explain how one constructs the unipotent representation πS and
demonstrates Theorem 1.1.

Let H be the disconnected linear algebraic group Spin8 o S3. For each place v
of F , the group H(Fv) has a distinguished representation Πv known as the minimal
representation. To be more precise, Πv is a particular extension to H(Fv) of the
unramified representation of Spin8(Fv) whose Satake parameter is

ι

(
q
1/2
v

q
−1/2
v

)

where ι : SL2(C) −→ PGSO8(C) is the map associated to the subregular unipotent
orbit of the dual group PGSO8(C).

Now H contains the subgroup S3 ×G2, and one may restrict the representation Πv

to the subgroup S3(Fv)×G2(Fv) to get:

Πv =
⊕

ηv∈\S3(Fv)

ηv ⊗ πηv .

In the beautiful papers [HMS] and [V], Huang-Magaard-Savin (for non-archimedean v)
and Vogan (for archimedean v) showed that each πηv is a non-zero irreducible unitariz-
able representation and the πηv ’s are mutually distinct. Moreover, the representations
πηv can be completely determined, and π1v is unramified with Satake parameter sψE0,v

.
In view of these results, it seems natural to take the set of representations πηv as the
elements of the local Arthur packet AψE0,v

.
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Consider now the global situation. If Π = ⊗vΠv, then as an abstract representation
of S3(A)×G2(A), we have:

Π =
⊕

η

η ⊗ πη

as η = ⊗vηv ranges over the irreducible representations of S3(A). In particular, for
each η, we have an embedding

ιη : η ⊗ πη ↪→ Π.

Using residues of Eisenstein series, one can construct a Spin8(A)-equivariant embed-
ding

Θ : Π ↪→ A2(Spin8)

of Π into the space of square-integrable automorphic forms of Spin8. For each η, we
may now define a G2(A)-equivariant map Θη as follows:

Θη : η ⊗ πη
ιη−−−→ Π

Θ−−−→ A2(Spin8)
restriction−−−−−→ {functions on G2(F )\G2(A)}.

Then the following was proved in [GGJ]:

Theorem 4.1. (i) The image of Θη is contained in A2(G2).

(ii) The restriction of Θη to the subspace ηS3(F ) ⊗ πη is injective.

The proof of the theorem is not difficult; it involves showing the non-vanishing
of certain Fourier coefficients. Also, it is easy to see that the restriction of Θη to
(ηS3(F ))⊥ ⊗ πη is identically zero. In any case, the theorem immediately implies that

mdisc(πS) ≥ 1

6
· (2#S + (−1)#S2).

In fact, in [G], we show that equality holds when F is totally real.

To complete the proof of Theorem 1.1, one may appeal to the determination of the
residual spectrum of G2 by H. Kim [K] and S. Zampera [Z]. Their results show that
L2

res has the multiplicity one property, and further that mres(πS) = 1. This concludes
the proof of Theorem 1.1.

5. Potential Construction of some Tempered Cusp Forms

Finally, we would like to explain how we expect to show that the tempered repre-
sentation πτ discussed in Section 3 has cuspidal multiplicity at least that predicted by
Arthur’s conjecture.

The parameter

ψτ : LF −→ SO3(C) ↪→ G2(C)
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actually factors as:

ψτ : LF −→ SO3(C) ↪→ SL3(C) ↪→ G2(C).

Hence, instead of lifting the cuspidal representation τ of PGL2 directly to G2, one may
first lift it to a cuspidal representation of PGL3. This is precisely the Gelbart-Jacquet
lift, and we denote this cuspidal representation of PGL3 by GJ(τ). Note that

GJ(τ)v =

{
the Steinberg representation Stv if v ∈ Sτ ;

a specific unramified representation if v /∈ Sτ .

Now it turns out that PGL3 × G2 is a dual pair in the split (adjoint) exceptional
group of type E6. This suggests that we may use exceptional theta correspondence to
lift GJ(τ) from PGL3 to G2: hopefully we will get the representation πτ . For this to
work out, one should first verify that under local theta correspondence, the Steinberg
representation Stv of PGL3(Fv) lifts to the representation π′r of G2(Fv). However, it
was shown in [GS] that the theta lift of Stv is equal to π′1 ⊕ π′ε. So this doesn’t work
out as planned.

Thankfully, a homomorphism LF −→ SL3(C) is not just a Langlands parameter for
PGL3; it is also a parameter for any inner form of PGL3. Such an inner form is of the
form PD× where D is a degree 3 division algebra. Over a p-adic field Fv, there are
two such division algebras: Dv and its opposite Dopp

v . Being opposite algebras, their
groups of invertible elements define isomorphic algebraic groups. Thus, locally, PGL3

has precisely one inner form PD×.

Now under the local Jacquet-Langlands correspondence, the Steinberg representation
Stv corresponds to the trivial representation 1v of PD×(Fv). Moreover, PD× ×G2 is
a dual pair in an inner form of E6. It was shown in [S] that the local theta lift of 1v is
indeed equal to π′r.

Hence we are led to the following strategy for embedding πτ into L2
cusp. Choose a

global division algebra D of degree 3 which is ramified precisely at the set Sτ . Then
one lifts τ from PGL2 to G2 as follows:

PGL2
Gelbart-Jacquet−−−−−−−−−→ PGL3

Jacquet-Langlands−−−−−−−−−−→ PD× theta lift−−−−−→ G2

τ −−−→ GJ(τ) −−−→ JLD(GJ(τ)) −−−→ Θ(JLD(GJ(τ))).

As an abstract representation, Θ(JLD(GJ(τ))) is indeed isomorphic to πτ (if it is
non-zero).

How does the multiplicity 1
6
· (2#Sτ + (−1)#Sτ 2) arise in this case? The answer lies

in the following lemma:
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Lemma 5.1. The number of global division algebras of degree 3 ramified precisely at
a set S is equal to

1

3
· (2#S + (−1)#S2).

In particular, the number of inner forms of PGL3 which are ramified at the set S is
half of the above number.

Note that the various inner forms of the lemma are non-isomorphic as algebraic
groups, but their groups of adelic points are abstractly isomorphic. Thus the reason
for the high multiplicity here is the failure of Hasse principle for the inner forms of
PGL3!

In order for the above strategy to work, it remains to show:

• the non-vanishing of the theta lift Θ(JLD(GJ(τ)));
• the various Θ(JLD(GJ(τ)))’s generate linearly independent copies of πτ in

L2
cusp.

At the moment, we are still trying to resolve these questions.
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