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1 Plots on a set

We denote by Set the category of sets and maps. For a category C and an object X of C, we denote by hx
the presheaf on C represented by X, that is, hx : C°? — Set is a functor defined by hx(U) = C(U, X) and
hx(f:U—=V)=(f*:C(U,X)— C(V,X)). For a morphism ¢ : X — Y in C, let h, : hx — hy be a natural
transformation defined by (h,)r = ¢« : C(U,X) = C(U,Y).

Definition 1.1 Let C be a category, F : C — Set a functor and X a set X. Define a presheaf Fx on C to be
a composition C°P E7T Setor Xy Set. Here FOP : C%P — Set®? is a functor defined by F°P(U) = F(U) for

U € ObC and F°P(f) = F(f) for f € MorC. An element of [ Fx(U) is called an F-parametrization of X.
U€EOobC

Definition 1.2 Let (C,J) be a site, X a set and F : C — Set a functor. Assume that C has a terminal object 1¢

and that F(1¢) consists of a single element . If a subset 2 of [] Fx(U) satisfies the following conditions,
UeOobC
we call D a the-ologgy on X with respect to F' and (C,J) or just a the-ologgy on X for short and call a pair

(X, 2) a the-ologgical object. An element of P is called an F-plot of (X, 2).
(i) 2 > Fx(1c)
(1) For a morphism f:U =V inC, Fx(f): Fx(V) — Fx(U) maps 2N Fx(V) into 2 N Fx(U).
(731) For an object U of C, an element x of Fx (U) belongs to PN Fx (U) if there exists a covering (U; EiN U)ier
such that Fx(f;): Fx(U) = Fx(U;) maps z into 2 N Fx (U;) for any i € 1.

Remark 1.3 For a subset 2 of ] Fx(U) and U € ObC, we put Fu(U) = 2N Fx(U).
UeObC

(1) 2 satisfies condition (i) of (1.2) if and only if Fp(lc) = Fx(1¢).
(2) 9 satisfies condition (ii) of (1.2) if and only if a correspondence U — Fg(U) defines a subpresheaf Fgy
({f l:)(.

Proposition 1.4 Condition (iii) of (1.2) is equivalent to the following condition if we assume condition (it).

(i7i") For an object U of C, an element x of Fx(U) belongs to 9 N Fx(U) if there exists R € J(U) such that
Fx(f): Fx(U) — Fx(dom(f)) maps z into 2 N Fx(dom(f)) for any f € R.

Proof. 1t is clear that (#i’) implies (ii7) since R € J(U) is a covering of U. Assume that (iii) is satisfied and
that (U; EiN U);er is a covering of U such that Fx(f;) : Fx(U) = Fx(U;) maps « € Fx(U) into 2 N Fx(U;)
for any i € I. Let R be a sieve generated by (U; EiN U)ier, which is given by

RV)={fehy(V)|f= figforsomeiecIandgeC(V,U;).}.
Then, for f € R, there exist ¢ € I and g : dom(f) — U, such that f = f;g. Since Fx(f;)(z) € 2 N Fx(U;)
implies Fx (f)(z) = Fx(9)Fx(f;)(z) € 2N Fx(dom(f)) by (i), it follows from (¢ii") that x € 2 N Fx(U). O

Definition 1.5 Let (C,J) be a site and F : C — Set a functor. If (C,J) and F satisfies the following condition,
(C,J) is called an F-preconcrete site. Moreover, if F': C — Set is faithful, (C,J) is called an F-concrete site.

(fi)

(PCS) For every covering (U; EN U)ier, (F(U;) I, F(U))ier is an epimorphic family in Set.

Remark 1.6 (1) Let X be a set and (C,J) an F-preconcrete site. For a covering (U; EiN U)ier in (C,J), since
(F(U;) M) F(U));er is an epimorphic family in Set, the map (Fx (f:))ier : Fx(U) — [[ Fx(U;) induced by
iel

Fx(fi) = F(f))* : Fx(U) — Fx(U;)’s is injective. Hence Fx is a separated presheaf on C and Fg is also a
separated presheaf for a the-ology 9 on X.

(2) Assume that C has a terminal object 1¢c. If F : C — Set is a functor defined by F(U) = C(1¢,U) and
F(f:U—=V)=(f.:C(1c,U) = C(1e,V)), an F-preconcrete site is called a preconcrete site and an F-concrete
site is called a concrete site.

For a map ¢ : X — Y and a functor F': C — Set, we define a morphism F,, : F'x — Fy of presheaves by
(Fo)u = @x : Fx(U) = Set(F(U),X) = Set(F(U),Y) = Fy(U).



Definition 1.7 Let (C,J) be a site and F : C — Set a functor.

(1) Let (X,2) and (Y,&) be the-ological objects. If the map (Fy,)u : Fx(U) = Fy(U) induced by a map
v: X =Y maps 2N Fx(U) into & N Fy (U) for each U € ObC, we call p a morphism of the-ological objects.
We denote this by ¢ : (X, 2) — (Y, &).

(2) We define a category Pr(C,J) of the-ological objects as follows. Objects of Pr(C,J) are the-ological
objects and morphisms of ZPr(C,J) are morphism of the-ological objects.

Remark 1.8 Let ¢ : (X, 2) — (Y, &) be a morphism of the-ological objects. It follows from the definition of a
morphism of the-ological objects that (F,)y : Fx(U) — Fy(U) defines a map (F,)v : Fo(U) — Fe(U) which
is natural in U € ObC. Thus we have a morphism F, : Fg — Fg of presheaves.

Definition 1.9 For the-ologies 2 and & on X, we say that 2 is finer than & and that & is coarser than 2 if
P Cé&.

Remark 1.10 We put Peoarse,x = 1 Fx(U). It is clear that Deoarse,x 1S the coarsest the-ology on X. For
U€EobC
amap f:Y — X and a the-ologgy & on'Y, f: (Y,8) = (X, Deoarse,x) i a morphism of the-ologies.

Proposition 1.11 Let (2;)ic1 be a family of the-ologies on a set X. Then, (| 9; is a the-ologgy on X that is
iel
the finest the-ology among the-ologies on X which are coarser than 2; for any i € I.

Proof. Put & = () %;. Since Z; D Fx(l¢) for any i € I, & D Fx(1¢) holds. For a morphism f : U — V of
iel

C, since Fx(f): Fx(V) — Fx(U) maps 2; N Fx (V) to 2; N Fx(U) for any i € I, Fx(f) maps & N Fx (V) to

& N Fx(U). Suppose that there exists a covering (U; EIN U)jes such that Fx(f;) : Fx(U) = Fx(U;) maps

x € Fx(U) into & N Fx (U;) for any j € J. Hence Fx(f;) maps « into Z; N Fx(U;) for any j € J which implies

x € 9; N Fx(U). Thus we have x € &N Fx(U). O

For a set X, we denote by Zr(C, J)x a subcategory of Zr(C, J) consisting of objects of the form (X, ) and
morphisms of the form idy : (X,2) — (X,&). Then, £r(C,J)x is regarded as an ordered set of the-ologies
on X. We often denote by 2 an object (X, Z) of Zr(C, J)x for short. It follows from (1.10) that Zcogrse, x is
the maximum (terminal) object of Zr(C,J)x.

Corollary 1.12 Zr(C,J)x is complete as an ordered set.

Proof. Let ¥ be a non-empty subset of Zg(C,.J)x. Then, inf = () Z by (1.11). We denote by 3 a subset
I
of Zr(C,J)x consisting of elements which contain every elements of 3. Then it follows from (1.11) that () &
£es
is an element of Zp(C,J)x. Thus we see supX = [ &. |
e

Proposition 1.13 Let S be a subset of ] Fx(U) which contains Fx(1¢). For f € MorC, define a subset
UcObC
Sy of Fx(dom(f)) by Sy = Fx(f)(S N Fx(codom(f))). For U € ObC, we define a subset S(U) of Fx(U) by

SWU) = {x € Fx(U) ’ There exists R € J(U) such that Fx(g)(z) € |J S5 forallge R.}.
f€MorC

Ifweput9(S)= J] SWU) and X ={2 € ZPr(C,J)x |2 D S}, then 4(S) =infX € Zr(C,J)x.
UeObC

Proof. Since S;q, =SNFx(U),SC |J &y holds. Forz € ( U Sf)ﬁFX(U)7 there exists f € Mor C such
f€eMorC feMorC

that dom(f) = U and « € Sy N Fx (U). Then, we have = oF(f) for some a € SN Fx (codom(f)). For g € hy,
since Fix (9)(x) = Fx(9)(aF(f)) = aF(fg) = Fx(fg9)(e) € Fx(fg)(S N Fx(codom(f)) = Syy and hy € J(R),

it follows that = € S(U). Hence we have U Sf) NFx(U)CcSU)and ¥9(S)D> U SFDSDFx(le).
fE€MorC fE€MorC
Let f : U — V be a morphism in C. For z € ¢4(S) N Fx (V) = S(V), there exists R € J(V) such that
Fx(g9)(x) € U Sy forall g € R. Hence there exists s, € MorC for each g € R such that Fx(g)(z) € Ss,.
fE€MorC
It follows that there exists z, € S N Fx(codom(s,)) which satisfies Fix(sq)(xg) = Fx(g)(z) for each g € R.



Define a sieve h;l(R) on U by h; (R) = {j € MorC |codom(j) = U, fj € R}. Then, for j € hJTI(R)7 since
Fx(j)(Fx(f)(x)) = Fx(fj)(x) = Fx(sg;)(ws;) € Fx(s;)(S N Fx(codom(sy;))) = Sy and hy'(R) € J(U)
hold, we have Fx(f)(z) € 9(S)N Fx(U) = S(U). Thus Fx(f) : Fx(V) = Fx(U) maps 4(S) N Fx(V) into
Y(S)NFx(U).

For U € ObC and = € Fx(U), suppose that there exists R € J(U) such that Fx(f) : Fx(U) — Fx(dom(f))
maps z into ¢(S) N Fx (dom(f)) = S(dom(f)) for any f € R. Then, there exists Sy € J(dom(f)) such that

Fx(f9)(x) = Fx(9)(Fx(f)(x)) € U &j - (%)
jE€Mor C

holds for any g € Sy. Put T'={fg|f € R, g € S¢}. Since T € J(U), () implies z € S(U) = ¥(S) N Fx (U).
Hence we conclude that ¢(S) is a the-ologgy on X.

Suppose that a the-ologgy 2 on X contains S. For f € MorC, since

Sy = Fx(f)(SN Fx(codom(f)) C Fx(f)(Z2 N Fx(codom(f)) C 2N Fx(dom(f)),

We have |J Sy C Z which implies S(U) C Z for any U € ObC by (1.4). Hence 4(S) C Z holds. |
fE€Mor C

Remark 1.14 (1) For U € Ob(, the subset S(U) of Fx(U) defined in (1.13) coincides with

{m € Fx(U) ’ There exists a covering (U; 25 U)ier such that Fx(gi)(x) € |J Sy for alli € I.},
f€MorC

In fact, since R € J(U) is a covering of U, S(U) is contained in the above set. Suppose that, for x € Fx(U),

there exists a covering (U; 2 U)ier such that Fx(gi)(x) € U Sy for anyi € I. We choose fi € MorC
fE€MorC
which satisfies Fx(g;)(x) € Sy, for each i € I. Let R be a sieve on U generated by (U; 25 Uier. For j € R,
there exist i € I and k € C(dom(j),U;) such that j = g;k. Then we have Fx(j)(x) = Fx(k)(Fx(g:)(x)), which
belongs to Fx (k)(Sy,) = Fx(fik)(S N Fx(codom(f;))) = Sg,x. Therefore we have x € S(U) and the above set
is contained in S(U).
(2) Let ¥ be a non-empty subset of Zp(C,J)x and put S(¥) = |J 2. For f € MorC and x € S(X)y,

2es
there exist 2 € ¥ and y € P N Fx(codom(f)) such that v = Fx(f)(y) which belongs to N Fx(dom(f)). It

follows that |J S(E)y C S(E) holds. Since S(X) C | SE)y, we have S(X) = U S(X)f. Thus,
feMorC feMorC feMorC
for U € ObC, the following equality holds.

SE)U) = {:U € Fx(U) ‘ There exists a covering (U; 2 U)ser such that Fx (g;)(x) € @Uzgfor alli e I.}
€

Hencesup L =¥9(S(X)) = U SE)(U).

vecC
Definition 1.15 For a subset S of [ Fx(U) containing Fx(1¢), we call 4(S) defined in (1.13) the the-
UeldbeC
ology generated by S.
Definition 1.16 Let (C,J) be a site and X a set. We put Dyise.x = N 2 and call this the discrete

2¢e0b ._@F(C7J)X
the-ology on X. Daisc,x s the finest the-ology on X.

Remark 1.17 (1) For any map f: X — Y and a the-ologgy & onY, f: (X, Dyise,x) — (Y, &) is a morphism
of the-ologies. In particular, (X, Dgisc,x) s the minimum (initial) object of Pr(C,J)x

(2) Since Daise,x O Fx(1c), PDaise,x contains the image of the map Fx(ou) : Fx(1¢) = Fx(U) induced by
the unique map oy : U — 1¢ for any U € ObC. Hence every constant map in Fx(U) belongs to Dgise,x -

(8) Let Sconst be the set of all constant maps in [ Fx(U). Then Sconst = U (Sconst)s. Hence
UeObC feMorC
Diise,x N Fx(U) = D(Sconst) N Fx (U) coincides with the following set.

{x € Fx(U) | There exists a covering (U; 95 U)ser such that Fx (g;)(x) is a contant map for alli € I.}

2 Category of the-ology

Foramap f: X — Y and (Y, &) € Ob Zx(C,J), we define a the-ologgy &/ on X to be the coarsest the-ology
such that f : (X,&7) — (Y, &) is a morphism of the-ologies.



Proposition 2.1 For a map f: X =Y and (Y,&) € Ob 2r(C,J), &F is given by

&l = H (Fp) N &N Fy(U)) = H {ee Fx(U)| fee &N Fy(U)}.
UEobe Ueobce

Proof. Weput & =[] {p€ Fx(U)|fee&NFy(U)}. Since & D Fy(le), & D Fx(1¢) holds.
UeObC

For a morphism p : U — V of C and ¢ € &N Fx(V), then fi) € & N Fy (V) implies that fFx(p)(¢)) =
fibp. = Fy(p)(f) is contained in & N Fy (U), which shows that Fx(p)(v) is contained in & N Fx (U). Thus
Fx(p): Fx(V) — Fx(U) maps & N Fx (V) to &N Fx(U).

For ¢ € Fx(U), assume that there exists a covering (U; 2 U)ser such that Fx(p;) : Fx(U) — Fx(U;)
maps ¢ into & N Fx (U;) for any i € I. Then, Fy (p;)(f) = fopis = fFx(pi)(p) € &N Fy (U;) for any i € 1.
Hence fo € &N Fy (U) which implies ¢ € & N Fx (U). Therefore & is a the-ologgy on X.

Suppose that 2 is a the-ologgy on X such that f : (X,2) — (Y, &) is a morphism of the-ologies. Then,
(Fr)u : Fx(U) — Fy(U) maps 2 N Fx(U) into & N Fy (U) for each U € ObC. Then 2 N Fx (U) is contained

in'{ga € Fx(U)|fe € &N Fy(U)}. Hence we have 2 C & which shows & = &7. O

The following result is straightforward from the definition of &7.

f
Proposition 2.2 Let (&;)icr a family of the-ologies on a set Y, For a map f : X = Y, (ﬂ éi) =N é"if

el el
holds.

Let us define a forgetful functor I" : Zp(C,J) — Set by I'(X, 2) = X for an object (X, 2) of Zr(C,J) and
I'e:(X,2) = (Y,8)) =(p: X = Y) for a morphism ¢ : (X,2) — (Y,&) in Zr(C,J).
It is clear that I is faithful. In other words, if we put

Zp(C, ) (X, 2), (Y, 8) =T~ (f) N Zr(C.I) (X, 2),(Y, &)

for amap f: X — Y and (X,2),(Y,&) € ObZp(C,J), Zr(C,J);((X,2),(Y,&)) has at most one ele-
ment. We see that 25 (C,J);((X, 2),(Y,&)) is not empty if and only if 2 C &7 which is equivalent that
PrC,Nx((X,2),(X,&7)) is not empty.

Proposition 2.3 For maps f : X =Y, g: W — X and an object (Y, &) of Pr(C,J)y, &9 = (&7)9 holds
and I' : Pr(C,J) — Set is a fibered category.

Proof. For U € ObC, ¢ € &9 N Fy(U) holds if and only if fgp € & N Fy(U) which is equivalent to
gp € & N Fx(U). Moreover gp € & N Fx(U) holds if and only if ¢ € (£/)9 N Fy (U). Thus we have
&9 = (£5)9. We put f*(Y,&) = (X,&7) and let ay (Y, &) : f*(Y,&) = (X,67) — (Y,&) be the unique
morphism in Zg(C, J) that satisfies I'(af (Y, &)) = f. For an object (X, Z2) of Zr(C,J)x, a map

which maps ¢ to a(Y, &)y is bijective, namely a (Y, &) is a cartesian morphism. The equality &79 = (£7)9
implies that the following composition coincides with ayy(Y, &).

o f ar(Y,
(W, &99) = (W, (£5)9) 2280,y ory D,y 0y

Therefore I' : Zr(C,J) — Set is a fibered category. |

Foramap f: X =Y and (X, 2) € Ob Zr(C, J), we define a the-ologgy Z; on Y to be the finest the-ology

such that f: (X, Z) — (Y, %y) is a morphism of the-ologies, that is, 7y = (] &, where
£eX

¥ = {g € Ob 25 (C, J)y ‘ &> 11 (Fpu(@n FX(U))}.
UeOb(C

Remark 2.4 We can also describe 25 by using (1.13) as follows. Consider a subset S of [] Fy(U) given
UeobC
S=F )l I (FRu(2nFx(U)). Then, if U £ le, we have SOFy (U) = (Fy)u (20 Fx (V)
U€ObC,U#l¢
and the subset Sy = Fy (g)(S N Fy (codom(g))) of Fy(dom(g)) for g € MorC is given by

Sy = Fy (9)((Ff)codom(9)(Z N Fx (codom(g)))) = (Ff)aom(g) (Fx (9)(Z N Fx (codom(g))))



if codom(g) # 1¢. Since Fx(g) : Fx(codom(g)) = Fx(dom(g)) maps 2N Fx(codom(g)) into 2N Fx(dom(g)),
the above equality implies Sg C (Ff)dom(g)(Z N Fx(dom(g))) = Sidgpm(,, - If codom(g) = lc, g is the unique

morphism oy : V — l¢. Hence we have |J Sy = U Siay U U Sop - It follows that the following
g€Mor C VEObLC,V#£1e veobe
equality holds for V € Ob(C.

( U 59) NFy (V) = Siay USo, = (Fy)v(Z N Fx(V)) U Fy (ov)(Fy (1c))
g€Mor C
For U € ObC, the subset S(U) of Fy (U) defined in (1.13) is the set of elements x of Fy (U) which satisfy the
following condition (x).
() There exists R € J(U) such that, for each h € R, Fy(h)(z) : F(dom(h)) = Y is a constant map or there
exists y € 9 N Fx(dom(h)) which satisfies Fy (h)(x) = (Ff)dom(n) (¥)-

We remark that if f: X — Y is surjective, we can replace the above condition by the following condition.

(¥') There exists R € J(U) such that, for each h € R, there exists y € 2 N Fx(dom(h)) which satisfies
Fy (h)(x) = (Ff)aom(n)(y)-

Ifweput 9(S)= 1 S(U), we have Z; = 4(S).
Ueobe

Proposition 2.5 I' : Zr(C,J) — Set is a bifibered category.

Proof. For amap f: X — Y, we define a functor f. : Zr(C,J)x — Pr(C,J)y as follows. For an object
(X,2) of Zr(C,J)x, we put f.(X,2)=(Y,%f). If P and Z' are the-ologies on X such that 2 C Z’, then
9¢ C Z}. Hence we can put fi(idx : (X, 7) — (X, 2')) = (idy : (Y, Zf) = (Y, 7})).

For an object (X,%) of Zr(C,J)x and an object (Y,&) of ZPr(C,J)y, ¥y C & holds if and only if
(Fp)u(2 N Fx(U)) C & for any U € ObC, which is equivalent to 2 C &/. Thus Zx(C,J)y (f«(X, 2),(Y,&))
is not empty if and only if Zr(C,J)x((X, 2), f*(Y,&)) is not empty. It follows that f. is a left adjoint of f*
and that I' : #r(C,J) — Set is a bifibered category. m]

Proposition 2.6 Let p : F — & be a prefibered category. If Fx has an initial object for any object X of &,
then p has a left adjoint.

Proof. We denote by Ox an initial object of Fx and define a functor L : £ — F as follows. We put L(X) =0x
for an object X of £. For a morphism f: X — Y in £ and an object N of Fy, we denote by iy : 0x — f*(0y)
unique morphism in Fy and by af(N) : f*(IN) — N the cartesian morphism that is mapped to f by p. Put
L(f) = ay(0y)iy. Since the identity morphism of Ox is unique morphism in £x from Ox to Ox, L(idx) is
the identity morphism of Ox if X = Y. For composable morphisms f : X - Y andg:Y — Z in &, let
f*(ig) : £*(0y) = f*(¢*(0y)) and ¢4,7(0z) : f*(g*(0y)) — (9f)*(0z) be unique morphisms in Fx that make
the upper and the lower rectangles of the following diagram commutative, respectively.

af(0y)

f*(0y) Oy

Oy
% X i
0

./ % ap(g™(02))
Ox Fo (g (0y)) 222 g7(0)

\) Je0s02) Jast02)
% agf(0z)
(9f)*(07) ——— 0z

Since iy, f*(ig), ¢q,#(0z) and i4¢ are morphisms in Fx, the left triangle of the above diagram is commutative.
Hence L(gf) = L(g)L(f) holds, which shows that L is a functor. pL is the identity functor of & since p(i;) = idx
and p(as(0y)) = f hold for any morphism f: X — Y in £&. We denote by 1 : ide — pL the identity natural
transformation. For an object M of F, let eps : Lp(M) = Opary — M be unique morphism in 5. For
a morphism ¢ : M — N in F, there exists unique morphism ¢ : M — p(p)*(N) in F,nr) that makes the
right triangle of the following diagram commute. The right triangle of the following diagram commutes by the
definition of L and the lower trapezoid of the following diagram commutes by the definition of p(¢)*(ex). Since
EM;s Py Ip(e), Op(y)(Op(n)) are morphisms in F,ar) and Oy () is an initial object of F,(ar), the upper trapezoid
of the following diagram is also commutative.



Op(ar) = M

W /

% (p)*(en) .
L) p(9)* () ————= p()*(N) i’
‘/O‘p(w)(OP(N)) O‘p(so)(m
Op(N) = N

Thus we have a natural transformation € : Lp — idz. For an object M of F, since p(eps) is the identity

morphism of p(M), a composition p(M) Iean, p(M) = pLp(M) 2lew), p(M) is also the identity morphism

of M. For an object X of &, since er,(x) : LpL(X) = 0x — Ox = L(X) is the identity morphism of Ox, a

composition L(X) L), LpL(X) SEICIN L(X) is the identity morphism of L(X) = 0x. Therefore L is a left

adjoint of p. O

Corollary 2.7 Let p: F — &£ be a bifibered category. If Fx has a terminal object for any object X of £, then
p has a right adjoint.

Proof. Since p : F — £ is a cofibered category, p°? : F°P — £° is a fibered category. By the assumption, Fy’
has an initial object an it follows from (2.6) that p°? has a left adjoint L : £ — F°P of p°?. Hence L°P : £ — F
is a right adjoint of p. O

Remark 2.8 Under the assumption of the above corollary, a right adjoint R : &€ — F of p is given as follows.
For an object X of £, we denote by 1x a terminal object of Fx and put R(X) = 1x. For each morphism
f: X =Y of & and an object M of Fx, we choose a right adjoint f. : Fx — Fy of the inverse image functor
f*: Fy — Fx and a cocartesian morphism of (M) : M — f.(M) which is mapped to f by p. We define

f(m
R(f): 1x — 1y to be a composition 1x u f.(1x) 25 1y, where oy is the unique morphism in Fy .

By (2.5) and (2.7), we deduce the following result.
Corollary 2.9 I': Zr(C,J) — Set has left and right adjoints.

Remark 2.10 A left adjoint L : Set — Pr(C,J) and the right adjoint R : Set — Pr(C,J) of I' are given
by L(X) = (X7 -@disc,X); E(SD X = Y) = (()0 : (Xa -@disc,X) — (Y, -@disc,Y)) and R(X) = (Xa -@com‘se,X);
Rlp: X =Y)=(0: (X, Zeoarse.x) = (Y, Peoarse,y))-

Let {(X;, Z;)}icr be a family of objects of Zr(C,J). We denote by pr; : H X, — X, the projection to the
i-th component and ¢; : X; — H] X the inclusion to the i-th summand. Puj‘cg@[ = -ﬂl 2. Then, 2! is the
JAS je
finest the-ology such that pr; : <H1 X, @I)% (Xi, ;) is a morphism in Zr(C,J) for any i € I.
je
Let 2; be the coarsest the-ology on ]_[I X such that ¢; : (X;,%;) — (]_[I X, @1) is a morphism in Zr(C, J)
JE€ s

for any i € I. If we put SI:{é”eOb@F(C,J)HXj‘@@D U(@j)L].},then Ir= (N &.

jeI jerl EEST

Proposition 2.11 (1) ((H X, @I)fﬁs (Xi, 9,;)) is a product of {(Xi, 7)) }Yic1.
el iel
(2) ((Xi,gi) = (H X, @1>) is a coproduct of {(X;, Zi)}ier-
jel i€l
Proof. (1) Let {p; : (Y,&) — (Xi,Zi)}icr be a family of morphisms in Zr(C,J). Let ¢ : Y — [[X;
JeI
be the unique map that satisfies pr;p = ¢; for any ¢ € I. For U € ObC, x € &N Fy(U) and i € I, it
follows that pr;(F,)u(z) = (Fpr,)u(Fp)u(z) = (F,,)u(z) € Z; N Fx,(U) which shows (F,)y(z) € 2;"". Thus

(Fou(x)e N2 =27 and ¢ : (Y, &) — (H Xj,@I) is a morphism in Zr(C, J).
iel jer



(2) Let {4 : (Xi, %) — (Y,&)}ier be a family of morphisms in &p(C,J). Let ¢ : J[ X; — Y be the
unique map that satisfies 1; = 1; for any i € I. We claim that &% D U (Z2))., WhiCileiloldS if and only
if & > (F,,)u(Z; N Fx,(U)) for any j € I and U € ObC. In fact, forjaecle 2; N Fx,(U), since we have
Y(F,))u(x) = (Fy,,)u(x) = (Fy,)u(z) € &N Fy(U), (F,,)u(x) belongs to &Y N Fyp x, (U). It follows that &Y

JET
contains Z; which implies that 1 : (J]EII X, @I)% (Y, &) is a morphism in Zr(C,J). O

Definition 2.12 We call (H Xj,:@1> the product the-ology on [] X; and denote this by [] (X;, Z;). Simi-
jel jel jel
larly, we call (]_[ X, .@I) the sum the-ology on [ X; and denote this by [](X;, Z;).
Jel jeI jer

Remark 2.13 Let (X, 2) and (Y, &) be objects of Pr(C,J). We denote bypry : X xY — X, pry : XxY =Y
the projections and by i, : X x {y} — X x Y the inclusion map fory € Y. Since pryiy : X x {y} =Y isa
constant map, we have EP'viv = Deoarse,x x{y}y- Hence (ZP™x N EPY )l = @PTxty N Py = PPTx holds by
(2.2) and (2.3). Let j, : X — X x {y} be a map defined by j,(x) = (x,y). Then prxi, is the inverse of j, and
Jy 1 (X, 2) = (X x {y}, (PP N EPY) ) is an isomorphism in Pr(C,J).

Proposition 2.14 Let f,g: (X, 2) — (Y, &) be morphisms in Pr(C,J). Then, equalizers and coequalizers of
f and g exist.

Proof. Put Z = {z € X |f(z) = g(x)} and let i : Z — X be the inclusion map. Suppose that a morphism
h:(V,%#)— (X,2) in £r(C,J) satisfies fh = gh. Let h : V — Z be the unique map that satisfies ih = h.
For U € ObC and ¢ € . N Fy(U), we have i(F},)u(p) = (Fi;)v(e) = (Fn)u(e) € 2N Fx(U), which shows
(F})u(p) € 2°N Fz(U). Therefore h:(V,Z) = (Z,2") is a morphism in P (C,J) and i : (Z,2") — (X, D)
is an equalizer of f and g.

Let W be the quotient set of ¥ by an equivalence relation on Y generated by f(z) ~ g(x) for z € X. We
denote by ¢ : Y — W the quotient map. Suppose that a morphism h : (Y, &) — (V, F) in £r(C,J) satisfies
hf = hg. Let h : W — V be the unique map that satisfies hg = h. For U € ObC and ¢ € & N Fy(U),
since h(Fy)u () = (Fr,)vu(¥) = (Fr)u(¥) € Z N Fy(U) holds, we have (Fy)y(¢) € .#". Hence .Z" contains
(F,)u(&NFy(U)) for any U € ObC which implies that #" O &, holds and h : (W, &,) — (V, ) is a morphism
in Zr(C,J). Thus we see that ¢ : (Y,&) — (W, &,) is a coequalizer of f and g. |

Remark 2.15 Suppose that X is a set which has only one element and 2 is a the-ologgy on X. Since Fx(U)
is also a set which has only one element for any U € ObC, the map Fx(oy) : Fx(l¢) — Fx(U) induced
by the unique morphism oy : U — 1¢ surjective. Since Fx(l¢) C 2, the condition (ii) of (1.3) implies

Fx(U)C 2. Thus 2 = ]| Fx(U) holds, namely Deoarse,1} is the only the-ology on {1}. We also remark
Ueobe
that ({1}, Pcoarse,{1}) 15 a terminal object of Zr(C,J).

Proposition 2.16 Let f: (X,2) — (Y, &) and g : (Z,F) — (Y, &) be morphisms in Pr(C,J). We consider
the following cartesian square in Set.

XxyZ —9 o x

s |

zZ— Y

Then, (Z,F) L (X xvy Z, @gﬂé‘)f) EN (X, 92) is a limit of a diagram (X, 2) EN v, &) & (2,.F) in Pr(C,J).

Proof. We denote by pry : X x Z — X and pry : X x Z — Z the projections. Let j: X Xy Z — X x Z be the
inclusion map. Then, j is an equalizer of maps fpry,gpry : X X Z — Y in Set. It follows from (2.14) that

Ji (X Xy Z,(9P*x N FP'z)]) - (X X Z,PP"'x N.FP'z)
is an equalizer of morphisms fpry,gpr, : (X x Z,9P'x N FP'z) — (Y,&) in Pr(C,J). Now the assertion

follows from an equality (ZPTx N.FPz)i = (PP'x )i (FPz)i = GPixi N FPrzi = 93 &F obtained from (2.2)
and (2.3). O



For objects (X, 2), (Y, &) of Zr(C, J), we define amap ev : X x Zr(C, J)((X,2),(Y,&)) = Y byev(a, f) =
f(z) and also define a set X4 ¢ of the-ologies on Zr(C,J)((X, 2),(Y,&)) by
Y96 ={F € Pr(C,J) prc.0)(x.2),(v,86) | EF D PP+ N TPz},
Here pry :Xx‘@F(CN])((Xv @)a (K g)) — X and pYZZXX'@F(C? J)((X7 -@)a (K éa)) - ‘@F(Cﬂj)((xv @)a (K g))
are the projections. Then, Y¢ # is the set of the-ology .# on Zr(C, J)((X, 2), (Y, &)) such that
ev: (Xa@) X (BZF(C,J)(()Q@),(Y,é"))’f) - (Y7(5)>
is a morphism in Zp(C, J).

Lemma 2.17 Yg ¢ is not empty.

Proof. 1t suffices to show that the discrete the-ology Zgisc, 2, (c, ) ((x,2),v,6)) on Zr(C,J)(X,2),(Y,&))
belongs to g 6. For U € ObC and [ € Dyisc, 2 (c,0)(x,2),(v,6)) N Fopc,n)((x,2),v,6))(U), there exists a

covering (U; £ U);er such that Fo .0 (x,2),v,6))(9:)(f) is a constant map for every i € I by (1.17). We
also take x € 2 N Fx(U). Then, (z,f) : F(U) - X x Zr(C,J)(X,2),(Y,&)) is regarded as an element of

FXX.@p(C,J)((X,@),(Y,é’))(U) which is mapped by

Fx s 20c,0)(%,2),(v,))(9i) : Fxx2p,0)(x,2),v.6)U) = Fxxouc.nx,2),v.e)(Ui)

to a map (Fix(9:)(2), Fop(c,n)((x,2),0v.6)) (9)(f)) = (@F(g:), [F(9:)) : F(U;) = X x Pp(C,J)(X, 2),(Y,&)).
It follows from the commutativity of a diagram

(Fev)U

Fxxopc.0)(x,2),v.6)U) Fy(U)
J/FXXQF(C,J)((X,@),(Y,é"))(gi) JFY(%)
(Fe)u;
Fxxopc,0)((x,2),v,6))(Us) - Fy (Us)

that Fy (gi)(Fev)v maps (z, f) to (Fopc.0)((x,2),0v.60) (9:) () (Fx (9:)(2)) = (fF(9:))(xF (g:)) € Fy (Ui)- By
the assumption on (Ul g_1> U)ie], E@F(C,J)((X,@),(Y,é"))(gi)(f) = fF(gi) : F(UZ) — QZF(C,J)((X, .@), (1/, éa))
is a constant map. Hence if we denote the image of this map by ¢, (F.)y, maps 2 N Fx(U;) to & N Fy (U;)
and we have (F@F(C,J)((X,@),(Y,g))(gi)(f))(FX(gi)(x)) = C(l’F(gz)) e&n Fy(Ul) since .Z'F(gl) €Egn Fx(UZ)
Therefore Fy (g;)(Fev)u(z, f) € ENFy (U;) for any 4 € I, which shows (Fey)u(z, f) belongs to &N Fy (U). Thus
ev: (X, 2) x (Zp(C,))(X,2),(Y,&)), Daisc, 7,0 (X,2),(v,6))) — (Y, &) is a morphism in Zr(C,J). O

For U € Ob(, we consider the following condition (£) on an element ¢ of Fp, (¢, 1) ((x,2),v,6))(U)-
(E) For any V,IW € ObC, f € CW,U), g € C(W,V) and ¢ € 2 N Fx(V), the following composition belongs
to &N Fy(W)

F(W) (F(9),£(f))

F(V) x F(U) 2% X x 2p(C, ))(X, 2), (Y, 8) <5 Y
Define a set &7 of F-parametrizations of a set 2 (C,J)((X, 2),(Y,&)) so that &7 N Fo. .0 (x,2),.8)U)
is a subset of Fg, (¢ 1)((x,2),v,6))(U) consisting of elements which satisfy the above condition (E).

Proposition 2.18 &7 is a the-ologgy on Zr(C,J)((X,2),(Y,&)).

Proof. For ¢ € Fop .1\ (x,2).v,6))(1c), V,W € ObC, g € C(W,V) and ¢ € Z N Fx(V'), a composition

) (F(g),F(ow))

F(W F(V) x F(le) 2% X x 2p(C, )) (X, 2), (Y, £)) <5 Y

coincides with (Fi¢.))w (Fx(g)(¢)). Here oy : W — 1¢ denotes the unique morphism and * is unique element
of F(1¢). Since (Fyy)w : Fx(W) — Fy(W) maps 2 N Fx(W) to & N Fy (W) and Fx(g)(¢) belongs to
2N Fx(W), (Fpi)w (Fx(g9)(1)) is an element of & N Fy (W). Hence &7 contains Fu,(c.7)((x,2),(v.¢)) (1c)-

Let j : Z — U be a morphism in C. For ¢ € &7 N Fo.c.0x,2),v,e)U), V,IW € ObC, f € C(W,2),
g€ C(W, V) and ¢ € 2N Fx(V), since a composition

Fow) EWED)L poyy s p(2)

(F(9),F( 1))

YXFg . c.0)(x,2),v,6))(3) ()

X x gZF(CaJ)(()Q@)a(Y;g)) e_V>Y

coincides with F(WW) F(V) x F(U) PXE X x Pr(C, N)((X,2),(Y,&)) <5 Y and the latter
composition belongs to & N Fy (W) which shows F,@F(C7J)((X,@)7(Y7g))(j)(ﬁp) €&E7nN FQZ'F(C,J)((X,@),(Y,&))(Z)'



Assume that, for ¢ € Fo,(c,7)(x,2),(v.6))(U), there exists R € J(U) such that Fo, (¢, 1) ((x,2),(v.e)) (1) (®)
belongs to &7 N Fa,.(c,7)(X,2), (yg))(dom( j)) for any j € R. We take VW € ObC(C, f € C(W,U), g € C(W,V)
and ¢ € 2N Fx(V) and put by Y(R) = {i € MorC |codom(i) = W, fi € R}. Then, hf (R) € J(W). For any
i€ hJIl(R)7 a composition

F(i)

F(dom(4)) F(W) (F(9),F(f))

F(V) x F(U) 2% X x 20(C, 1) (X, 2),(Y, &) < ¥
coincides with a composition

(F(91),F(idaom(i))) YXFop(c,7)(X,2),(v,&)) (f1)(p)

F(dom(z)) F(V)x F(dom(7)) Xx2Zr(C,I)((X,2),(Y,8) Y

which belongs to & N Fy (dom(i)) since Fa,(c.7)((x,2),(v.e) (f1)(p) € &7 N F@F(C N((X,2),(v,&)) (dom(fi)).
Hence we have Fy(i)(ev(¢ x ¢)(F(g),F(f))) € & N Fy(dom(i)) for any i € hy '(R) and this shows that
ev(y x ©)(F(g), F(f)) belongs to & N Fy(W). Hence ¢ € &7 N F{@F(C7J)((X7j)7(y)g))(U) follows from the
definition of &7, m|

We denote by (Y, &)X5?) an object (Zr(C,J)(X, 2),(Y,&)), &) of Zr(C,J).
Proposition 2.19 &7 is mazimum element of Yo9.6.

Proof. For U € ObC and ¢ € 21 N (&7)P™2 N Fxyze.0)(x,2),(v,6))(U), it follows from pr;§ € 2N Fx (U)
and pryé € &7 N Fo,.c,0)((x,2),v,6))(U) that the following composition belongs to & N Fy (U).

p(uy LD, pry < FU) 2P X 2, D) (X, 2), (Y, 6)) S Y
Since this composition coincides with evé, we see that & € £°¥ holds. Hence we have &V > 2P"1 N (£7)P™ and
&7 is an element of Yg.&.

For # € ¥4 s and W € ObC_, since ev: (X, Z2)x (Zr(C,J)((X,2),(Y,&)),F) — (Y,&) is a morphism in
Pr(C, ), (Fer)w : Fxxopc.)(x.2).(v.e) (W)= Fy (W) maps 771 0.2 0 Fx x 0 (c.0)((X,2),(v.6)) (W) into
&N Fy(W). For ¢ € . F N0 Fop,cnx2).v.e)U), we take V,IW € ObC, f € C(W,U), g € C(W,V) and
Y € 2N Fx (V). Then, we have oF(f) = Fa.c.nx,2),v,6)()®) € F 0 Fop.c.rx,2).v.e) (W) and
wF(g) =Fx (g)(i/)) cIN Fx(W) which implies (wF(g)7 @F(f)) € PP N FPr2 N FXX.@F(C,J)((X,@),(Y,é’))(W)~ It

follows that a composition F (W) ) F)), F(V)x F(U) —= PXP X x BZF(C NX,2),(Y,&)) =5 Y belongs

to & N Fy (W). Therefore ¢ € &7 holds and this shows .# C &Z. Thus &7 is maximum element of £ ¢. O

Lemma 2.20 Let (X, 2) be an object of Pp(C,J) and & : (Y, &) — (Z,.F) a morphism in Pr(C,J).
(1)idx x&: X xY — X x Z defines a morphism idx X & : ( D)< (Y,8) = (X, 2)x(Z,F) in Pp(C,J).
(2) A map & @ Ppr(C,I)(X,2),(Y,8) - Zr(C,))((X,2),(Z,F)) deﬁned by (@) = Ea defines a
morphism &, : («@F(C I((X,2),(Y,8)),67) — (Pr(C.I)(X. 9). (2, ), F7) in Pr(C, ).
(3) A map €+ P(C.I(Z.F).(X, ) » Pe(C,I)(V,6).(X,9)) defined by & (a)
morphism €+ (P25 (C. 1) (2, F).(X.2)). %) = (Pr(C. D)(Y.6).(X.9)).9F) in Pr(C.]).

= af defines a

Proof. (1) We denote by pr’y : X x Z — X and pr’, : X x Z — Z the projections. Since pr’y(idx x £) = pry
and pr, (idx x &) = £pry,, the following equalities hold for U € ObC and ¢ € ZP'x N EP'Y N Fx vy (U).

(Forr Ju(Fiax xe)u (@) = (Fpr Ju(p) € ZNFx(U), (Fo, )u(Fiax xe)u(p) = (Fe)u(Fpry Ju(p) € F N Fz(U)

Hence (Fiayxe)v : Fxxy (U) = Fxxz(U) maps Z°'x 0 &Py N Fxyy (U) into 2P N.FPz O Fxyz(U). Thus
idx X €:(X,2) x (Y, &) = (X XY, P"x NEPY) — (X X Z, PP N.FP2) = (X, D) x (Z,.F) is a morphism
in Zr(C,J).

(2) For U € Ob(C and (RS éa@ﬁF@p(C,J)((X,_@),(Y,(?))(U)a we take V, W € ObC f € C(W U), g < C(W, V) and
b € INFx (V). Since a composition F(W) LLEID gy pr) 229 X x 20(C, J) (X, 2), (Y, &) 5 Y
belongs to & N Fy (W), and ¢ is a morphism in & (C,J), the composition of the upper row of the following
diagram belongs to .# N Fz(W) by the commutativity of the diagram.

(F(9),£(f)) ¥ (Fe,)u(p)

Fw) D) gy« R0 X x P2p(C, (X, 2),(2,.F)) -2 Z
lww ¢

X xZp(C,J)(X,2),(Y,€)) Y




Hence (Fe,)u : Fopc.n)(x.2).v.6)(U) = Fopc.)(x.9).2.6)(U) maps €7 N Fo,c. 1) ((x.9),(v.6)) (U) into
F7 N0 Foc,nx.2),ze)U). Thus & : (Zr(C,J)(X,2),(Y,&)),67) = (Zp(C,I)(X,2),(Z,.F)),F7)
is a morphism in &p(C, J).

(3) For U€ObC and 9 € 27N Fa,(c.7)((2.5),x,2))(U), we take V,W €ObC, f € C(W,U), g € C(W,V)
and ¢ € &N Fy (V). Since £ is a morphism in Zr(C,J), we have (F¢)y(¢) € F N Fz(V) and this implies

that a composition F (W) Q) FI)), F(V)x F(U) Fv@Ixe, 7 Pr(C,I)(Z,F),(X,2)) =5 X belongs
to 2N Fx(W). Thus the composition of the upper row of the following diagram belongs to 2 N Fx (W) by the
commutativity of the diagram.

Y (Fex)u ()

Y x Zp(C,J)((Y,&),(X,2)) Y X

Y x @F(Ca J)((Zvj%(Xa @))

(F(9),F (1))

F(W) F(V)x F(U)

Hence (Fe)u : Fopc,0)(2.9),x,.2)(U) = Fauc.nv.6).x.2)(U) maps 27 0 Fa,c 1 (2.7).x,2)U) nto
@g’ N F@p(C,J)((Y,é"),(X,@))(U)- Thus f* : (,@p(C, J)((Z, y), (X, @)), @‘g) — (@F(C, J)( Y7 é‘))’ (X, @)), @g) is
a morphism in Zr(C, J). O

For objects (X, 2), (Y,&) of Zr(C,J) and y € Y, we define a map ¢, : X — X xY by ,(z) = (z,y).
We denote by pry : X xY — X and pry : X x Y — Y the projections. Since pry¢, is the identity map
of X and pryt, is the constant map whose image is {y}, (Fpr, Ju(F,)v : Fx(U) = Fx(U) maps 2 N Fx(U)
to 2N Fx(U) and (For, )u(F,)u : Fx(U) = Fy(U) maps 2 N Fx(U) to & N Fy(U) for any U € ObC.

Ly

Therefore (F,,))u : Fx(U) = Fxxy(U) maps 2 N Fx(U) to ZP"x N &P N Fxxy(U), that is, ¢, belongs to

Pr(C, (Y, &), (X XY, ZP"'x N&P'Y). Thusamap n: Y — Pp(C,J)((X,2), (X xY, ZP"x N&EPY)) is defined
by n(y) = vy-

Lemma 2.21 The map n : Y — Pp(C,J)(X,9D),(X x Y, PP"x N &EP'Y) defined above defines a morphism
n:(Y,8) = (X xY, 2P7"x N &PY)XD) = (X, 9) x (Y,8) X7 in 2r(C,J).

Proof. Tt suffices to verify that (F,)y(p) € (2P*x N &Py )? holds for any U € ObC and ¢ € &N Fy (U). We
take V,W € ObC, f € C(W,U), g € C(W,V) and ¢ € Z N Fx (V). The image of u € F(W) by the following

composition is ev(¢(gu), ty(fu)) = (P(gu), p(fu)) = (Fx (9) () (u), Fy (f)(#)(w)).

Fw) LI, poyy o oy UL s (0, D) (Y, E), (X XY, TPx A EPYY) 2 X XY
Hence the following diagram is commutative.
Fx()(®) X P
Fw) LDED gy py URL s (e, (X, D), (X XY, ZPxnEPY)) 25 X xY
pPry
Fy (g9) () Y

Since Fx(f)(¢) € 2N Fx(W) and Fy(g)(¢) € & N Fy (W), the composition of the middle row of the above
map belongs to ZP'x N EP'Y N Fx .y (W). O

For an object (X, 2), we define functors P(x 9, E(x,9) : Zr(C,J) = ZPr(C,J) as follows. We put

Pxapn(Y,8)=(X,2) x (Y,8) = (X x Y, 2P x NEPY)  Px,9)(§) =idx x§
Ex,0)(Y,&) = (Y,6)57) = (2p(C, 1) (X, 2),(Y,8)),67)  Ex,9)(€) =&

for an object (Y, &) of Zr(C,J) and a morphism ¢ : (Y, &) — (Z,.%) in Pr(C,J). Then, the following maps
define natural transformations ev(x, 9) : Px,2)FE(x,2) = idz.c,n and nx o) : id o, c,0) = Ex,2)P(x,2)-

ev = (evix.o))v.e) : Px.oEx.o)(Y,8) = (X, 2) x (Y, 6) X7 = (Y,8)
n=x.2)ve : (V. 6) = (X,2) x (Y, )57 = Ex,0)Pix,9)(Y, &)

10



Proposition 2.22 Zr(C,J) is cartesian closed.

Proof. Let (X, 2) and (Y, &) be objects of Zr(C,J). It is easy to verify that the following composition is the
identity map of X x Y.
Pix,2)(Y, &) Pix.2)Ex,2)Px.2)(Y, &) Pix,2)(Y,&)
Let pry : XxZr(C, J)((X,2),(Y,8)) = X and pry : Xx ZPr(C,J)((X, 2),(Y,&)) = Pr(C,J)(X, 2),(Y,&))
be the projections. Then, the underlying set of E(x )P x,)Ex,2)(Y,&) is
ZrC, (X, 2),(X x Zp(C,I) (X, 2),(Y,8)), 7°"+ N (§7)P"2).

For ¢ € Ex,9)(Y,&), since (ev(x,9))v,6)te : X — Y maps x € X to p(x), we have (ev(x,9))v,6)te = ¥
which implies that the following composition is the identity map of E(x (Y, &).

Pix,2)((n(x,2))(v.6)) (eV(x,2)) P x o) (V,8)

(1(x.2)) B (x, 0y (V.6) Ex,2)((ev(x,2))(v,&))

Ex,9)(Y,&) Ex,9)Pix,2)Ex,2)(Y, &)

Therefore, E(x o) is a right adjoint of P x ) with unit 7(x, %) and counit evx, ). O

Ex,9)(Y,&)

3 Locally cartesian closedness

For a category &, let £ be the category of morphisms in € defined as follows. Put Ob&®) = Mor & and
a morphism from E = (E 5 X)to F = (F & Y)isapair (¢: E = F,f : X — Y) of morphisms in £
which satisfies p§ = fr. The composition of morphisms (£, f) : E — F and ((,g) : F — G is defined to be
(C&,9f) : E — G. We define a functor p : £?) — € by p(F 5 X) = X and p((¢, f)) = f. For an object X of
&, we denote by E;?) a subcategory of £(2) given as follows. We mention that €§(2) is often denoted by £/X in
literatures.

ObEP ={EcObED |pE) =X}, MorEd = {& € Mor® |p(¢) = idx}

For a morphism f: X — Y in &, an object E of 8&2) and an object F' of 5}(,2), we denote by 5](02)(E, F) the set

of all morphisms & : E — F in £? such that p(€) = f.
If € has finite limits, p : £?) — £ is a fibered category as we explain below. For a morphism f: X — Y in
£ and an object F = (F & Y) of 53(/2 ), consider the following cartesian square in &.

FxyX —7 o F

Ps lp
}(%Y

We put f*(F) = (F xy X 21 X) and a¢(F) = (f,, f) : [*(F) = F. The following result is straightforward
from the definition of cartesian square.

Proposition 3.1 a(F') is a cartesian morphism, that is, for any object G of 5)((2) the map
2 X 2
as(F). : EQ(G, f*(F)) » £ (G, F)
defined by of(F).(€) = ay(F)E is bijective.

Remark 3.2 For the identity morphism idx of X € Ob& and F € Ob 5)((2), the identity morphism idg of
F is obviously cartesian. In this case, we can regard F as F xx X and identify id% (F) with F. Hence
gy (N) 1 id% (F) — F is the identity morphism of F.

For objects E, F of 5}(,2) and a morphism ¢ : E = F in 5}(,2)7 let f*(¢) : f*(E) = f*(F) be the unique
morphism in 5)((2) that is mapped to a composition f*(FE) ﬂ E %, F by the following bijection given in

(3.1).
2 * * 2 *
oy (F). : E5/(f*(B), f*(F)) - £ (/*(B), F)
Thus we have the inverse image functor f* : 83(,2 ) S&z) associated with a morphism f: X — Y in £. It follows
from the definition of f* that the bijection in (3.1) is natural in F.
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For morphisms f: X - Y, ¢g:Z — X in £ and an object E of 5§3), let ¢t q(E) : g*(f*(E)) = (f9)*(E)

be the unique morphism in 5(Z2) that is mapped to a composition g*(f*(E)) 7B, fH(E) B, g by the

following bijection given in (3.1).
ase(E). : EF(g"(f*(B)), (f9)"(B)) = ) (9" (* (E)), E)
Proposition 3.3 cy ,(E) is an isomorphism in 5(Z2), Hence p : £2) — & is a fibered category.

Proof. We consider the following diagrams in £ such that the left and right rectangles of the left diagram (%)
and the right diagram (ii) are cartesian.

I fr (f9)=
(EXYX)XXZ—>E><YX—>E E xy Z FE
(Z> J(ﬂf)g wa Jﬂ (lz) lﬂfg lﬂ
VA 9 X Y VA * Y

Hence there exists unique morphism cy4(E) : (E Xy X) xx Z — E xy Z that makes the following diagram
commute.

9r g

(EXyX)XXz EXyX

\\‘\\\ff,g(E) lf"

2
Exy Z (f9)= E

2 |r

Z fo Y

Since the outer rectangle of diagram (i) is also cartesian, it follows that cy,(FE) is an isomorphism. Since

af(E)oy(f*(E)) = (frgr;, [9) and ae(E) = ((f9)x, fg), apg(E). maps (cpq4(E),idz) to ap(E)ay(f*(E))
by the commutativity of the above diagram. Thus we have cs 4(F) = (cy,4(F), idz) which is an isomorphism.00

Remark 3.4 (1) It follows from the definition of cy 4(E), the following diagram is commutative.

g (8) 2 ()
J{Cf,g(E) laf(E)
(f9)(B) —2Z— B

Hence we have ¢y iy (E) = Ciay f(E) = ids-(g) by (3.2) and the uniqueness of cy 4(E).

(2) There exists unique morphisms idg Xy g : Exy Z — Exy X and cf’g(E)’1 ExyZ - (Exy X)xx Z
in € that makes the following diagram commute. The inverse s 4(E)™' : (f9)*(E) — g*(f*(E)) of ¢y 4(E) is
given by ¢ 4(E)™! = (cpq(E) 7Y, idz).

z 9 . x_I .y

The following results are easily verified. In fact, these facts hold for the case that ¢ is a general fibered
category ([3]).

Proposition 3.5 For composable morphisms f: X — Y, g: Z — X in € and a morphism ¢ : E — F in 51(,2),
the following diagram commutes. In other words, cy 4 gives a natural transformation g* f* — (fg)* of functors

from 5}(,2) to 5(22)'
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g [1(B) " (fg) ()
lg*f*(w) l(fg)*(w)
g*f*(F) crq(F) (fg)*(F)

Proposition 3.6 ([9], p.172 Proposition 7.4.) For a diagram X Ly S 725w in & and an object E of 51(,5),
the following diagram commutes.

£ (g ) (B) LB e hgye(B) —<2 B (hg) £y (B)
ny

cg,r(R"(E)) ch,gf(E)

(f*g")h(E) (9f)"h*(E) (h(gf))"(E)
For a morphism f: X — Y in &, define a functor f, : ng) — 8)(,2) as follows. We put f.(E) = (E ELN Y)
for an object E = (E & X) of 5)((2). We put f.((§,idx)) = (&,idy) : f.(E) — f«(F) for a morphism

(¢idx): E— Fin £,

Proposition 3.7 f, : 5§(2) — 5‘5,2) is a left adjoint of f* : 5§,2) — Sg). Hence o : £2) — £ is a bifibered
category.

Proof. For an object E of 5)((2) and an object F' of 53(,2), we define a map ®g F : 5}2)(E,F) — Eg)(f*(E),F)
by ®g r((£, f)) = (£, idy). It is clear that ®g p is bijective and natural in E and F'. It follows from (3.1) that
we have a bijection ®g poy(F), : Eg)(E, f(F)) — é‘)(,z)(f*(E)7 F) which is natural in E and F. O

Remark 3.8 The unit n : id 2 — f* [« and the counit € : fif* — id ) of the adjunction f. 4 f* are given
X Y

as follows. For an object E of E)(?), there exists unique morphism ng : E — [f*(f«(E)) in 5§(2) such that
af(f(E)). : EQ(E. f*(f.(E))) — EF(E, f.(E)) maps ng to (idp, f) - E = f.(E)) € &7 (E, f.(E)) by
(3.1). It is easy to verify that ng is natural in E. For an object F = (F 5 Y) of 5)(,2), consider the following
cartesian square.

FxyX — 1~ L F

f
. k
)%%Y

Then, we have f(f*(F)) = (F xy X ELIN Y) and define ep : f.(f*(F)) = F by ep = (fr,idy).

Pr(C,J) is complete and cocomplete by (2.11) and (2.14), in particular & (C, J) has finite limits. Hence
we can consider the fibered category g : Zr(C,J)?) — P5(C,J) of morphisms in Zr(C,J) by (3.3). It follows
from (3.7) that the inverse image functors of this fibered category have left adjoints. We show that the inverse
image functors also have right adjoints below.

Let ¢ : (X, 2) — (Y,.%) be a morphism in Zr(C,J) and E = ((E,&) = (X, 2)) an object of Zr(C,J)?.
For y € Y, we denote by ¢, : ¢~ (y) — X the inclusion map and consider a the-ology 2*» on ¢~!(y). We define
asubset E(p;y) of Zr(C,J) (¢~ (y), 2"),(E,&)) by E(p;y) =0 if ¢~ (y) =0 and

E(piy) ={ae Zr(C.I) (¢ (1), 2"),(E,&)) | ma = 1y}

if o7 1(y) # 0. Put E(¢) = ][] E(¢;y) and define map oy : E(p) = Y by pig(a) =y if a € E(p;y). Note
yey
that the image of ¢ coincides with the image of ¢. We consider the following cartesian square (*) in Set.

BE(p) xy X —22 s E(p)

(*) l@g J{S"!E

X Ld Y

Define a map % : E(¢) xy X — E by eg(a,z) = a(z) if a € E(p;y) and x € ¢~ !(y) for y € Y. Then, 5
makes the following diagram commute.
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E(p) xy X 4> }j

Let ¥k, the set of all the-ology - on E(y) such that & C F¥'= and 29 N 298 C &°& hold. We note
that .2 € ¥, if and only if both pig : (E(y), ) = (Y,.F) and € : (E(p) xy X, Z9'E N.LPE) = (E,&) are
morphisms in Zr(C, J).

Proposition 3.9 Xg , is not empty.

Proof. Tt suffices to show that the discrete the-ology Zisc,p(,) on E(gp) belongs to X g . It follows from (1.17)
that Zise,p(p) C F ¥ holds. For U € ObC, suppose that ¢ € 29E N .@dzsc B N Frp)xyx(U). Then,we

have pigy € 2N Fx(U) and ¢pv € Zaise,p() N FE(p)(U). Hence there exists a covering (U; 2 Uier
such that Fg,(9:)(PEY) : Frp)(Ui) — E(p) is a constant map for every i € I by (1.17). We denote by
a; € E(p) the image of Fg(,)(9:)(PEv) and put y; = cp!E(ai). Then we have a; € E(p;y;) and the image of
Fx(9:)(@1eY) = @it F(g;) : F(U;) — X is contained in ¢~!(y;). Hence we have a map & : F(U;) — ¢~ *(y;)
satisfying ¢,,& = Fix (9:)(@1ev) € 2 N Fx (U;), which shows &; € 2'vi N F,-1(,,)(U;). Since we have an equality
Froyxy x(9:) (W) = (Frp) (9:)(@EY), 1y,&) : F(Us) = E(p) xy X, it follows that the following equality holds.

Fr(g9:)(Feg (V) = Feg (Fp(e)xy x (9:) (V) = o6& = Fo, (&)

Since a; : (¢~ H(y;), ') — (E,&) is a morphism in £p(C,J), we have Fal(fl) € &N Fr(U;) for any i € I.

Therefore I, (1)) € & N Fg(U) holds and we see that P%E N @E’S‘:C B CE° £ holds. |

For U € Ob(, we consider the following condition (LE) on an element v of Fg,)(U).

(LE) It V,WeObC, feC(W,U), geC(W,V) and Y€ 2 N Fx (V) satisty ¥ F(g) = @igvF(f), a composition

@
F(W) OFG,$F9), E(p) xy X “E, E belongs to &N Fg(W) and a composition F(U) X E(p) 25 v

belongs to .# N Fy (U).

Define a set g, of F-parametrizations of a set () so that Zg,, N Fp(,)(U) is a subset of Fig(,,)(U) consisting
of elements which satisfy the above condition (LE) for any U € ObC.

Proposition 3.10 Zg , is a the-ologgy on E(yp).

Proof. Suppose that v€ Fg(,)(1¢), V,WeObC, geC(W,V) and o€ 2 N Fx (V) satisfy oy F(g) = p1e7vF (ow ).
Put y, = ¢1g(7(*)). Then, () € E(¢;y,) and v(x) : (¢ (yy), Z'v¢) — (E,&) is a morphism in @F(C,J)
and 7 () = ¢y, holds. There exists unique map ¢ : F(W) — _1(y¢) that satisfies ¢, ¥ = ¥ F(g) = Fx(g)(v).
Since Fx(9)(¢) € 2N Fx(W), we have ¢ € Z've N F,-1(,_(W). ThlS implies (F,(.))w () € & N Fg(W). On

the other hand, a composition F(W) M E(p) xy X ‘—> E coincides with y(x)¢ = (F, ) w (1)
which belongs to & N Fg(W). Moreover we have pgy € Fy(l¢) C .#. Hence g, contains Fg,)(lc).

Let j : Z — U be a morphism in C. For v € g , N Fg,)(U), V,W € ObC, f € C(W, Z), g € C(W,V) and
Y € PN Fx(V), assume that 00 F(g) = ¢1FE(,)(j)(7)F(f) holds. Since a composition

(Fe) (D F), vF(9)

F(W) E(p) xy X B E

coincides with F'(WW) GFGHvE9), E(p)xy X i E which belongs to & N Fg(W) since v € Zg,,N Fry,)(U).
Since pipy € F N Fy(U), 0eFEy) (1) () = Fy(j)(wEey) € F N Fy(Z) holds. Thus Fg,)(j)(v) belongs to
@E,W N FE(<p)(Z)-

Assume that, for v € Fp,)(U), there exists R € J(U) such that Fg,(j)(7) belongs to Zg,,NFg()(dom(j))
for any j € R. Suppose that 0 F(g9) = oigvF(f) holds for VW € Ob(, f € C(W,U), g € C(W,V) and
Y e DN Fx(V). If we put h_l( ) ={i € MorC|codom(') = W, fi € R}, then we have h;l(R) e JW)
and Fp(fi)(7) € ZB,, N FE(¢)(dom( i)) for any i € hy '(R). Hence the following composition belongs to
& N Fg(dom(i)) for any zehf (R).

F D), wF(gi
F(dom(i)) (FE(p) (f1)(7), v F(gi))

E(p) xy X 5 E
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7(3)

¢
Since the above composition coincides with a composition F'(dom(¢)) F(W) OFWVEG), y vE(p) 5 B,

7
it follows that a composition F(W) M)Xx E(p) =5 E belongs to & N Fg(W). Since FE(V,)( ()

belongs to Zg ., ﬁFE(g,)(dom(j)), we have Fy (j)(@1e7) = ©1eFE@L)(1)(7) € F N Fy(dom(j)) for any j € R. It
follows that pygy € .# N Fy (U). Thus we have v € Ik, N Fg,)(U). a

Proposition 3.11 Yg , is mazimum element of Xg .

Proof. For U € ObC and & € 29E N @gfp N Froyxy x(U), ool = ©ip@ef holds and it follows from

¢
o € ZNFx(U) and ¢pgf € Zg,,NFg,)(U) that a composition F(U) (opt,280), E(p) xy X “£5 Y belongs

to & N Fy (U). Since this composition coincides with e, we see that £ € &°E holds. Hence 2% N ‘@gia is
contained in &°&. It is clear from the definition of PE,, that Pg , is contained in F¥'=. Thus Y, is an
element of X .

For Z€¥E,, and UcObC, suppose that v € ZNFg,(U), V,IWeObC, feC(W,U), gcC(W,V) and that
Ve PN Fx (V) satisfies 0 F(g) = pigyF(f). Since £ € .F¥'E, a composition F(U) L E(p) ££5 Y belongs to
Z N Fy(U). On the other hand, since pig(YF(f),vF(g9)) = Fx(9)(¥) € 2N Fx (W) and ¢g(vF(f),vF(g)) =
Frp)(7) € £ N Fr,)(W) hold, we have (vF(f),¥F(g)) € 29® N L% C &°5. Tt follows that a composition

659
F(W) OFG),9F9), E(¢) xy X —= E belongs to & N Fg(W). Therefore v € Zg,, holds and this shows
£ C Dg,,. Since Vg, is an element of ¥ g, by (2.18), Zg , is maximum element of X g . O

Let E = ((E,8) % (X,92)), G = ((G,9) £ (X, 2)) be objects of Zp(C,.){3 5, and ¢ : (X, 2) = (V,.7)
a morphism in Zr(C,J). Let (§,idx) : E — G be a morphism in WF(C,J)E 2 Ifae E(p;y) foryeY, we
have pa = ma = 1y, hence £a € G(p;y). Thus we can define a map &, : ( ) = G(y) by &0( a) = Ea. We
consider the following diagram whose outer trapezoid and lower rectangle are cartesian.

E(p) xy X

~~o Enp Xyidx

!
Glp) xy X —2% 4 G(y

|7e ”‘Gl
X ®
Since the right triangle of the above diagram is commutative, there exists unique map

€¢ Xy idX : E((p) Xy X — G((p) Xy X

that makes the above diagram commutative.
Proposition 3.12 &, : (E(¢), ZE,,) — (G(¥), Za.e) is a morphism in Pp(C,J) and the following diagram is

commautative.

Elp)xy X — = S E

J/s«p Xyidx J{f
@

Glp) xy X — S5 @

Proof. Tt is clear from the definitions of €%, €& and &, that the above diagram is commutative. For U € ObC
and v € P, N Fg,)(U), we take V,IW € ObC, f € C(W,U), g € C(W,V) and ¥ € Z N Fx(V) satisfy
eYF(g) = piaFe, (VF(f). Since piaFe, (v) = Foge, (V) = Foe(7) = wie7, ¥ F(9) = @revF(f) holds. It

F !
follows from the assumption v € Zg , N Fg,)(U) that a composition F(U) £H"—(7)> G(p) 2S5 Y belongs to

@
Z N Fy(U) and that a composition F(W) GF,9F9), E(p) xy X RN belongs to & N Fg(W). We note

that the following diagram is commutative.

%]
F(W) (YF(f), v F(g)) E(p) xy X °E E

\ J/£¢Xyidx J{E
(Fe, (VF(1), ¥F(9)) .

Gp) xy X ———— G
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Fe, (WF(f), ¥ F ¢
Since ¢:(E, &) — (G,¥) is a morphism in Zr(C,.J), a composition F(W) (Fe OEWD, ¥ F(9) G(p) xy X% E

belongs to & N Fg (W) by the commutativity of the above diagram. m]

Remark 3.13 We note that X = ((X, 92) dx, (X, 92)) is a terminal object of @F(C,J)gg’@). Fory ey,
since X (¢3y) = {1y} if ¢ (y) is not empty, X (p) is identified with the image ¢(X) of p and p1x : X(p) =Y
is identified with the inclusion map p(X) — Y. For an object E = ((E,&) = (X, 92)) of Zr(C, J)g(),.@)’ the
map 7, : E(p) = X (p) induced by the unique morphism (m,idx) : E — X in QZF(C,J)E?()@) maps E(p;y) to
{ty} if 71 (y) is not empty.

Remark 3.14 Let E = ((E,&) = (X, 2)), G = (G,9) % (X,2)), H = (H,#) % (X, 2)) be objects of
Zr(C, J)gg’@) and (§,idx) : E — G, (C,idx) : G — H be morphisms in QZF(C,J)E?@). For a morphism
0 (X,2) = (Y, F), it follows from the definition of §, that ((€), : E(¢) — H(yp) coincides with a composition
E(y) ey G(y) ey H(yp). We also note that (idg), coincides with the identity map of E(yp).

We define a functor ¢y : Z5(C, J)g(),@) — QF(C,J)EQ@ by putting ¢1(E) = (E(p), Zg.,) 22 (Y, F))
for an object E = ((E,&) % (X,2)) of Pr(C,J)(3.4 and ¢i((€idx)) = (&, idy) : @(E) — @(G) for

a morphism (£,idx) : E — G in ,@F(C,J)g()@). It follows from (3.11) and (3.12) that we have a natural

transformation €% : p*p — id Py defined by

(2)
(C,-])(X7@>

e = (e5,idx) : (E(p) xy X, D85, N 29%) 22, (X, 2)) - ((E,6) & (X, 2)).

For an object G = ((G,4) % (Y,.7)) of Zr(C, J)g/)?), we consider the following cartesian square in Zr(C, J).

(G xy X, 99N PPe) — 225 (G, 9)

lmo lp

(X, 2) . Y, 7)

Then, ¢*(G) = (G xy X, 9?0 9r2) L% (X, 9)) and (G xy X)(p) is described as a set as follows.

(@ xy X)(0) = JT(G xy X)(p59) = [T {a € Zr(C. (07" (1), 2), (G xy X, 272 NG#")) | ppa = 1, }

yey yey
= H {\ ) e ZrC, D) (¢ (y), 2). (G xy X, 2> NG¥)) | Ao (y) — G satisfies pA = 1, }
yey
= [T{\w) € ZrC, D¢ (y), 7). (G xy X, 27 N%?)) [ \:p™! (y) — G satisties M@ (y)) Cp ' (y)}
yey

For v € G, let us denote by ¢, : ¢ 1(p(v)) — G the constant map whose image is {v}. Then we have
(M (p(v))) = {v} C p~(p(v)) which implies (¢y, ty(n)) € (G Xy X)(p). Define a map n& : G — (G xy X)(¢)
by n&(v) = (Cv, tp(w))- Then, ng makes the following diagram commute.

G—"5 5 (G xy X)(p)

\ rp,w*(@

Y
Proposition 3.15 1§ : (G,9) — ((G xy X)(¢), Dy (c),s) is a morphism in Pp(C,J).

Proof. For U € ObC and v € 4 N F(U), we take VW € ObC, f € C(W,U), g € C(W,V) and v € 2N Fx (V)
such that @ F(g) = @iu- () Fyz, (7)F(f) holds. Since Fyz (v) = né&7, & composition

Pro* (@)
Frer(@),

Foe, (1)
FU) —— (G xy X)(¥) v
coincides with py = F,(vy) which belongs to .# N Fy(U). On the other hand, it follows from the definitions of
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E:Z*(G) and ng that the following composition coincides with a map (yF(f),¢vF(g)) : F(W) — G xy X.

(Fyg, VF(f), $F(9)) e
FW (Gxy X)(p) xy X — Gxy X

Since y € 4 N Fo(U) and ¢ € 2N Fx(V), (WF(f),¥F(9)) = (Fa(f) (), Fx(9)(¥)) € 920 0 D72 N Faxy x (W)
holds. It follows that F)¢ (v) belongs to Z,-(c),e N Faxy x) () (U)- a

For objects E = ((E, &) = (Y,.%)), G = (G,9) % (Y,.7)) of 2r(C, J)E?y) and a morphism ¢: (X, 2)—
(Y,.%) in Zr(C,J), we consider the following cartesian squares in Zr(C, J).

(E xy X,E9 N 9J™e) — 2= (E,&) (G xy X, 4% N gre) — 22 (G, 9)
[ L b !
(X, 2) - (Y, 7) (X, 2) - (Y, 7)

Let {¢,idy) : E — G be a morphism in Zr(C, J)g/)g). Since p¢ = m holds, there exists unique morphism
(xyidx : (Exy X,8%"NI™) = (G xy X,9% N PP¢) in Pr(C,J) that makes the following diagram

commutative.

Exy X o E

\‘\\\CXyidX /
Ty

Gxy X —2>* G /.

b

X —F 5y

The following result is easily verified from the definitions of ng, n& and (¢ Xy idx),.

Proposition 3.16 For a morphism (¢, idy) : (E,&) 5 (Y,.7)) — ((G,9) % (Y,.7)) in f@F(C,J)g/)’g , the

following diagram is commutative.

)

E n—}‘;> (E xy X)(p)

lc J(widm

G—"5 (G xy X)(p)

It follows from (3.15) and (3.16) that there is a natural transformation n? : id
by

2eCn? 1™ defined
NG = (G idy) : (C.9) & (¥.9)) = (G xy X)) “ (¥, 7))

for an object G = ((G,9) & (Y, %)) of 25 (C, J)g/),fj).

Consider the following diagram, where the outer trapezoid and the lower rectangle are cartesian.

G xy X bl G
\\\\néxyidx y
T Pero* (@)

(G xy X)(p) xy X (G xy X)(p)

J(Wlw(c))w ‘/’!«p*(c)l
X z Y

p

Since the right triangle of the above diagram is commutative, there exists unique map n& xy idx : G xy X —
(G xy X)(p) xy X that makes the above diagram commute.

Lemma 3.17 For an objects E = (E, &) = (X, 2)), G = (G,9) % (Y,.7)) of Zr(C,J)? and a morphism
0: (X,2)— (Y,.7) in Zr(C,J), the following compositions are both identity maps.

@ @ id el
CE)e e XX (G Xy X)(QO) XyXﬂ)GXyX

B(o) T2, (Blo) xy X)(g) 25 B(o),  Gxy X
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Proof. For o € E(yp), suppose a € E(yp;y) for y € Y, then the following equality holds for x € p~1(y).
((5%)5077;(15)(04))(@ = ((eB)e(cas 1)) (@) = efla, @) = a(2)
For (v,z) € G xy X, then we have p(v) = p(x) and v € p~!(¢(z)). Hence we have the following equality.
EZ*(G)(ng Xy idx)(v,z) = Eg*(g)((cvay)ax) = (cu, ty)(2) = (v, 2)
Thus the assertion follows. O
For an object G = ((G,¥9) & (V,.7)) of Z5(C, J)g/)g) and an object E = ((E,&) & (X,2)) of

2r(C, J)E?@), since compositions

P . @
Mo\ (E) wi(ef) v*(né&) €ox(q@)

P(E) —— pp*pi(E) — = @i(E),  ¢"(G) — ¢*p1p*(G) — ¢*(G)
are both identity morphisms by (3.17), we have the following result.

Proposition 3.18 ¢ : is a right adjoint of ¢*. Hence Pr(C,J) is locally cartesian closed.

Remark 3.19 Let E = ((Y,6) = (X, 2)), F = (2, 7) % (X,2)) and G = (W,9) % (X, D)) be objects of
Zr(C, J)gg oy 1t follows from (2.7) and (3.18) that there exist natural bijections

Pr(C, )30 (pe0"(E).G) = Zp(C. D)3 (0" (E).p"(G)),
Pp(C, )5 5 (0" (E), 0 (@) = Pp(C, 1) 5 (B, pp* (@),

We note that the product E x F of E and F is given by E x F = p,p*(E). Hence if we put GT = pip*(G), we
have a natural bijection

Pr(C.I)R 0)(EXF.G) = Pp(C.J)3 5)(E.G").

This shows that P (C, J)gg o) is cartesian closed.

4 Strong subobject classifier

Definition 4.1 Let £ be a category.
(1) Two morphisms p: X =Y andi:Z — W in & are said to be orthogonal if the following left diagram
is commutative, there exits unique morphism s : Y — Z that makes the following right diagram commute.

X 257 X 27
P

lp li lp 5 li

Y YW vy . w

If p and @ are orthogonal, we denote this by pLi.
(2) For a class C of morphisms in £, we put

Ct={ieMoré&|pliifpeC}, LC={peMor&|pliifiecC}.

(3) Let E be the class of all epimorphisms in £. A monomorphism i : Z — W in & is called a strong
monomorphism if i belongs to E-+.

(4) Let M be the class of all monomorphisms in £. An epimorphism p : X — Y in & is called a strong
epimorphism if p belongs to +M.

Proposition 4.2 Let C' be a class of morphisms in &.
(1) If D is a class of morphisms in € which contains C, then C+ > D+ and ~C > +D.
(2) C c H(Ch) and C C (FC)* hold.
(3) (H(CH)Ht =Ct and H((+CO)*F) = +C hold.

Proof. (1) Since f € C implies f € D, the assertion is straightforward from the definition (4.1).

(2) For p € C, we have p 1 j for any j € C*, which shows p € +(C*). Thus we have C C +(C*t). Fori € C,
we have pLi for any p € +C, which shows i € (+C)*. Thus we have C C (+C)*.

(3) Tt follows from (1) and (2) that we have (+(C+))t ¢ C*+ and +((+C)*) € +C. Suppose that i € C+
and p € +(C*). Then, pLj for any j € C* in particular, we have p_Li. Hence p_Li holds for any p € +(C+),
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which implies i € (+(C+))*. Thus we have C*+ C (+(C+))+. Suppose that i € +C and p € (+C)*. Then, pLj
for any j € 1 C in particular, we have pli. Hence p_Li holds for any p € (+*C)*, which implies i € ((+C)+)*.
Thus we have +C C ((+C)1)*. O

Proposition 4.3 (1) Ifi: Z — W is an equalizer of f,g: W — V, then i is a strong monomorphism.
(2) If p: X =Y is a coequalizer of f,g: U — X, then p is a strong epimorphism.

Proof. (1) Suppose that the following diagram is commutative.

X 2>z

ook

Yy YW

Then, we have fup = fiu = giu = gup. Hence if p is an epimorphism, it follows that fv = gv. Since i is an
equalizer of f,g : W — V| there exists unique s : Y — Z that satisfies v = is. Then, isp = vp = iu which
implies sp = w since i is a monomorphism.

(2) Suppose that the following diagram is commutative.

X 27
Pl
P
Then, we have iuf = vpf = vpg = iug. Hence if ¢ is a monomorphism, it follows that uf = ug. Since p is a

coequalizer of f,g: U — X, there exists unique s : Y — Z that satisfies u = sp. Then, isp = iu = vp which
implies 7s = v since p is an epimorphism. O

Definition 4.4 Let £ be a category with a terminal object 1¢. If a morphism t : 1¢ — Q) satisfies the following
condition, we call t a strong subobject classifier of €.

(%) For each strong monomorphism o : Y — X in &, there exists unique morphism ¢, : X — Q that makes
the following square cartesian.

Y oY
_

—_
tn

[oa

~+

X $o

2

Remark 4.5 Assume that the outer rectangle of the following left diagram is cartesian. If h: V — X satisfies
fh = gsh, then there exists unique morphism k : V — Y that satisfies ok = h by the assumption.

Y so W sh
P =
x—1 5z : lg

X ——7

Hence if 0 : Y — X is a monomorphism, o is an equalizer of f,gs : X — Z. It follows that if £ has a strong
subobject classifier, each strong monomorphism in &€ is an equalizer of a certain pair of morphisms.

Proposition 4.6 A morphism i : (Y,8) — (X, 2) in Pr(C,J) is a monomorphism if and only if i : Y — X
18 injective.

Proof. Tt is clear that i : (Y, &) — (X, %) in Zr(C,J) is a monomorphism if ¢ : ¥ — X is injective. Suppose
that i : (Y, &) — (X, 2) is a monomorphism in #r(C,J) and that i(a) = i(b) holds for a,b € Y. Define maps
frg: {1} = Y by f(1) = a and g(1) = b. Then f,g: ({1}, Zaisc,{13) — (Y, &) are morphisms in Zr(C,J)
which satisfy ¢f = ¢g. Thus we have f = g which implies a = b. O
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Proposition 4.7 Leto : (Y,.7) — (X, D) be a strong monomorphism in Pr(C,J) and denote byi: o(Y) — X
the inclusion map. Then there is a surjection & : Y — o(Y) which satisfies i6 = o. This map gives an
isomorphism & : (Y, 7) — (o(Y), 2") in 2r(C,J).

Proof. Since o : Y — X is injective by (4.6), & is bijective. Since (F, )y = (F;)v(F5)u : Fy (U) — Fx(U) maps
yﬂFy(U) into .@ﬂFx(U), (Fg)U : Fy(U) — Fx(U) maps % ﬂFy( ) into (Fz)al(gﬁFx( )) = .@iﬂFa(y)(U)
for U € ObC. Hence ¢ : (Y,.#) — (¢(Y),Z") is a morphism in Pp(C,J). Consider the following left
commutative diagram.

v, F) — 2 (v,.7) Y, F ”—Y;(Y,f)
(S(V), 7)) —— (X,2)  (S(V), ") —— (X,2)

Since 5 : (Y,.F) — (¢(Y), Z") is an epimorphism in Zx(C,J) and o : (Y,.F) — (X, ) is a strong monomor-
phism in 2r(C, J), there exists a morphism s : (S(Y), 2%) — (Y,.#) in Zr(C,J) which makes the above right
diagram commute. Hence we have s& = idy and i6s = os = i. Since i is a monomorphism, the latter equality
implies s = idy(y). Therefore 5 : (Y,.7) = (0(Y),2") is an isomorphism in Zx(C,J). |

Let ¢ : {1} — {0,1} be an inclusion map. Then, ¢ : ({1}, Zcoarse,{13) — ({0, 1}, Zeoarse,{0,1}) is @ morphism
in :@F(C, J)

Proposition 4.8 Let (X,2) be an object of Pr(C,J) and Y a subset of X. We denote by o :' Y — X the

1 ey
inclusion map and define a map ¢, : X — {0,1} by ¢, (z) = {O v ¢y Then, the following diagram is a
x
cartesian square in Pr(C,J).
(Y’ -@J) L ({l}v 9coarse,{l})
J J

(X7 @) L ({07 1}7 @coarse,{o,l})

Proof. Let f : (W, #) — (X,2) be a morphism in &r(C,J) which stisfies ¢,f = tow. Then, we have
oo f(W) C {1} Wthh shows f(W) C Y. Hence there is unique map f: W — Y which satisfies of = f. For
each U € Ob(, since (Fy)u(F7)v = (Ff)v : Fw(U) = Fx(U) maps F NFw (U) into ZNFx (U), it follows that

U=
(Fp)u « Fw(U) — Fy(U) maps FNFw (U) into (Fy)y; Y9nFx(U)) = 2°NFy (U). Thus f : (W,.Z) — (Y, 27)
is a morphism in Zp(C, J). O
Remark 4.9 The morphism o:(Y,27) = (X, 2) is an equalizer of ¢5: (X, 2)— ({0,1}, Deoarse,{0,13) and a
composition (X, 2) 25 ({1}, Deoarse {1}) — iN ({0,1}, Zeoarse,{0,13) by (4.5). In particular, o : (Y, 27) = (X, D)
is a strong monomorphism in Pr(C,J) by (4.3).
Proposition 4.10 ¢ : ({1}, Zeoarse,13) = ({0, 1}, Zeoarse,0,13) 5 a strong subobject classifier in Pp(C, J).

Proof. Let o : (Y,.%) — (X, 2) be a strong monomorphism in Zr(C,J). We denote by i : o(Y) — X the
inclusion map. It follows from (4.8) that there exists a morphism ¢, : (X, Z) — ({0, 1}, Zcoarse,{0,1}) such that
the following diagram is cartesian.

90 (Y)

((J’(Y)’_@Z) ({1}7-@coarse,{1})

! !

(Xa -@) # ({Oal}a-@coarse,{OJ})

Then, the following diagram is also cartesian by (4.7).

(Yvy) — ({1}a-@coarse,{1})

I L

(Xa @) L ({07 ]-}a @coarse,{o,l})
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Suppose that a map ¢ : (X, Z) = ({0, 1}, Zeoarse,{0,1}) also makes the following diagram cartesian.

(Y’g\) # ({l}agcoarse,{l})

l I

(Xﬂ -@) # ({07 1}7 -@com'se,{o,l})

Since the forgetful functor I' : Zr(C,J) — Set has a left adjoint, I" preserves limits. Hence

y —2 5 {1}
L

X —Y 40,1}

is a cartesian square in Set. Since Yo = toy, we have ¥(z) = 1 if z € o(Y). If ¥(z) = 1 for z € X, we
define a map f : {1} — X by f(1) = z. Then we have o f = tid(;; which implies that there exists a map
f {1} = Y which satisfies o f = f. Thus x = f(1) = o(f(1)) € o(Y). Therefore ¢ = ¢, holds and this shows
the uniqueness of ¢,,. O

By (2.11), (2.14), (3.18) and (4.10), we have the following result.
Theorem 4.11 Zr(C,J) is a quasi-topos.
Proposition 4.12 7 : (X, 9) — (Y, &) is an epimorphism in Pr(C,J) if and only if 7 : X =Y is surjective.
Proof. It is clear that 7 : (X, 2) — (Y, &) is an epimorphism in Zp(C,J) if 7 : X — Y is surjective. Assume
that 7 : (X,2) — (Y, &) is an epimorphism in Z(C,J). We denote by o : 7(X) — Y the inclusion map.

Since o : (7(X),87) — (Y, &) is a strong monomorphism by (4.9), there exists a morphism ¢, : (YV,&) —
({0,1}, Zaisc,10,11) such that the following left diagram is cartesian.

(W(X),@@U) Or(X) ({1},@coarse,{l}) /('W(X),@@G') On(X) ({1}7@coarse,{l}>
(}/ﬂ é’@) L) ({071}79c0a7"se,{0,1}) (X7 @) = (}/7 éa) o ({071}72600.7"86,{0,1})

Let @ : X — w(X) be the surjection induced by 7. Then 7 : (X, D) — (w(X), &) is a morphism in Zr(C,J).
We consider a composition toy : (Y, &) — ({0,1}, Zeoarse,{0,13) Which is a constant map whose image is {1}.
Since ¢om = @507 = to(x)T, Po7 is also a constant map to {1}. Thus we have ¢,m = toym. Since 7 is an
epimorphism, we have ¢, = toy, in other words, ¢, is a contant map to {1}. Therefore 7(X) = ¢, 1({1}) =Y
and 7 is surjective. O

5 Groupoids associated with epimorphisms

Let E = ((E,&) = (B, %)) be an object Zr(C, J)E? ) such that m is an epimorphism. Then, 7 is surjective

by (4.12), hence 7~ !(z) is not an empty set for any x € B. We denote by i, : 7~1(x) — E the inclusion map.
We define a set G1(E)(z,y) for z,y € B by

G1(E)(z,y) = {p € Pr(C,J)((r(x), &%), (77 (y), %)) | ¢ is an isomorphism. }

Put Gi(E)= ][] Gi(E)(z,y) and define maps og,7g:G1(E)— B, tg:G1(E) —G1(E) and eg: B— G1(E)
z,yeB

by og(p) =2, TE(9) =y, te(@) = ¢ if o € G1(E)(x,y) and eg(z) = idr—1(y). Let

Gl(E) XB Gl(E) L G1(E)

| |7

Gi(E) L B

21



be a cartesian square. In other words, G1(E) x5 G1(F) is given by

G1(E) xp G1(E) ={(¢,v) € G1(E)xG1(E) | 7B(¢) = 0B(Y)}

as a set. We define a map pg : G1(E) xp G1(E) = G1(E) by pr(e,¥) = .
We consider the following cartesian squares.

E 38 G1(E) — ", G\(E) E X Gi(E) — 2% G\(E)
lpr% lUE lprg J/TE
F al B FE l B

Hence E x77 G1(FE) and E xF G1(FE) are given as follows as sets.
E X3 GiI(E) = {(e;p) € ExXGi(E)|7(e) = or(p)}, Exy Gi(E)={(e,p) € ExGi(E)|n(e) = Tr(0)}

There exists unique map idg Xptg : ExF Gi1(E) = E x 3 G1(E) that makes the following diagram commute.

E X7F Gy(E) ey G1(E)
\\\\\\idEXBLE V
= rg
E X3 Gi(BE) —22 , Gy(BE) /.
o ol
E i B

We define a map g : E x7F G1(E) — E by £ule, @) = irp(p)p(e). Let ¥g the set of all the-ologies £ on
G4 (E) which satisfy £P'% 0 £P618) ¢ £48 P75 0 LP 0w ¢ fielidexsie) and ¥ ¢ 275 N B, We note
that the £ € Y if and only if following maps are morphisms in Zr(C, J).

€ ¢ (B x3F Gu(B), 67 N27em)  (B,6)
éE(ZdE XBLE) : (E X}-BE Gl(E),éapr}:: ﬁfprE;l(E)) — (E,éa)
OE,TE ' (Gl(E)vg) - (Bw@)

Proposition 5.1 X g is not empty.

Proof. Tt suffices to show that the discrete the-ology Zgisc,, (g) on G1(E) belongs to ¥ g. It follows from (1.17)

that Dise,c,(m) C B7F N AE holds. For U € ObC, suppose that ¢ € EPE N Z; 100 1 0 Fyoe g, ) (U).

Then,we have prgy € & N Fg(U) and prgl(E)w € Diisc,c1(E) N Fa,(g)(U). Hence there exists a covering
(U, 22, U)ses such that Fe,(8)(95)(0rE, (my¥) : F(U;) = G1(E) is a constant map for every i € J by (1.17).
Let us denote by a; € G1(E) the image of Fg, (r)(9;)(Prg, g)¥) and put z; = op(a;), y; = 75(e;). Then we
have o; € G1(E)(xj,y;) and the image of Fr(g;)(prgy) = prgyF(g;) : F(U;) — E is contained in 7! (x;).
Hence we have a map (; : F(U;) — 7 '(z;) satisfying i,,(; = Fg(g;)(prgv) € & N Fg(U;), which shows
¢ € &' N Fr-1(2,;)(Uj). Since we have an equality

Fpyoea,m)(95) (V) = (ia; G Fay (1) (95) (P08, () ¥)) : F(Uj) = E X5 Gi(E),

it follows that the following equality holds.
F(95)(Fep, () = Fep, (Fpere gy ) (99) () = € (ie, Gy Foy ) (9) (08, (1) 9) = iy, 03¢ = Fi, (Fa, ()

Since a; : (7 (x;), &%) — (7 (y;), &) and iy, (m~Y(y;), &%) — (B, &) are morphisms in Px(C,J),
we have [ (Fa,(¢)) € €N Fp(Uj) for any i € J. Therefore F¢_(4) € & N Fp(U) holds and we see that

- PrG, (2) 3
&PTE N gdisc?Gl(E) C &4F holds.

For U € Ob(C, suppose that ¢ € &P'® ﬂ@?;ijgﬁmﬂFEXTBEcl(E)(U). Then, we have pri¢ € & N Fg(U) and

prgl(E)w € Diisc,c,(B) V¥, (g)(U). Hence there exists a covering (U 9, U)icy such that Fg, (g (gj)(pral(E)w) :
F(U;) — G1(E) is a constant map for every ¢ € J by (1.17). We denote by «; € G1(FE) the image of

22



Fe,(8)(9;)(prG, (%) and put z; = op(a;), y; = (). Then we have o; € G1(E)(x;,y;) and the image of
Fg(g;)(prie) = prgwF(g;) : F(U;) — E is contained in 77! (y;). Hence we have a map (; : F(U;) — 7 (y;)
satisfying i,,(; = Fr(g;)(prpe) € & N Fg(U;), which shows ¢; € & N Fr-1¢y,)(U;). Since we have an equality

Fror ) (95) () = (i, Gy Fo(m) (95 (005, ) « F(U}) > B X7F G (),

it follows that the following equality holds.

Fe(95) (Fegian s nim) V) = Feptiapx pim) Fex i (8)(9) () = Eelide X 5LE) (iy,Cs Fou () (95) (Pre, (5)¥)
= Ep iy, ¢ enFa, ) (95) (Pra, (m)¥)) = ia;05 ¢ = Fi, (Fo1(6))

J

Since aj_l (Y (yy), EM) — (m M (), &) and ie, (=), &) — (B, &) are morphisms in Zp(C,.J),
we have Fj, (F,-1(¢;)) € &N Fp(Uj) for any i € J. Therefore F (¢) € &N Fr(U) holds and we see

E(ideXBLE)

that &P 0 7, S0 ) C §Ee(ideXaie) holds, O

For U € ObC, we consider the following conditions (G1), (G2), (G3) on an element v of F, (g)(U).
(Gl) TV, W eOb(, feC(W,U), geC(W,V) and Ae & N Fg(V) satisfy nAF(g) = ogvF(f), a composition
F(w) QEWAEI), o G (B) 22 B belongs to & N Fg(W).
(G2) EV,WeObC, feC(W,U), geC(W,V) and A€ & N Fg(V) satisfy nAF(g) = TevF(f), a composition
F(W) Q). ey PG, g X7 G1(E) LNy 5 belongs to & N Fg(W).
(G3) Compositions F(U) X G1(E) 25 B and F(U) % G1(E) =2 B belong to % N F(U).
Define a set ¥ of F-parametrizations of a set G1(E) so that ¥g N Fg,(g)(U) is a subset of Fg, (g)(U)
consisting of elements which satisty the above conditions (G1), (G2) and (G3) for any U € ObC.

Remark 5.2 The conditions (G1), (G2) and (G3) on v € Fg,(g)(U) above are equivalent to the following
conditions (G1'), (G2') and (G3'), respectively.
(G1) If V,W € ObC, f e C(WU), g € CW,V) and A € &N Fp(V) satisfy nAF(g) = ogvF(f), then v
satisfies (AF(g), YF(f)) : F(W) — E x%F G1(E)) € &£ N FEXL;Ecl(E)(W).
(G2') If V.W € ObC, f € C(W.U), g € C(W,V) and X € & N Fp(V) satisfy nAF(g) = TevF(f), then v
satisfies (AF(g), YF(f)) : F(W) — E xF G1(E)) € &4elidexzte) 0 FEX;EGI(E)(W).
(G3') ve B°ENB™EN FGl(E)(U)

Proposition 5.3 ¥g is a the-ologgy on G1(E).

Assume that A € &N Fg(V) satisfies TAF(g) = cgyF(ow). Then, the image of AF'(g) : F(W) — E is contained
in 771(s) hence there exists a map ¢ : F(W) — 7~ !(s) which satisfies A\F(g) = is¢. Since AF(g) € &N Fg(W),
we have ¢ € &% N Fr-1(5)(W). We note that y(x) : (7=*(s), &%) — (7 1(t), &) and iy : (7~ (t), ") — (B, &)
are morphisms in &g (C, J). It follows that a composition F (W) QFg), yFlow)), x%F G1(E) 2, B coincides
with a composition F(W) LN m1(s) ), 7 L(t) Xy E which belongs to ENFg(W). Therefore v satisfies (G1).
Assume that A € &N Fg(V) satisfies nAF(g) = TevF (ow ). Then, the image of AF(g) : F(W) — E is contained
in 7=1(¢) hence there exists a map ¢ : F(W) — 7~1(t) which satisfies \F(g) = i;(. Since AF(g) € & N Fg(W),
we have ¢ € & NFy—1(4)(W). Note that tg(y(x)) : (77 (t),&") = (77 (s), &) and iy : (77 1(t), ") — (E, &)

are morphisms in Zr(C, J). It follows that a composition F'(1V) (AE9), erFlow)), x7ZFPG1(E) L2, F coincides

with a composition F(W) LN 7 1(t) t200), 771(s) X E which belongs to & N Fg(W). Therefore v satisfies
(G2). Since Fy,(7), Frp(v) € Fp(le) C A, we have v € B°E N A=, Hence v satisfies (G3). Thus we have
Ye O Fo,(p)(1c).

Let h : Z — U be a morphism in C. For v € ¥g N Fg,(g)(U), we take V,W € ObC, f € C(W,Z) and
g € C(W, V). Assume that A € &N Fg(V) satisfies TAF(g9) = ogFg,(g)(h)(v)F(f). Since 1AF(g) = opvF(hf)

and ~ satisfies (G1), a composition F(W) QE@AERD), g xFG1(E) LNy belongs to &N Fg(W). This shows

that Fg, (g)(h)(7y) satisfies (G1). Assume that A € & N Fg(V) satisfy 7AF(g9) = TeFq, (&) (h)(v)F(f). Since
7AF(g) = TeyF(hf) and ~ satisfies (G2), a composition F'(W) WF@erF ), g x%F G1(E) LNy belongs

Proof. For v € Fg,(g)(1c), put s = og(y(x)), t = Te(7(x)). We take VW € ObC, oy € C(W,1¢), g € C(W, V).
1
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to & N Fg(W). This shows that Fg, g)(h)(7) satisfies (G2). Since v satisfies (G2), compositions F'(Z2) aFR),

G1(E) 22 B and F(U) 222 Gy (E) 22 B belong to % N Fy(U), which implies that Fe, g (h)(7) = vF(h)

satisfies (G3). Thus we have Fg, (g)(h)(y) = vF(h) € 92 N Fg,(E)(Z).
For v € Fg,(g)(U), suppose that there exists R € J(U) such that F, (g)(7)(v) € e N Fg, (&) (dom(j)) for
any j € R. We take VW € ObC(C, f € C(W,U) and g € C(W, V). If we put
h;'(R)={keMorC|codom(k)=W, fke R},

then we have h;l(R) € J(W) and Fg,(g)(fk)(v) € 96 N Fg,(g)(dom(k)) for any k € h;l(R). Assume that
A € &N Fg(V) satisfies TAF(g) = ogyF(f). Hence the following composition belongs to & N Fg(W) for any
ke h;'(R).

f

\F(gk), F, k 3
F(dom(k)) (AF(gk), Fa, (=) (Fk) (7)) E X% G\(E) §—E>E

Since the above composition coincides with the following composition

for any k € h;l(R), it follows that a composition F'(W) Q) 7 F ), ExTFGL(E) LNy belongs to ENFg (W),
namely ~ satisfies (G1). Assume that A € & N Fg (V) satisfies 7TAF(g) = TevF(f). Hence the following compo-
sition belongs to & N Fg(W) for any k € h;l(R).

(AF(gk),teFa, (&) (fk)(7))

F(dom(k)) E x% G1(E) 5 E

Since the above composition coincides with the following composition

F(dom(k)) 22 powy LEW =P D), pooe Gy (B) £2 B

for any k € h;l(R), it follows that a composition F'(W) Q@) e F D), gy xTF G1(E) LN belongs to
& N Fg(W), namely v satisfies (G2). Since Fg,(g)(j)(7) € 9 N Fg,(g)(dom(j)) for any j € R, compositions
 Fopmy@O) oE y Fayey@O) TE .
F(dom(j)) —————— G1(E) — B and F(dom(j)) ————— G1(E) — B belong to # N Fp(dom(y)).
Since the above compositions coincides with compositions F(dom(j)) £, F(U) & Gi(E) Z& B and
F(dom(3)) £, F(U) 5 G1(E) Z5 B respectively for any j € R, it follows that compositions F(U)
G1(E) 22 B and F(U) 5 Gi(E) ™5 B belong to 2 N Fp(U). Hence ~ satisfies (G3) and we have
’YEgEﬁFle(E)(U). O

Proposition 5.4 Y5 is mazimum element of X g.

Proof. For U € ObC and § € &P ﬂ%;rGl(E) N FEXUBEGl(E)(U), Tpryd = aEprgl(E)(S holds and it follows from
prgd € ENFE(U) and Pre (gm0 € YE N Fg,(g)(U) that the following composition belongs to & N Fg(U).

§=(przd, pre, (£)9)

F(U) E x5 Gy(E) 5 E

That is, we have § € &€& N Fpyoeg, (g (U). 1t follows that EP'E N %;rGl(E) C &€ holds. For U € ObC and
§ € &P ﬂg;rcl(m NFpyreg, g (U), Tprpd’ = TEPrg, (50’ holds and it follows from prgé’ € €N Fp(U) and
prgl(E)d’ € Yg N Fg, (g (U) that the following composition belongs to & N Fg(U).

(idpxBLE)d = (prE(S', LEPTEI(E)‘s,)

F(U) E x% G1(E) 5 E

That is, we have &' € §E(EX00E) O\ Fy op ) (U). Tt follows that &P 0@, @1 C §e(deXate) holds.
Yp C B°ENHBE holds by (G3') of (5.2). Therefore ¥g belongs to Xg.

Let .2 be an element of Xg. For U € ObC and v € £ N Fg, (g (U), we take V,W € ObC, f € C(W,U)
and g € C(W,V). Assume that A € & N Fg(V) satisfies TAF(g) = ogyF(f) and put 6 = (AF(9),vF(f)).
Then we have prg;6 = AF(g) € & N Fg(W) and pr, g0 = vF(f) € £ N Fg,(g)(W). 1t follows that we have
§ € EPTE N PG N Fexpei(m)(W) C E°E N Fpy a8y (W), which shows that v satisfies (G1). Assume that
A € &N Fg(V) satisfies TAF(g9) = TeyF(f) and put ¢’ = (AF(g),vF(f)). Then we have pri,d' = AF(g) € &N
Fg(W) and pr; 0" = vF(f) € LNFg, (g)(W). 1t follows that ¢’ belongs to EPTE N LG (E) NFexpa ') (W)
which is contained in &¢&(idex5LE) NFgxyc,(g)(W). This implies that v satisfies (G2). Since & C Z7FNA"",
~y satisfies (G3). Thus we have v € g which implies . C ¥g. O
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We consider the following cartesian square.

Prig

EX%EGl(E)XBGl( )4>EX Gl( )
J{prs. lTEPrGI(E) (Z)
Gi(E) ’E B

Then, we have ExT®G1(E)xpGi(E) = {(e,p,¢) € ExG1(E)xG1(E)|7m(e) = or(p), TE(p) = op(¥)} as a
set. It follows from the definition of {g that the following diagram is commutative.

e

ExFG(E) ——

lpr‘él(E)

Gl(E) __TE

There exists unique map éE X ida, (E)

E

k

B

(i)

diagram commute by the commutativity of diagrams (i) and (i) above.

EXUBEGl(E)XB Gl(E)

 ExXFEFG1(E)xpGi(E) - E X% G1(FE) that makes the following

~ br3
“~~o__ EEXBido (E)
e o PG, (B
PTy2 EXB Gl(E) Gl(E)
o b
o 32 ™
X% Gy (E) E B

We define maps prys : EXTFG1(E)xp G1(E) = G1(E)xp G1(F) and prg : ExFFG1(E)xg G1(E) — E by

pI‘23(6,(p,’L/J> =
ZdE XB UE : EX

that makes the following diagram commute.

EX%EGl(E)XB Gl(E)

PTa3

Ex92 Gy (E)

err%

E

prg

rE

G1(E)

(p,9) and pry(e, ¢, 1) = e, respectively. Then, there exists unique map
Gl( )XB Gl(E) — EXUBE Gl(E)

Let LE

pry

G1 (E) XB Gl(E)

T

G1(E) xp G1(E)

lpn
/

G1(E)

/

*>G1

X

:G1(E) xp G1(E) — G1(E) x g G1(E) be the unique map that makes the following diagram commute.

Gi(E)

TE

B

We note that L(;) maps (¢,%) € G1(E) xg G1(E) to (tg(¥),te(p)). It is easy to verify the following fact.

Lemma 5.5 The following diagrams are commutative.
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Ex%EGy(E)xp G (E) —2EXELE , pyoe Gy (E) E G1(E)xp G1(E) -2 G1(E)

idg
J{éEXBidGl(E) J{éE l(de J{L%‘Z) J{LE
E

E x9F G,(E) te ExFGIUE) 24 E  Gy(E)xp Gi(E) —“E= G, (E)

Proposition 5.6 The structure maps og, 7 : (G1(E), %) — (B, %), ¢g : (B,%) — (G1(E),¥9E), ug :
(G1(E) xp G1(E), 9 ' N¥p?) = (G1(E),9g) and vg:(G1(E),9g)— (G1(E),9g) of the groupoid (B, G1(E))
are morphisms in Pr(C,J).

Proof. Tt follows from (G3) that og, 7 : (G1(E),¥%g) — (B, %) are morphisms in #r(C,J). For U € ObC
and x € ZNFp(U), we take V,IW € ObC, f € C(W,U) and g € C(W,V). Assume that A\ € &N Fg(V) satisfies
TAF(9) = og(Fep)u(2)F(f). Tt follows from the definitions of eg and &g that the composition

(AF(9), (Feg)u(z)F(f))

F(W) E x% G1(E) *5 E

coincides with AF'(g) which belongs to &N Fr(W). Hence (F. )y (x) satisfies (G1). Assume that A € &ENFr(V)
satisfies TAF(g) = Te(F.5)u(x)F(f). It follows from the definitions of eg and {g that the composition

(AF(9), (Feg)u(z)F(f))

F(W) E X7 Gy (E) 1282, [« 98 Gy (E) 25 E

coincides with AF'(g) which belongs to & N Fr(W). It follows that (F..)y(x) satisfies (G2). Since we have
og(Fp)u(x) = e(Feg)u(x) = 2 € BN Fp(U), (F.p)u(x) satisfies (G3). Therefore (F..)u(x) belongs to
Ye N Fo,(g)(U) and eg : (B, %) — (G1(E),9g) is a morphism in Zr(C, J).

For U € ObC and v € 9 N Fg, (g (U), we take V,WW € ObC, f € C(W,U) and g € C(W, V). Assume that
A€ &N Fg(V) satisfies tAF(g) = og(F,z)u(7)F(f). Then, nAF(g) = 7evF(f) holds and a composition

AF(g), (F, F 3
OFo) oD, ow (g 2,

F(W)
coincides with F'(W) RO ALICINy xX%F Gi(E) L2, E which belongs to & N Fg(W) since v satisfies (G2).
Hence (F,;)u(y) satisfies (G1). Assume that A € & N Fr(V) satisfies 7AF(g9) = 7e(F.z)u(Y)F(f). Then,

AF(g), e (F, F :
mAF (g) = ogyF(f) holds and a composition F(W) A9, e (Fip v D), X%E G1(E) 2, F coincides with

F(W) (AF(9),7F () E x5 G,(E) RN
which belongs to & N Fg(W) since v satisfies (G1). Hence (F,,)u(7y) satisfies (G2). Since ~ satisfies (G3), we
have og(F,z)u(y) =78 € ZNFp(U) and 7g(F,;)u(y) = og € BNFp(U). Thus (F,,)u(y) also satisfies (G3)
and (F,,)v(v) € 9 N Fg,(g)(U). Therefore 1g : (G1(E),9g) — (G1(E),9E) is a morphism in Zr(C,J).

For U € ObC and (o, 8) € 95 N 952N Fa,(B)xsci(g)(U), we take V,W € ObC, f € C(W,U) and
g € C(W,V). We note that o, 8 € ¥g N Fg,(g)(U) and that Tga = ogf holds. Assume that A € &N Fg(V)
satisfies TAF(g) = og(Fl.z)u((a, B))F(f). Since (F,.)u((a, B))F(f) = pe(o, B)F(f) holds, a composition

(AF(9), (Fug)u((e.B)F(f))

F(W) E X% Gi(E) 5 E

coincides with the following composition.

) (AF(g), aF(f), BF(f))

F(W E X% G1(E) xp G1(E) L2818, | yor G (E) 25 F

By the commutativity of the left diagram of (5.5), the above composition coincides with a composition

(Fe g )w (AF(g), aF(f)), BF(f))

F(W) E x%F G1(E) %5 E.
Since £g : (E X% G1(E), &P% NGy 1) — (E, &) is a morphism in P5(C, J) and (AF(g),aF(f)) belongs
to &P N g;rclw’ N Fgyoea, g (W), the above composition belongs to & N Fg(W). Hence (Fiz)u((a,p))
satisfies (G1).

Assume that A € & N Fg(V) satisfies 7AF(9) = 7e(F.z)u((a, B))F(f). Since an equality

e (Fug)u (0. ) F(f) = tepp(a. HF(f) = npis (@ H)F(f) = up(sp, tsa) F(F)
holds by the commutativity of the left diagram of (5.5), Then, a composition
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(AF(9):te(Fug)u(a,B)F(f))

F(W) Ex%E Gi(E) 5 E - (+)

coincides with the following composition.

F(W) (AF(g9),teBF(f)teaF(f)) E X%E Gl(E) X5 Gl( ) tdEXBUE E X Gl( ) §_E> E

The following diagram is commutative by the commutativity of the left diagram of (5.5).

F(W) (AF(g), teBF(f) ,teaF(f)) EX%EGl(E) Xp Gl(E) idg X BIUE EX%EGl(E)

(Fe )w (AF(9), (F. g )w (BF(£)) (Fp)w (@F(£))) EEXB“GND . ¢e
E

E x5 G1(E)

Sincetg : (G1(E),¥g) — (G1(E),¥g) is a morphism in Zr(C, J), (FLE)W(BF(Z))) and (F,;)w (aF(f)) belongs
to ¥g N Fg,(m)(W). Thus we have (AF(g), (F.z)w(BF(f))) € &P'E N g}ngl(E) NFgoea, (B g)(W). Since
Jw

(g (E x7F G1(E), &P ﬁ%prglw)) — (E,&) is a morphism in Zp(C,J), (Fg )w(AF(9), (F.z)w(BF(f)))
belongs to E N Fg(W). Then, it follows that ((Fg_)w (AF(9), (Fi.z)w (BF(f))), (Fiz)w(aF'(f))) also belongs

to 675 NG5 P\ Fy, 206, ) (W). Finally, the image of ((Fg, )w(AF(9). (F.e)w (BF(£))). (Fz)w(aF(£)))
by (Fg )w : FEXUBEGI(E)(W) — Fg(W) belongs to & N Fg(W). Therefore the composition (x) belongs to
ENFg(W) and (F,,)v((c, B)) satisfies (G2).

Since both « and f satisfy (G3), it follows that both og(F,..)v((o, 8)) = opa and 75 (F,..)v (o, B)) = TS
belongs to N Fg(U), which shows that (F),,)v((a, 3)) satisfies (G3). Hence pg is a morphism in Zr(C, J).0

Definition 5.7 Let E = ((E,&) = (B, %)) be an object of Zr(C, J)Eé) ) such that m is an epimorphism.
We call the groupoid ((B, B),(G1(E),Yg);0E, TE,€E: bE, tE) in Pr(C,J) the groupoid associated with E and
denote this groupoid by G(E).

Let us denote by Epi.(Zr(C, J)) a subcategory of Z5(C,.J)?) whose objects are epimorphisms in 25 (C,.J)
and morphisms are cartesian morphisms in the fibered category o : Zp(C,J)® — Zr(C,J) of morphisms in

Pp(C,J).

Example 5.8 For an object (X, 2) of Zr(C,J), we denote by ox : (X, Z°) = ({1}, Zeoarse,{1}) the unique
morphism in Pr(C,J). Since ox is an epimorphism, we regard this as an object Ox of Epi (Zr(C,J)). The
groupoid G(Ox) = (({1}, -@coarse,{l})a (G1(0x),90+); 00, TOx €0 HOx s LOx ) 8 given as follows.

We put End(X, 2) = Z2r(C, J)((X, Z), (X, Z)) and define a subset Aut(X, Z") of End(X, Z") by

Aut(X, 2) = {p € End(X, Z7) | ¢ is an isomorphism.}.

Then, G1(Ox) is identified with Aut(X, Z") as a set. The source oo, and the target 7o, are the unique map
G1(Ox) — {1}. The unit eoy, : {1} = G1(Ox) maps 1 to idx. The composition po, : G1(Ox) x G1(Ox) —
G1(0Ox) maps (¢,v) to e and the inverse Lo, : G1(Ox) — G1(Ox) maps ¢ to ¢~ L.

We denote by ax : X x G1(Ox) — X the map defined by ax(xz,p) = p(x). Then, the the-ology Yo, on
G1(Ox) = Aut(X, Z) is described as follows.

For U € ObC, Yo, N Fg,(0x)(U) is a subset of Fg (0y)(U) consisting of elements v which satisfy the
following condition (G).
(G) For V,W € ObC, feC(W,U), ge C(W,V) and A € & N Fx(V), the following compositions belong to

%ﬂFx(W)
ax AF(9), 105V F ax
Fw) REODID) y s giox) 25 x pow) DRI v G 0x) 95 x

Let ((G,9);¢e,p,1) be a group object in Zx(C, J) with structure morphisms ¢ : ({1}, Zisc,(1}) — (G, 9),
p(GxGEnNgr) —» (G,9) and ¢ : (G,9) — (G,¥9) in Pr(C,J) which make the following diagrams
commute. Here, p; : G X G — G denotes the projection onto the i-th component for i = 1, 2.

GxGxG"™M G Gx{1) 95 gxg &% 1y« @ G Mot gy g te) ¢
J{idx xp J{” T(idc, 0a) l“ T(ch idg) lOG J{“ lOG
GxG —— @G G M g M g {1} —— G «—— {1}
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For an object (B, #) of Zr(C,J), we define a groupoid Gg g in Zr(C,J) as follows. Put G; = B x G x B
and let 0g B, 7¢,p : G1 — B and prg; : G1 — G be the projections given by o¢ g(x,9,y) =z, 7¢,8(2,9,y) =y
and prg(z, g,y) = g. Define maps eg g : B — G1 by eg,5(x) = (x,¢(1), ). Consider a cartesian square

pr
G1 XB Gl 4)2 Gl

J{PIH J{UG,B .

G — <% B

Then, G; xp G1 = {((z,9,y), (z,h,w)) € G1 X Gy |y = z} holds as a set. Define maps ug p: G1 xgp G1 — G

and lG,B G — Gy by MG,B((xvgay)v (Z,h,U/)) = (xvu(ga h),UJ) and LG,B(xvg»y) = (yul‘(g)vx)a respectively. It
is clear that og g, 7¢.B : (G1, B°¢ENYGP'cNABCB) — (B, B) and pry; : (G1, B7¢ENYGP'e NP6 B) = (G,9)

are morphisms in Zr(C,J). Since 0g peg,B = Ta,BEc,B = idx and the following diagram is commutative, it
follows that e g : (B, %) — (G1, %875 N¥YP'a N HA7¢7) is also a morphism in P (C, J).

€G,B

(B,B) —%2 (G, Bo05 NGP'6 N BTon)

Jes |pe

({1}, Zaise,(1y) - (G,9)

We note that o pua,B = 0c,BPr, and 7¢ Blic,B = Ta,BPT hold and that the following diagram commutes.

Gy xp Gy PP ooq

|pos |#

Gy Pe G

Since 0g,B, T7¢.B, (Prq, Pre) and p are morphisms in P (C, J), it follows that

ta,B : (G1 xp G1, (#7682 NGP'c N JBTGB)P'1 N (RB7¢8 NYP'e N BTGB )P2) — (G, BB NGP'c N ABTEB)
is a morphism in Zr(C, J). We also have 0g pta.B = 7a,B, Ta,BlG,B = 0¢,B and prgig,p = Lprg which imply
that vq g : (G1, BB NGP'c NAB™CB) = (G, BB NYP'¢ NG B) is a morphism in Pr(C,J). It is easy to
verify that ((B, %), (B x G x B, #°¢58NA7¢-BENYGP'C); 04 8,7G.B,£G,B, LGB, La,B) is a groupoid in Zr(C, J).

Definition 5.9 The groupoid ((B,Z#),(B x G x B,%7¢82 NYP'¢ N BB 0G B,TG.B:EG.Bs UGB, LG,B) N
Pr(C,J) constructed above is called the trivial groupoid associated with ((G,9);¢e, u,t) and (B, %).

Let (X, Z") and (B, %) be objects of Zr(C, J). Let us denote by pry : X x B — X and prg: X x B— B
the projections. Then we have an object X = (X x B, 2P'x N #%5) 2 (B, A)) of Epi,(Pr(C,J)).
We also have a group object G1(Ox) = Aut(X,2") in Zr(C,J) with unit eo, : {1} = G1(Ox), product
toy : G1(Ox) x G1(0Ox) — G1(Ox) and inverse 1o, : G1(Ox) — G1(Ox) as we considered in (5.8).

Proposition 5.10 The groupoid G(X) = ((B,%),(G1(X),9x);0x,Tx,ex, ux,tx) in Pr(C,J) associated
with X is isomorphic to the trivial groupoid associated with ((G1(Ox),%0y);€0x,HOxtoyx) and (B, A).

Proof. We denote by i, : prg'(z) — X x B the inclusion map for = € B. Then, Pryiy prg(z) — X is a
bijection and prgi, : prgl(x) — B is a contant map to {z}. Hence we have #P's'> = 9. oot (@) and the
following equality.

(ZP'x N PBPre)is = ZPrxic N PPrple = ZPIxiz N gdi“,m;(z) = @ Pryisz,

Therefore pryi, : (prg'(z), (ZP'x N BP's)i=) — (X, 2) is an isomorphism in Zp(C, J).

We put G = G1(Ox) = Aut(X, Z") and Gy = B X G x B for short and define a map ¢; : G; — G1(X) by
¢1(z,y,9) = (pryiy) 4 (pryisz). Then, (i is bijective. In fact, the inverse G Gi(X) — Gy of ¢ is given
by (7 () = (ox(0), 7x (), (DT xirx ()P (Prxiox (o))~ }). The following diagrams are commutative, hence
(idp,¢1) : (B,G1) — (B,G1(X)) is a morphism of groupoids. Here (3 xp (1 : G1 xg G1 = G1(X) xp G1(X)
maps (¢, ) to (G1(), G ().

B 0G,B G TG,B B B €G,B G1 Gl XB G1 MHG,B G1 G1 LG,B Gl
J{idB lCl J{ids J{idB l(l l@ xB(1 lCI lCl l@
B <& G(X) 2>+ B B 5 Gi(X) Gi(X)xpGi(X) 5 Gi(X) Gi(X) 25 Gi(X)
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It remains to show that ¢y : (G, #8797 N A5 NG5 ) = (G1(X),¥x) and its inverse are morphisms in
Pr(C,J). We consider the following cartesian squares.

(X x B) x5 G1 —— & & (X x B) x5 G1(X) —22% 4 (X))
lerxB l"GvB lprg(xB lffx
XxB—2"2 B X x B Ps B

Then (X x B) xp Gy is given by (X x B) xp G1 = {((u, 2), (z,y,9)) € (X x B) x G1|z = a:} as a set.
Define maps édx : (X x B) xg G1 = X x B and idxxp X (1 : (X x B) xg G1 — (X x B) x5* G1(X) by
G (w,2), (2,5, 9)) = (0(u),y) and (idxxp x5 C)((w,2), (2,9,1) = (1), 1 (2, 5, )), respectively. Since
projections pry g, Prg,, Prx, PIg, 7,5 and the right G—action ax on X are morphisms in Zr(C, J), it fillows
that dx = (ax(Prypryyp: PrePra, ), 76,BPrg, ) is also a morphism in Zr(C, J). Let U be an object of C and
Y€ PB7GENRBCrNYGHE N Fg, (U). We take V,W € ObC and f € C(W,U), g € C(W,V).

Assume that A € Z'P'x N PBP'5 N Fx.p(V) satisfies prgAF(g) = ox(F¢)u(vy)F(f). Then, we have
preAF(g9) = oxCYvF(f) = o¢,BYF(f), hence there exists a map (AF(g),vF(f)) : F(W) — (X X B) xp G1
such that the following diagram is commutative. Here idxxp Xp (1 : (X X B) xp G1 — (X x B) x5* G1(X)
is given by (idxxp x5 (1)(u, x), @) = ((u, z), (1(a)).

\ lidXxBXBQ iidXxB
(AF(g), v F(f)) :

(X x B) x3X Gy(X) —* X x B

F(W)

Since dx is a morphism in Pp(C,J), F(W) 2L By wox Gy (X) X X x B belongs to

ZPrx N PBP"'8 N Fx«p(W) by the commutativity of the above diagram. ThlS shows that v satisfies (G1).

Assume that A € ZP'x N BB N Fxyp(V) satisfies prgAF(9) = 7x(Fe,)u(y)F(f). Then, we have
preAP(g) = TxCYF(f) = 06 pic, 5 F(f) and there exists a map (AF(g), .57 F(f)) : F(W) = (X x B)x 3G
such that the following diagram is commutative.

F(W) (AF(9),ta,B7F(f)) (X x B) x5 Gi ax X x B

\ lidXXBXBCI J{idXxB
(AF(9),txC1vF(f)) 3

(X x B) X% Gy(X) —* X x B

(AF(9),txC1vF(f))

Since éx is a morphism in Zr(C,J), F(W) (X x B) xF* G1(X) X, X x B belongs to
ZPrx N AP N Fxxp(W) by the commutativity of the above diagram. This shows that «y satisfies (G2).

Since v € #°¢.5B N A5 N gg;c N Fg, (U), both ox(1y = 0¢, gy and 7x (17 = 7¢, 57y belong to #. Thus v
satisfies (G3) and ¢y is a morphism in Zr(C, J).

For v € ¥x N Fg,(x)(U), both UG,B((Fgl—l)U('Y)) = ox7y and TG7B((FC1—1)U(’}/)) = 7x belong to BN Fp(U)
since ~y satisfies (G3). We put o/ = prG((Fcl_l)U(v)) and take U, W € ObC, f € C(W,U), g € C(W,V)
and A € 2 N Fx(V). Define N € ZPx N BP"'5 N Fxxg(W) by N = (AF(g9),0xvF(f)). Then we have
prgNF(idw) = oxvF(f) and the following diagram is commutative.

3

XxB)x*XG(X)——* s+ XxB

(N Fidw), vF(f)) ( ) xE X

/ J{idXxBXBCfl J{idXXB
X Fidw), ¢T '/ F(P)) ax

(X x B) xp G X xB

lprxerxB’perrGI) lprx
(AF(9),7' F()) ax
X xG X

Since v satisfies (G1) for E = X, it follows from the commutativity of the above diagram that a composition

F(w) REWTED), G 2%, ¥ belong to 27 N Fx (W).
Define N\ € Z'P'x NAP'5 ﬂFXXB( )by X' = (AF(9),7xvF(f)). Then we have prg\"F(idw) = txvF(f)
and the following diagram is commutative.
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(X x B) x%X G1(X X)— % . XxB

(N'F(idw), txYF(f))
/ J{idxXBXBCf J{idXXB
(\'F(idw),ta, B¢ 'Y F(F)) .

(X x B) xg Gy ax X x B

\ l PrxprxXB’PrGPrcl) lprx
(AF(9),tox Y F(£)) a
ox X x G X X

Since v satisfies (G2) for E = X, it follows from the commutativity of the above diagram that a composition
AF(g),¢ 'F a . .. .

F(W) A9, tox 7 1T X x G =% X belong to 2" N Fx(W). Therefore 4/ satisfies condition (G) in (5.8)

which implies that ' = prG((Fql)U('y)) belongs to Yo N Fg,(0x)(U). We conclude that (FC;I)U(’Y) =y

belongs to 7% N AB™ NY5E N Fg, (U). Thus ¢;*is a morphism in Zg(C,J). |

Let D = ((D,2) % (A, o)) and E = ((E, &) = (B, %)) be objects of Epi (Zp(C,J)) and & = (£, f) : D —
E a morphism in Epi.(Zr(C,J)). For x € A and y € B, we denote by j, : p~*(z) = D and iy, : 7~ (y) — E the
inclusion maps, respectively. Let &, : p~%(z) — 7~ 1(f(z)) be the map obtained from ¢ : D — E by restricting
the source and the target, namely &, is the unique map that makes the following diagram commute.

pl(z) —s Y (f(2))
Lz lifm
D £ E

Lemma 5.11 &, : (p~!(x), 2%*) — (7= (f(2)), £4@) is an isomorphism in Pp(C,J).

™

Proof. We consider the inverse image f*(E) = (A xp E, @™ N&f*) —% (A, o)) of E by f which is also an
object of Epi.(Zr(C,J)). We have a natural cartesian morphism o ¢(E) = (fx, f) : [*(E) = E.

AxBELE

s J
%%B

For = € A, we denote by i : Wj?l(x) — A xp E the inclusion map. Since we have W;l(l’) ={z} x 77 }(f(x)) in
A x p E, there is a bijection f, : 71';1(.%) — 77 1(f(z)) which makes the following diagram commute.

nr (@) —L Y (f(2)

lii lif(w)

AXBE%E

Since 7 i : w;l(az) — A is a constant map to {x}, /™% coincides with 2 Therefore we have

coarse,w; * (x)"
s
(/™ NEI)iE = TN g = g and it follows that f, : (17! (x), (/™ NEI)E) — (x4 (f(x)), £ir@)
is an isomorphism in Zr(C, J).

Since ¢ is cartesian, (p,&) : (D, 2) — (A xp E, /™ N &77) is an isomorphism in Zx(C,J). Put & = (p,§)
and we have an isomorphism §; = ({f,ida) : D — f*(E) in Z¢(C, J)E‘ZX)’%) that satisfies af(E)€; = €.
Then 7;¢f = p holds and we have an isomorphism &5, @ (07! (z), 27%) — (7' (), (@™ N &f)ir) for each

x € A by restricting the source and the target of {;. Since £ = fr&y, we have {, = f{y which implies that
&t (p (), 29) = (n1(f(2)), &4 @) is an isomorphism in P (C, J). |

Remark 5.12 Since &5 : (D, 9) — (A xp E, o™ N &) is an isomorphism in Pr(C,J) which satisfies
T =p and fr& =&, D= (™ NEI)S = ™18 N EIST = /P N E holds.

By (5.11), we can define a bijection &, , : Gi(D)(z,y) — G1(E)(f(x), f(y)) by &y (p) = &p& !t for
z,y € A. We also define a map & : G1(D) — G1(E) by & (¢) = & y(p) where z = op(yp) and y = 7p(p).
Note that a pair (f,&;) of maps is a morphism G(D) — G(E) of groupoids, that is, the following diagrams are

commutative. Here, & X ;&1 : G1(D) x4 G1(D) — G1(E) xp G1(E) maps (¢, %) to (§&1(e), &1(¥)).
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A2 G(D) 25 A A2, Gi(D) Gi(D)xsG (D) 25 Gi(D) Gi(D) -2 Gi(D)

Jf le lf f la Jexses la la la

B<ZZ_ G (E) =+ B B -—E5G(E) G\(E)xpG(E) X2 G(E) Gi(E) -2 G\(E)

Define a map & x5 & : D x9P G1(D) = E xTF G1(E) by (£ x5 &1)(e,0) = (£(€),&1(yp)). Then, the following
diagram is commutative.

D x%° Gy(D) —2— D

g

Lemma 5.13 & : (G1(D),9p) — (G1(E),¥9g) is a morphism in Pr(C,J). It follows that a pair of morphisms
(f,&1): G(D) —» G(E) is a morphism of groupoids in Pr(C,J).

ép
E x%F G1(E) BN

Proof. For U € ObC and v € ¥p N Fg,(p)(U), we verify that (F¢, )uy(y) = &1y satisfies the conditions (G1),
(G2) and (G3). We take objects V', W of C and morphisms f: W — U and g : W — V in C. Assume that
A € ENFE(V) satisfies TAF(g) = cg&1vF(f). Since the outer rectangle of the following diagram is commutative
and the lower right rectangle is cartesian in g (C, J), there exists unique F-plot \; € 2N Fp(W) that satisfies
pA1 = opyF(f) and €A = AF(g).

FW) — o) F(V)
\\‘::::\\\\\\)\1 l)\
A2 ‘\\) \\*~\\\\\ ¢
F(f) D x%P Gi(D) ——==3 D E
lprg'l(D) P J,ﬂ-
F(U) —X— G1(D) oD A—L B

o
G1(E)

Since «y satisfies (G1) for D, the following composition belongs to 2 N Fp(W).

) Ap= (M F(idw), vF(f))

F(W D x%P G1(D) =2 D

Since ¢ : (D, 2) — (E, &) is a morphism in &r(C, J) and the following diagram is commutative, a composition

F(W) Q\M)% E x%F G1(E) LNy belongs to & N Fr(W). Hence &y satisfies (G1).
FOW) (M F(idw), vF(f)) D x% G,(D) 135 D
13
(AF(9), 7 F()) lfxf& : l
Ex7 G(E) —=—— E

Assume that A € & N Fg(V) satisfies nAF(g) = Te&yF(f). Since the outer rectangle of the following
diagram is commutative and the lower right rectangle is cartesian in &g (C,J), there exists unique F-plot
A3 € 2N Fp(W) that satisfies pAs = optpyF(f) and A3 = AF(g).
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F(g)

F(W) — F(V)
lF(ff\;;: e L\
F(U) D x%P G1(D) pDi D—* 5 E
R |
G1(D) —2— G1(D) oD A—1 B
b=
\Gl(E) e
¥

Since v satisfies (G2) for D, the following composition belongs to 2 N Fp(W).

) Aa= (AsF(idw ), tpvF(f))

F(W D x%? Gy(D) £ D

Since € : (D, 2) — (E, &) is a morphism in &r(C,J) and the following diagram is commutative, a composition
F(W) (W9, &), xX7F G1(E) =B belongs to & N Fr(W). Hence & satisfies (G2).

F(W) (X3 F(idw ), pYF(f)) D XZD GI(D) 5413) D
1 13

(AF(9),teé1vF(f)) lEng ¢
E x3F G, (E) N

Since v satisfies (G3) for D, opvy,Tpy € Fa(U) belong to & N F4(U). Since f : (A, &) — (B, %)
is a morphism in Zg(C,J), (Ff)u(op7y) and (Fy)u(tp7y) belong to £ N Fg(U). On the other hand, since
(Ff)u(opy) = fopy = ogéiy and (Ff)u(Tpy) = fTpy = TE&1Y hold, &1y satisfies (G3). O

We denote by Grp(£r(C, J)) the category of groupopids in & (C,J). That is, objects of Grp(Zr(C, J))
are groupopids in Zr(C, J) and morphisms of Grp(Zr(C, J)) are morphisms of groupopids. Define a functor

Gr : Epi (Zr(C,J)) — Grp(Zr(C, J))

as follows. For an object E = ((E,&) = (B, %)) of Epi.(Zr(C,J)), let Gr(E) be the groupoid G(E)
associated with E as we defined in (5.7). For a morphism & = (£, f) : D — E in Epi.(ZFr(C,J)), we put
Gr(¢) = (f,&) : G(D) — G(E). Then Gr(€) is a morphism in Grp(Zr(C, J)) by (5.13).

Let C = ((C, %) % (H,#)) and D = ((D,2) % (A, <)) be objects of Epi,(Zr(C,J)) and ¢ = ((, g) :
C — D a morphism in Epi, (2Fr(C,J)). We denote by k, : x ' (z) = C, j, : p~*(y) = D the inclusion maps
for x € H and y € A. We have an isomorphism (, : (x~(z), €%*) = (p~(g9(2)), Z’s=) in Pr(C,J) such that
the following diagram is commutative.

X L) — s p I (g(2) — 20w (f(g(2))
lkz Jg(a) lif(g(w))
C < D ¢ E

We put Gr(¢) = (g,¢1) and Gr(£¢) = (fg,(£¢)1). Then, (£¢)1 : G1(C) — G1(E) maps ¢ € G1(C)(z,y) to
(Ea)Cy) P (Eg(a)Ca) ™1 = € (Cyep C;l)fg_(i) = &1(¢1(e)) by the commutativity of the above diagram. It follows
that Gr(£€¢) = Gr(£)Gr(¢) holds. If ¢dg is the identity morphism of E, it is clear that Gr(idg) is the identity
morphism of G(E). Thus we verified that Gr is a functor from Epi, (Z£r(C,J)) to Grp(Zr(C,J)).

6 Fibrations

Definition 6.1 Let G = ((Go, %), (G1,%1);0,7,¢,1,¢) be a groupoid in Pr(C,J). We denote by pr,,pr, :
Go x Gg — Gy the projections given by pr,(z,y) = x and pr,.(z,y) = y. If a map (o,7) : G1 = Go x Gq given by

32



(0,7)(¢) = (0(p),7()) is an epimorphism and the the-ology (%) (s, on Go x Go coincides with 45 N4y ™,
we say that G is fibrating ([6], 8.4). Let E be an object of Epi (Pr(C,J)). If the groupoid G(E) associated
with E (5.7) is fibrating, we call E a fibration ([0],8.8).

Remark 6.2 If E = ((E,&) = (B, %)) is a fibration, then, since (0g,Te) : G1(E) — B x B is surjective,
G1(E)(z,y) is not empty for any x,y € B. Hence fibers (1~ (x), &%) of © are all isomorphic.

Lemma 6.3 Let (X, 2") and (B, %) be objects of Pr(C,J). We denote the projections by pry : X x B — X
and prg : X x B — B. Then % coincides with (ZP'x N B8 ), .

Proof. Since prg : (X xB, ZP'xN%P'5) — (B, %) is a morphism in Zr(C, J), we have (ZP'x NAP'5),.  C A.
We choose a € X. For U € ObC and v € BN Fg(U), define 5 : F(U) — X x B by ¥(z) = (a,y(x)). Since
pry7 is a constant map and pryy = <, we have ¥ € 2ZP'x N BP's N Fx,p(U). Hence, for any h € hy,
YE(h) € ZP'x NAP's N Fxxp(dom(h)) satisfies Fip(h)(7) = (Fpr; )dom(n) (YF(h)). This implies that v belongs
to (ZP'x N %P5, by (2.4). Thus we conclude that (2ZP*x N AP"5),. = % holds. O

Proposition 6.4 Let £ : D — E be a morphism in Epi (Zr(C,J)). If E is a fibration, so is D.

Proof. We put D = ((D,2) % (A, <)), E = (E,&) = (B,%)) and £ = (¢,f) : D — E. It follows from
(5.13) that ¢ induces a morphism Gr(€) = (f,&1) : G(D) — G(E) of groupoids. Then, the following diagram

is commutative.
G1(D) —— G1(E)

l(UDyTD l(UEﬂ'E)

AxA—f>B><B

For 2,y € A, since (0g,7g) : G1(E) — B x B is surjective, there exists ¢ € G1(F) which satisfies og(p) = f(z)
and Tg(p) = f(y). Since there is a bijection & , : G1(D)(z,y) = G1(E)(f(z), f(y)) by (5.11), there exists
¥ € G1(D)(x,y) which satisfies op () = x and 7p(v)) = y. Hence (op,7p) : G1(E) — A x A is surjective.

We denote by pry, : A x A — A and prg, : B x B — B the projections onto the i-th component. Since
op, ™ : (G1(D),%p) — (A, &) are morphisms in Zr(C,J), (6p,™p) : (G1(D),¥9p) — (AX A, &/PrarNg/Praz)
is a morphism in &r(C,J). On the other hand, since (4p) (s, ,7p) is the finest the-ology on A x A such that
(cp, ™) : (G1(D),%p) — (A X A,(9D)(0p,p)) 18 @ morphism in ZPr(C,J), (9D)(op,rp) C P41 N a/Praz
holds. For U € Ob(C and v € &/P*a1 N &/P'a2 N Fay 4(U), since

[ xfi(AxA o/ParNg/Praz) — (B X B, AP's1 N PP B2)

is a morphism in Zr(C,J), (Fyxy)u(y) € #BP'51 N ABP"52 N Fpyp(U). Since BP"51 N BP'52 = (YE) (65,r5) DY
the assumption, we have (Fryx)u(7) € (98) (o, ) N FexB(U). It follows from (2.4) that there exists R € J(U)
such that, for any h € R, there exists o5 € g N Fg, (g)(dom(h)) which makes the following diagram commute.

F(dom(h))

(D) ——>—— G{(E)

G1(
\ lJD D) l(UEvTE)

A><A—>B><B

We define a map ), : F(dom(h)) — G1(D) as follows. For v € F(dom(h)), put Faxa(h)(v) = (z,y). It
follows from the commutativity of the above diagram that ¢p(u) belongs to G1(E)(f(z), f(y)). It follows
from (5.11) that we can define ¢p(u) € G1(D)(x,y) by Yn(u) = §y_1<ph(u)§x. In order to show that )y,
belongs to ¥p N Fg,(py(dom(h)), we take V,IW € ObC, f € C(W dom(h)) and g € C(W,V). Assume that
A € 2N Fp(V) satisfies pAF(g) = aDz/)hF(f). Since (op,Tp)¥n = YF(h) and &9p = ¢p, the following
diagrams are commutative.

G1(D — 4 A
/ T& % TprGMD) Tp

F(dom(h (AF(9), ¥n F(£)) D x7 Gy(D

lF(h) (op, V J/TD \ ngf &1 3
Prao (AF(g), enF(f)) EE

FU) —1— Ax A —222, 4 Ex5F Gi(E) —25

F{U
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Since (Frp)dom u)(’t/Jh) = (FprA2)dom(u)(FAxA(h)('}’)) and Faxa(h)(y) € &/P'ar N a/Pra2 N Fyy a(dom(h)), it
follows from the commutativity of the above diagram that (Fz_)w ((AF(g),¥nF(f))) belongs to &/” N Fp(W).
On the other hand, since A € ZNFp(V), oy € gEﬁFgl(E)(dom( ), (AF(9), pnF(f)) : F(W) —» EXF G1(E)
belongs to &P'E ﬂ%;rgl('s) NFpyoeq, g (W). Since £p: (Ex3EGL(E), 67 ﬂggrUGl(E)) — (E, &) is a morphism
in Zp(C,J), (Fg,)w((AF(g), ¥nF(f))) belongs to &€ N Fp(W) by the commutativity of the above diagram.
Thus we have (Fg_)w ((AF(9), ¥nE(f))) € &7 N ESNFp(W) = 2N Fp(W) by (5.12) and 1, satisfies (G1).

Assume that A € 2 N Fp (V) satisfies pAF(g) = TpYp F(f). Since (op,mp)Yn = vF(h) and & ¢ = ¢p, the
following diagrams are commutative.

G1(E) £ G,(E) . Gi(D) —2—— A
/ 1%1 IT& y Tprcl(D) ) P
— G4(

F(dom(h)) (D) —2 G(D) CWE@, 0w E ) p wop (D) <25

lF(h) l(ap, D) lm \ l&x r&
_Prar (AF(9), e nF(f))

FU)y — X Ax A A E x% G1(E) 25 E

—

o

Since (FTD)donl(u) (Lth) = (Fprm)dom(u)(FAXA(h)('Y)) and FAXA(h)(’}/) € Prar N g/Praz N FAXA(dOIn(h)), it
follows from the commutativity of the above diagram that (Fz_)w ((AF(g),¥nF(f))) belongs to &/” N Fp(W).
Since A € 2N Fp(V), tgpn € Y N Fg,(g)(dom(h)), (AF(g),teenF (f)) : F(W) — E x%® G1(E) belongs
to &PE ﬂ%;rGl(E’ N FEX;EGl(E)(W). Since €g : (E X% G1(E), &P'F ﬂg;rcl('s)) — (E, &) is a morphism in
Zr(C.J), (Fe,)w((AF(9),tp¥nF(f))) belongs to &€ N Fp(W) by the commutativity of the above diagram.
Thus we have (Fz_)w ((AF(g), .pvnF'(f))) € &7 N ESNFp(W) =20 Fp(W) by (5.12) and 1y, satisfies (G2).

By (o0p,™)¥n = vF(h), op¥n = (Fpr,, )dom(n) (Faxa(h)(7)) and TpYn = (Fpr ., )dom(h) (Faxa(h) (7)) hold.
Since Faxa(h)(y) € @/Pra1 N @/Praz N Faya(dom(h)), we have (Fpr,,)dom(n) (Faxa(h)(7)) € & N Fa(dom(h))
for i = 1,2. Hence both opvy, and 7py, belong to & N Fa(dom(h)), which shows that vy, satisfies (G3).
Therefore we have ¢y, € ¥ N Fg, (p)(dom(h)) and it follows from (2.4) and Faxa(h)(7) = (Fop,rp))dom(n) (¥n)
that v belongs t0 (Yg) (o, rs) N Faxa(U). Thus we conclude that (9p)p,rp) = &P 41 N /PT42 holds. a

Example 6.5 Let ((G,9);e,u,t) be a group in Pr(C,J) and (B, %) an object of P (C,J). Consider the
trivial groupoid Gg.p = ((B, %), (B x G x B, #°¢:8 N A2 NYP'S);06,8,7G,B,€G,B, ha.Bs La,B) i Pp(C,J)
associated with ((G,9);e, p,t) and (B, #). Since (0¢,B,7a,B) : B x G x B — B X B is a projection, it follows
from (6.3) that Ga.p is fibrating. Hence X = (X x B, 2'P'x N #vs) L5y (B, B)) is a fibration by (5.10).
We call X a product fibration.

Definition 6.6 Let C be a category with a terminal object 1c. For an object U of C, we say that a functor
F :C — Set is U-pointed if F : C(1¢,U) — Set(F(1c), F(U)) is surjective. If F' is U-pointed for any object U
of C, we say that F is pointed.

Proposition 6.7 If a category C has a terminal object 1¢, then the functor hi¢ : C — Set defined by h'¢(U) =
C(le,U) and he(f : U — V) = (f« : C(1c,U) — C(1¢,V)) is pointed.

Proof. For an object U of C and «a € Set(h'¢(1¢),h'c(U)), put f = a(idi,) € h'¢(U) = C(1c,U). Then, we
have h'c(f)(idy.) = idi. f = f = a(id;,) which shows hl¢(f) = a. Hence h'¢ is pointed. O

Definition 6.8 Let (C,J) be a site. For an object U of C, we say that a functor F : C — Set is U-local if F
satisfies the following condition (L). If F is U-local for any object U of C, we say that F is local.

(L) For an object V of C and a map o : F(V) — F(U), if there exists a covering (V; EiN V)ier of V such that
F(f)* :Set(F(V),F(U)) — Set(F(V;), F(U)) maps « into the image of F : C(V;,U) — Set(F(V;), F(U))
for any i € I, then « belongs to the image of F : C(V,U) — Set(F(V), F(U)).

Remark 6.9 Let C be a category and F' : C — Set a functor. For an object U of C, we define a subset Fy of
I Fran(V) by Fy = [I Im(F:C(V,U) = Set(F(V),F(U)) = Frw)(V)). Then, it is easy to verify
VeobC Veobe
that Fy satisfies condition (ii) of (1.2).
(1) Assume that C has a terminal object 1¢c. Since Fy N Fpw)(le) = Im(F : C(1¢,U) — Fray(le)), F is
U-pointed if and only if Fy satisfies condition (i) of (1.2).
(2) For a site (C,J), F is U-local if and only if Fy satisfies condition (iii) of (1.2).
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Thus %y is a the-ologgy on F(U) if and only if F' is U-pointed and U-local. Assume that F is pointed and
local. For an object V' of C, a morphism f : U — W in C and ¢ € Fy N Fp)(V), since there exists g € C(V,U)
such that F(g) = ¢, we have (Fp(s))v(p) = F(f)e = F(f)F(g9) = F(fg) € Zu N Fraw)(V). It follows that
(Fp))v : Fran(V) = Fpavy(V) maps Fy N Fpy(V) into Fw N Fpayy(V). We define a functor F': C —
Pr(C,J) by F(U) = (F(U), %y) for U € ObC and F(f : U — W) = (F(f) : (F(U), Zy) — (F(W), %)) for
a morphism f: U — W in C. Then I'F' = F holds.

Example 6.10 Define a category C* as follows. Objects of C*° are open sets of n dimensional Euclidean space

R" for some n = 0. Morphisms of C>® are C®°-maps. For U € ObC>, let P(U) be the set of families

(Ui ELN U)icr of open embeddings such that U = | f;(U;). It is easy to verify that P is a pretopology on
i€l

C>. We give a Grothendieck topology Jo on C*° generated by Ps,. Then, the forgetful functor F : C*° — Set

is pointed and local. For a set X, an F-(C*®,Jx)-ology on X is usually called a diffeology on X and an

F-(C?, Jy)-ological object is called a diffeological space.

Example 6.11 Let k be an algebraically closed field. We denote by Aff,, the category of affine varieties over

k. ForV € ObAffy, let Pag, (V) be the set of families (V; EiN V)ier of Zariski open embeddings such that

V = U fi(Vi). It is easy to verify that Pag, is a pretopology on Aff,,. We give a Grothendieck topology Jag,
iel
on Aff,, generated by Pag, . Then, the forgetful functor F : Aff), — Set is pointed and local.

Proposition 6.12 Let (X, Z") be an object of Pr(C,J). Suppose that F : C — Set is U-pointed and U-local
for an object U of C. Then, a map ¢ : F(U) — X is an F-plot if and only if ¢ : (F(U), Zy) — (X, Z) is a
morphism in Pr(C,J).

Proof. Assume that ¢ : F(U) — X is an F-plot, namely, ¢ € ZNFx(U). For V€ ObC and ¢ € FyNFry)(V),
there exists f € C(V,U) such that F(f) = 1. Then, we have (F,)v(¥) = ¢F(f) = Fx(f)(¢) € 2N Fx(V),
which shows that ¢ : (F(U), %y) — (X, Z") is a morphism in Zr(C,J).

Conversely, assume that ¢ : (F(U), Zy) — (X, Z") is a morphism in &r(C,J). Since idp) = F(idy)
belongs to .Fy N Fpy(U), we have ¢ = pidp@y = (Fy)u(idp@y) € 2N Fx(U). Hence ¢ is an F-plot. O

Lemma 6.13 For an object E = ((E,&) = (B, %)) of P (C,J)?), the following diagram in Pp(C,J) is
cartesian. A
(E x3F G\(E), 675 n%p 1) — £ (B,6)

JPYCC'ME) J”

(G1(E),¥E) - (B, B)

Proof. Since W§E :TEpr‘él(E) holds, we have ﬂfE (idpXpLE) :TEprgl(E)(idEXBLE) :TELEpl”TGl(E) :aEprgl(E).
Hence there exist morphisms

K (E X G Gl(E),g’PrE mg;rm(m) s (E X TE Gl(E),éaprE mg]};rglw))
A (E xTBE Gl(E),gprE ﬂg;rcmz)) N (E x%E Gl(E),gprE mg;rGﬂE))

in Zr(C,J) that make the following diagrams commute.

(E <97 G1(E), 678 NGy ™)

(E X G1(E), 67 NGy, 1)

[ )

(G1(E),9p) ——— (B, 2)
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(E x7F Gi(E), &7 NGy &)

(E x3F G1(E), 7% ngp 1)

lPTUGuE)

(G1(E),95) ———=—— (B, %)

Since k maps (z,¢) € E X5 G1(E) to (¢(z),9) € E x7F G1(E) and A maps (y,¢) € E x5 G1(E) to
(V= Yy), ) € E x%¥ G1(E), X is the inverse of x. It follows that  is an isomorphism in g (C,J). Since the
lower rectangle of the upper diagram is cartesian, the assertion follows. O

Let E = ((E,&) = (B, %)) be a fibration. For b € B, define a map ¢, : B — B x B by u(z) = (b,z). We
denote by prg; : B x B — B the projection onto the i-th component for ¢ = 1,2. Since prpz¢ is a constant
map and prpgyip is the identity map of B, v, : (B, %) — (B x B, #P"'s1 N %P's2) is a morphism in Pr(C,J).
For U € ObC and v € # N Fp(U), since (F,,)u(y) € #BP'51 N BP52 = (YE)(0p,rs), it follows from (2.4)
that there exists R € J(U) such that, for each h € R, there exists v, € ¥g N Fg, (g)(dom(h)) which satisfies
(B ((Fo)0/(1) = (Flop rp))dom(n) () For u € F(dom(R)), since y,(u) belongs to Gy (E)(b,/(F(h)(u)))
by the commutativity of the following diagram, 7((y4(u))(e)) = v(F(h)(u)) holds for e € 7=1(b).

F(dom(h)) —— 22— G1(E)

|r l(«m r5)

F{U) —— B "+ BxB

We denote by pr -1 : 7~ (b) x F(dom(h)) — 7= (b) and prp(gom(ny) : 7 (b) X F(dom(h)) — F(dom(h))
the projections onto the first and second components, respectively. We also denote by i, : 7= 1(b) — E the
inclusion map. For (e,u) € m=1(b) x F(dom(h)), since m(e) = b = gy, (u) by the commutativity of the above
diagram, we have a map (4D -1 (), YaDTp(dom(n))) * ® () X F(dom(h)) — E x%® G1(E). Let us denote by

(#PT . —1 4y, YA PT P (dom(h)))

dom

dom
A i w7 1(b) x F(dom(h)) — E a composition 7= 1(b) x F(dom(h)) Ex7F Gi(E) E—E> E.
Then (e, u) = (yn(u))(e) holds for (e,u) € 7~1(b) x F(dom(h)).

Lemma 6.14 The following diagram is cartesian in the category of sets.

7=1(b) x F(dom(h)) — 22— E
J{er(dom(h)) ™
F(dom(h)) E) B

Proof. We note that 7y, = vF'(R)PT p(qom(n)) holds by the definition of 4;,. Assume that (e,u) € E x F(dom(h))
satisfies vF(h)(u) = 7(e), namely e € 7~ (yF(h)(u)). Since vn(u) : 7=1(b) — 7~ 1(yF(h)(u)) is surjective,
there exists ¢/ € m~1(b) which maps to e by 75, (u). Hence we have 73, (e’,u) = (y4(u))(e’) = e. Suppose that
(e”,u') € w1 (b) x F(dom(h)) satisfies DI p(qom(ny) (€”, ') = u and 4 (e”,u’) = e. Tt is clear that u’ = u, hence
we have (v, (u))(€”) = An(e”,u') = e = (yu(w))(e’). Since vu(u) : 771(b) — 7 L(yF(h)(u)) is injective, it
follows that e” = ¢’. Thus the assertion follows. |

Lemma 6.15 If F : C — Set is pointed and local, the following diagram is cartesian in Pr(C,J).

(771 (b) x F(dom(h)), (£)P" 1) O Fprleent?y — s (B, )

ler(dom(h)) lﬂ

(F(dom(h)), Faom(n)) e (B, )

Proof. Since 7 is an F-plot, so is vF'(h), hence vF(h) : (F(dom(h)), Zaom(n)) — (B, %) is a morphism
in Zr(C,J) by (6.12). Since 7 is an F-plot, v, : (F(dom(h)), Zaomn)) — (G1(E),9g)) is a morphism
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in Zr(C,J) hence s0 18 YhDPI'p(aom(n)) (771(b) x F(dom(h)), (&)P'==1® N ﬁpr”d‘m‘(h))) — (G1(E),¥%Ek).

dom(h)
ibDPro—1py - (771 (D) x F(dom(h)), (&7)P" 1 ® N ﬁ;;g&f)’“(h))) — (E, &) is also a morphism in Zp(C,J). Thus
(8PT 51 (5)s VAPT dom(ny)) (71 (B) x F(dom(h)), ()P =100 0 F o r6o™)) — (E xG# G1(E),EPF N GgF)

is a morphism in 5 (C,.J). Since g : (E x7F G1(E), &P NYgF) — (E,&) is a morphism in Zp(C,J), we
see that 4 = £ (iPrr-1 (), VWP p(dom(ny)) (7 1() x F(dom(h)), (€%)P'="1®) 0 3‘*§§$‘5§;““”) — (E,&)is a
morphism in Zr(C,J). It is clear that the following projection is a morphism in &g (C, J).

- 7 ro—1 pr om
PEE(@om(ny © (77 (0) x F(dom(h)), (£7)' 4o 1 F Lt ) — (F(dom(h)), Faomr)
Hence (&%)P'=~'e) N 9;)5;((%)!“%) is contained in &7 N 9;;;(((5)111(}1)).

For U € ObC and o € & myj’;i((f;u(h)) mFﬂ.—l(b)XF(dom(h))(U), pAut a1 = pI‘Tr_1(b)Oé and Qg = er(dom(h))a'
Since £ (ipar, Yhaz) = Jpa € & N Fr(U), we have (iyay, ypas) € £ N FEXEEGl(E)(U). On the other hand,

. . pre;
since Y42 = (Fyyprpaomn, )U (@) € D, we also have (ipa1,yha2) € 95 ™ N Fgyoeg, ) (U). Therefore

(ipa1, yrr2) belongs to &e ﬂgngl(E) NFgoea ) U) = EPE ﬂg;rcl(m N FEX;EQ(E)(U) by (6.13). Thus
we have iya; = pr;(isar, ypa2) € & N Fr(U) which implies ay € & N Fr-14,)(U). Tt follows that a belongs

i _ P (dom ~ PTF(dom i _ PP (dom
to (@fdlb)prﬂ HONS ydori((dh) ") Fﬂ-*l(b)xF(dom(h))(U) and that &7 N ydori((dh) ") ((o@“’)pr" HONS ydor{:l((dh) ()

holds. We conclude that &7 N ﬁ;;;(((;f)m(h)) coincides with (&%)P'==1® N ﬂgi((dho)’“(h”. Since a diagram

(7=1(b) x F(dom(h)), &7 N F gty — Ty (B, &)

J/er(dom(h)) JW

(F(dom(h)), Zaom(n)) o) (B, )

is cartesian by (6.14), the assertion follows. |

Assume that the lower right rectangle of the following diagram is cartesian. Then, there exists unique map
A s w7 1(b) x F(dom(h)) — F(U) xp E that makes the following diagram commute.

7 1(b) x F(dom(h))

S Am n
r :
PTF(dom(h)) F(U) xglbl ———— F
F(dom(h) — ™ py — 2, B

Proposition 6.16 We assume that F' : C — Set is pointed and local. Consider objects

Y (B) = (F(U) xp B, 75" N 7)) 2 (F(U), Fv))

G = (7 (b) x F(dom(n)), (£7)"= " 1 F e

PTF(dom(h))
—>
dom(h) )

(F'(dom(h)), Zaom(n)))
of Pr(C,J). Then, v, = (n, F(h)) : G — v*(E) is cartesian morphism in Pp(C,J)®?.

Proof. Since 4, = =91, the outer rectangle of the following diagram is cartesian by (6.15). Since the right
rectangle of the following diagram is also cartesian, it follows that the left rectangle of the following diagram is
cartesian.

(771 (b) x F(dom(n)), (£)P 10 FpF ety Ty (F(U) xp B, F7 N E7) —— (E, &)

J{er(dom(h)) Jﬂw lﬂ

(F(dom(h)), Faomn) oo (F(U), Zu) t (B, )
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O

Let ¢;,¢y: D — E be morphisms in Epi,(#r(C,J)). Put D=((D,2) % (A, «)), E=((E,&) = (B, 8))
and ¢, = (g, fx) for K = 1,2. For a € A and b € B, we denote by ja :p Ha) = D, iy : 77 Y(b) — E the
inclusion maps. It follows from (5.11) that the morphisms (. : (p~!(x), Z7=) — (7~ (fk( ), & @) (k= 1,2)
obtained by restricting (x : (D, %) — (E,&) are isomorphisms in &#r(C,.J). Thus we have an isomorphism
Gy o (N (fi(2), @) = (771 (fa(x)), E42@) in Pp(C,J). We define a map ¢ : A — G1(E) by
((z) =G Gy L Then, og(x) = fi(x) and 75¢(z) = fa(z) hold and the following diagram is commutative.

E)

1(
l(GEHFE)
B x B

G (

A (f1, f2)

Lemma 6.17 (: (A, o) — (G1(E),9g) is a morphism in Pr(C,J).

Proof. We denote by f;(E) = ((A xg E,g™inN 5(ff)") —% (A, o)) the inverse image of E by f;. Then, the
following left diagram is cartesian and the right one is also cartesian by the assumption.

(A Xg B, o™ 0 &) ECE)LINN (E,&) (D, 2) 5 (E,&)
(A, o) fi (B, B) (Ao) —L s (B.®)

Hence there exists unique isomorphism (p, (;) : (D, Z) — (A xjj;" E, o™i N&EWDm) in Pp(C, J) that makes the
following diagram commute.

(D, 2)

A

(AxE B, ™ n&Uix) (E,&)

¥ !

(A, ) L (B, %)

(fj)ﬂ'

We put ¢; = (p, (;), then ¥;(x) = (p(x), (j,p(x)(x)) holds for x € D and the inverse

Wil (AxY B o™ WD) - (D, 9)
of v; is given by w;l(a,e) = (j, L(e). Hence wkz/} (A xg E, ™ N&EUD) 5 (A Xg“ E, /™ N &UR)r) for
(4, k) = (1,2),(2,1) are given by ¢y¢p; " (a,€) = wk(é},i(e)) = (0060 (€)): G20 (G (€)) = (@1 CraCa (€))-

Thus we have 11 ' (a, €)=(a,(a)(¢)) = (a, g (e, {(a))) and P14, ' (a, €)= (a,NC( a)7(e)) = (a,€p(e. (teC)(a))).
We note that 7(f1)r = fimy, = oglmy, and w(f2)r = formy, = TE(T), = 0ELE(Ty, holds and that the following
diagrams are commutative.

AXEEL)AX%’E AXEEL)AXJEE
l((fl)m&rm l(fzn l((fm,mém) l(fm
Ex% Gi(E) —* L F Ex% Gi(E) —E L E

Since compositions

—1
(A xS B, amn n&Unmy Y0,

(Ax% B, a7 0 &0=) Y2 (g &),

(A Xg B, o/ ﬁ(g)(ﬁ)”) % (A Xfl ,/™h N &= ny H1m, fl)7r (E,&)

are morphisms in Zr(C,J), so are the following.
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Ep((f1)m, () : (AXB B, ™ N ) 5 (B, &), En((fo)mrtulns,): (AXE B, /™0 EWr) = (B, &)

For U € ObC and v € &/ NEFA(U), we verify that (Fz)u(v) = (v satisfies the conditions (G1), (G2) and (G3).

We take V,W € ObC, h € C(W,U), k €C(W,V). Assume that A\ € & N Fr(V) satisfies TAF (k) = ogCyF(h).
Then, fivF(h) = og(yF(h) = 7AF(k) holds and the following diagram is commutative.

h g ¢2¢1 f
(vF(h), \F(R)) Axp B Axg E
/ l«fl)mcm) l(fm
CPWLEEW) | e g £ 5

Since (yF(h),A\F(k)) : F(W) — A x4l E belongs to /™ N &6~ n FAXQE(W) and £g((f1)x,Crp,) is a

morphism in Zr(C, J), a composition F (W) QEW),F(R), x7F G1(E) RNy 5 belongs to & N Fg(W) by the

commutativity of the above diagram. Thus (v satisfies the condition (G1). )
Assume that A € & N Fg(V) satisfies tAF(k) = 7g(yF(h). Then, foyF(h) = Te(yF(h) = wAF (k) holds
and the following diagram is commutative.

R

f: f
(YF(h), AF (k) Axp B Axp B
/ l((fé)ﬂ'aLEéﬂ'fg) l(.h)w

Since (YF(h), A\F(k)) : F(W) — A x%2 E belongs to @™ N &2 N F 52 (W) and E((f2)r, teCry,) is a

morphism in &g(C, J), a composition F(WW) QEW), P W), x7F G1(E) LNy belongs to & N Fg(W) by

the commutativity of the above diagram. Thus (v satisfies the condition (G2).
Since we have og( = f1 and 7g( = fo and f1, fo : (A, &) — (B, %) are morphisms in Z(C,J), com-

positions F(U) 2 G1(E) 22 B and F(U) <2 G1(E) 22 B belong to % N Fp(U). Hence (7 satisfies the
condition (G3). O

Proposition 6.18 ([0, 8.9) We assume that F : C — Set is pointed and local. An object E = ((E,&) =
(B, %)) of Epi.(Zr(C,J)) is a fibration if and only if the following condition (P) is satisfied.
(P) There exists an object (T, ) of Pr(C,J) such that, for any U € ObC and v € BN Fp(U), there exists

a covering (U; EIN U)icu of U such that the inverse image (vF(f:))*(E) of E by vF(f;) : F(U;) — B s
isomorphic to a product fibration prpy,) : (T x F(U;), 7P N ﬁp PO o (F(UY), Zu,) for any i € 1.
Here prp : T x F(U;) = T and prpy,) : T x F(U;) = F(U;) denote the projections.

Proof. If E is a fibration, the condition (P) follows from (6.2) and (6.16).

Suppose that E satisfies the condition (P). Since (o0g,7r) : (G1(E),9r) — (B x B, #"'51 N $P'52)
is a morphism in Zr(C,J) and (9)(op,) is the finest the-ology on B x B, (9E)(sg,) 1S contained in
#Prer N PPe2. For U € ObC, assume that v € BP'e1 N BP'62 N Fpyp(U). We put v; = prg;v € N Fp(U)

for j = 1,2. There exist coverings (Uj; f]—1> U)ier, of U for j = 1,2 such that, for any i € I;, the inverse image
(v E(fji)*(E) of E by ~,;F(fji) : F(Uj;) — B is isomorphic to the following product ﬁbratlon by (P).

p F(U,;

er(Uj ) (T X F( ) TP NF ”)) - (F(Uji)angUji)

Let R; € J(U) be the sieve generated by (Uj; ELIN U)icr, and put R = Ry N Ry. Then R € J(U) and,
for any h € R and j = 1,2, there exists ¢ € I; and gj; € C(dom(h),U;;) which satisfies h = fj;g;;. Since
the inverse image of a product fibration is also a product fibration, the inverse image (v, F(h))*(E) of E by
v; F(h) : F(dom(h)) — B is isomorphic to the following product fibration for any h € R and j = 1,2.

(F(dom(h)), Zaom(n)))

Hence there exists a cartesian morphism =, ; = (’yh,],’yj (h)) : P, — E. We apply (6.17) to these cartesian
morphisms 7, ; and 7, 5. Then, we have a map ¥, : F((dom(h)) — G1(E) which makes the following diagram
commute.

) Pr'r(dom(h))
_—

Py, = ((T x F(dom(h)), 7P (1 .Fy -6
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F(dom(h)) — 2 G41(E)

|Fm l(aa, 75)

FUy ———— BxB

In particular, if v : F(U) — B x B is a constant map to (by,bs2), then « is an F-plot of B x B and we have
(0E,7E)Yh(x) = YF(h) = (b1,b2), hence (o0g,7E) : G1(E) — B x B is surjective. It follows from (6.17) that
An 1 (F(dom(h)), Zaom(n)) = (G1(E),¥g) is a morphism in Zr(C, J), hence it belongs to ¥ N F¢, (g)(dom(h))
by (6.12). This implies that v belongs to (9g)(s,rs) by (2.4). Therefore we conclude that (¥&) (s ) coincides
with #P's1 N ZBP 2 and that E is a fibration. o

7 F-topology

Let Top be the category of topological spaces and continuous maps. We denote by U : Top — Set the forgetful
functor. For a functor F' : C — Set, we assume in this section that there exists a functor Fr : C — Top which
satisfies F' = UFy.

Definition 7.1 For an object (X, ) of Zr(C,J), we define a set Ox o of subsets of X by
Ox,2) ={0 C X |a™(0) is an open set of Fr(U) for any U € ObC anda € 2 N Fx(U)}.

It is easy to verify that O(x ) is a topology on X. In fact, O(x o) is the coarsest topology on X such that
a: Fr(U) — X is continuous for any U € ObC and a € 2 N Fx(U). We call O(x, o) the F-topology on X
associated with 9.

Let ¢ : (X,2) — (Y,&) be a morphism in Zr(C,J). For O € Oy,s) and U € ObC, a € Z N Fx(U),
since pa = (F,)y(a) € &N Fy (U) holds, we have a*(¢~*(0)) = (pa)~*(O) which is an open set of Fr(U).
Hence we have ¢~ 1(0) € Ox,2) and ¢ : (X,0x,9)) — (Y, O(y,s)) is a continuous map. Define a functor 7 :
Zr(C,J) = Top by T(X, 7)) = (X, 0x,9)) and T(¢: (X, 2) = (Y, €)) = (¢: (X,0x,9)) = (Y, Oy,4)))-

Definition 7.2 For a topological space (X,0), we define a set I x oy of F-parametrizations as follows.

Iix00= 1l {ae€Fx(U)|a: Fr(U) — X is continuous. }
UeobC
If D(x,0) is a the-ologgy on X, we call an element of P x 0y an F-(X,O)-plot.
The following proposition gives a sufficient condition for Zx o) being a the-ologgy on X.

Proposition 7.3 Let (X,0) be a topological space. If the following condition (C) is satisfied for (X,O), then
D (x,0) is a the-ology on X.

(C) For any U € ObC, a map o : Fr(U) — X is continuous if there exists a covering (U; ELN U)ier of U such

that compositions Fy(U; Fr(U) % X are continuous for any i € I.

Proof. Since F(1¢) has only one element, every map from Fr(1¢) to X is continuous. Hence Z(x 0y O Fx(lc)
holds. For a morphism f:U — V in C and a € Zx,0) N Fx(V), since Fr(f) : Fr(V) — Fr(U) is continuous,
sois Fx(f)(a) = aFr(f) : Fr(U) — X. It follows that Fx(f)(a) € Z(x,0) N Fx(U). For an object U of C,
suppose that there exists a covering (U; EN U)ier such that Fx(f;) : Fx(U) — Fx(U;) maps a € Fx(U) into

Dix,0) N Fx(U;) for any i € I. Then, oFr(f;) = Fx(fi)(«) : Fr(U;) — X is continuous for any i € I. Hence
a: Fr(U) — X is continuous and belongs to Z(x,0y N Fx (U). d

Remark 7.4 We consider the following condition (Q) on Fr : C — Top.
(Q) For any U € ObC, there exists a covering (U; EIN U)ier of U such that the map [ Fr(U;) — Fr(U)
iel

Fr(fi . .
) ﬂ FT(U))Z.H of maps is a quotient map.

induced by the family (Fr(U;
If the condition (Q) is satisfied, the condition (C) of (7.3) is satisfied for any topological space (X, O).

Lemma 7.5 Let (X,0x), (Y,0y) and (Z,0z) be topological spaces. For continuous maps f : X — Y and
g:Y > Z ifgf : X — Z is a quotient map, so is g.
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Proof. For an open set O of Z, assume that ¢~1(O) is an open set of Y. Then, f~1(¢71(0)) = (9f)~*(O) is an
open set by the continuity of f. It follows from the assumption that O is an open set of Z. O

Proposition 7.6 For an object U of C, suppose that there exists a covering R of U such that the map p :
[1 Fr(dom(f)) — Fr(U) induced by the family (Fr(dom(f)) LErh, FT(U))feR of maps is a quotient map.
fER
Let R be the sieve on U generated by R. Then, the map p: [[ Fr(dom(u)) — Fr(U) induced by the family
u€R
Fr(u)

(Fr(dom(u)) —/—— FT(U))ueR of maps is a quotient map.

Proof. For u € R, there exist f, € R and g, € MorC such that codom(g,) = dom(f,) and v = f,gu..

We put X = ][] Fr(dom(f)) and Y = [] Fr(dom(u)), then we have X [[Y = ][] Fr(dom(u)). Let
fER R

u€ER—R u€R

'+ 11 Fr(dom(u)) = Fr(U) be the map induced by the family (Fr(dom(u)) LFrl), Fr(U))cr_g of

u€ER—R
maps. We denote by tx : X — X[[Y and ¢ty : Y — X[V the inclusion maps. Then p: X [[Y — Fr(U) is
the unique map that satisfy p.x = p and pty = p’. Since p is a quotient map, so is p by (7.5). O

Thus we have the following result.

Proposition 7.7 The condition (Q) in (7.4) is equivalent to the following condition.
(Q") For any U € ObC, there exists R € J(U) such that the map ] Fr(dom(f)) — Fr(U) induced by the
fER

family (Fr(dom(f)) Erif), FT(U))feR of maps is a quotient map.
Proposition 7.8 (1) For an object (X, 2) of Zr(C,J), we have I C D(X,0x.9)
(2) For a topological space (X,0), O C O(x,2(x.0y) holds.

Proof. (1) For U € ObC and o € 2 N Fx(U), since « : Fr(U) — X is continuous map with respect to the
topology O(x, ) on X, it follows a € Z(x 0« o)) N Fx(U). Therefore 2 C D(x,0(x.4y) holds.

(2) For U € ObC and o € Zx,0) N Fx(U), since a : Fr(U) — X is continuous, o !(O) is an open set of
Fr(U) for any O € O. By the definition of O(x,2(x.0y)» We have O C O(x,9x o)) O

Assume that (X, Zx,0)) is an object of #r(C, J) for any topological space (X, O). Let (X, Ox) and (Y, Oy)
be topological spaces and f : X — Y a continuous map. Then f : (X, Z(x 0x)) = (Y, Z(v,0y)) is @ morphism
in Zp(C,J). In fact, for U € ObC and a € Z(x,0,)NFx (U), since (Fy)y(a) = fa: Fr(U) — Y is continuous,
(Fp)u(a) € Dv,0,) N Fy (U) holds. We define a functor P : Top — Zr(C,J) by P((X,0)) = (X, Zx,0)) for
an object (X, 0) of Top and P(f : (X,0x) — (Y,Oy)) = (f : (X, Z(x,05)) = (Y, Z(v,0,))) for a continuous
map f: (X,0x) — (Y,0y). We remark that I'P = U and UT = I hold and that both P and T are faithful.

Proposition 7.9 Suppose that (X, 9(x,0)) is an object of Pr(C,J) for any topological space (X,0). Then,
P :Top — Pr(C,J) is a right adjoint of T : Pr(C,J) — Top.

Proof. 1t follows from (1) of (7.8) that we have a morphism 7x,¢) : (X, 2) = (X, Z(x,0/x.,,,)) = PT((X, 2))
in Zr(C,J) which is natural in (X, 2) € Ob Zr(C, J). It follows from (2) of (7.8) that we have a continuous
bijection £(x 0y : TP((X,0)) = (X,0(x,9x.0,)) —* (X,0) which is natural in (X,0) € Ob7op. Then,
n:idg,.c,ry — PT and € : TP — idy, are the unit and the counit of the adjunction 7 4 P, respectively. O

For a topological space (Y, Oy) and a map f: X =Y, we put OF ={OC X |O= f~1(V)for someV € Oy }.
Then O is the coarsest topology on X such that f: X — Y is a continuous map.

Proposition 7.10 For a map f: X — Y and an object (Y, &) of Pr(C,J), consider the the-ology & on X.

Then, the F-topology Ox sy on X associated with &1 is finer than O{Yyéa).

Proof. For V € Oy,¢), U € ObC and o € &/ N Fx (U), since o= (f71(V)) = (fa) "' (V) and fa € &N Fy (U),
o~ H(f~1(V)) is an open set of Fr(U). Hence we have f~'(V) € O(x g7y which implies O{Y,é’) COx,er. 0O

For a topological space (X,Ox) and a map f: X =Y, we put O;={OCY | f7}(O)€Ox}. Then Oy is the
finest topology on Y such that f: X — Y is a continuous map.
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Proposition 7.11 For a map f: X =Y and an object (X, 2) of Pr(C,J), consider the the-ology Py on'Y .
Then, the F-topology O(y,9,) on'Y associated with Py is coarser than (O(x,)¢. If Fr: C — Top satisfies the
following condition (Q"), Oy,z,) coincides with (O(x,2))-
(Q") For any U € ObC and R € J(U), the map [[ Fr(dom(f)) — Fr(U) induced by the family
fER

(Fr(dom(h)) L, FT(U))heR of maps is a quotient map.

Proof. For O € O(y,9,), U € ObC and a € 2N Fx(U), since o' (f71(0)) = (fa) "1(0) and fa = (Fy)u(e)
belongs to 2y N Fy (U), o '(f~1(0)) is an open set of Fr(U). Hence we have f~(0) € O(x, ) which shows
O € (O(x,9))s- Therefore Oy, 9,y C (O(x,2))s holds.

Assume that Fr satisfies (Q”). We take O € (O(x,9))y, U € ObC and o € Zy N Fy(U). There exists

R € J(U) such that Fy-(h)(o) € |J S, forall h € R. Then, Fy (h)(a) € S, for some g5, € MorC such that
gE€Mor C

dom(gp) = dom(h). Assume that codom(gs) # lc. Since Sy, = (F'f)dom(gn) (Fx (9n)(Z N Fx (codom(gr)))) by
(2.4), there exists j, € 2 N Fx(codom(gp)) such that Fy (h)(a) = (Ff)dom(g)(Fx (9rn)(jr)). Thus we have the
following commutative diagram.

F(dom(gn)) F(dom(h)) ™ F(U)

lﬂgh) | la

F(codom(gp,)) I X Y

Since j, € Z and f~1(0) € O(x.9), j; "(f~1(0)) is an open set of Fr(codom(gy)). Then the continuity of
F(gy) implies that F(h)~'(a=(0)) = F(gn)~ (4, "(f~*(0))) is an open set of F(dom(h)). Consider the case
codom(gp) = 1¢. Then, S,, = Fy(gn)(Fy(1l¢)) by (2.4) and there exists a constant map j, € Fy(l¢) such
that aF (h) = Fy(h)(a) = Fy(gn)(jn) = jnF(gn) which is a constant map. It follows that F(h)~1(a"1(0))
concides with F'(dom(h)) if O contains the image of jj, and that F(h)~!(a=1(0)) is empty otherwise. Therefore
F(h)~Y(a~Y(0)) is an open set of Fr(dom(h)) for any h € R. It follows from (Q") that a~1(0) is an open set
of Fr(U) for any o € 9y N Fy (U). Hence O € Oy,5,) holds and we have (O(x,2))y C O(y,9,)- a

8 Representations of groupoids in the category of plots

Let f : (X, %) Y, %), 9: (X, 2) > (Z,2), k: W, #) = (X, %) be morphisms in Zr(C,J) and
E=(E& 5 (V,%)), D= ((D,2) % (2, %)) objects of Zr(C,J)?. Tt follows from (3.3) that there
are isomorphisms ¢y (E)~" : (fk)*(E) — k*(f*(E)) and ¢, x(D) : k*(g*(D)) — (gk)*(D) in Zr(C,J)?.
Consider the following diagrams whose rectangles are all cartesian.

(Exy X)xxW —25 Bxy X —7s B Exyw Y9 g
l(”f)k lﬂ'f iﬂ lﬂ'fk lfr

k x 1 vy w2 Ly

(D7 X) xXWLDxZX%D Dxyw e p
y,,g)k l’)g l” lp" Lo

k X 9 .7 w—%* 7

It follows from (3.3) and (3.4) that we have unique isomorphisms in Zr(C, J)

cru(BE) L (BExy W, 8UR=qp™iv) 5 (Exy X)xx W, (&0 2o o ()
cok(E): (DxzX)xx W, (2% 0 X Pa)kea nop P)i) 5 (D x W, @980y P

that make following diagram commute.
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k
ExyW —=——— (Dxy X)xxW - Dxy X

e k(B .
~< 14

K (gk )P

(EXyX ><XW4>E><YX DXyW4>D
J{pgk lp

ln b L )

Y W —Y

We note that ¢y, (E) ™! = (cpx(E) ™!, idw) and ¢y (D) = {cy5(D),idw) hold. The following fact follows from
the above diagrams.

Proposition 8.1 ¢y (E)™! and ¢, (D) are given by cpx(E)™(u,w) = (u, k(w),w) for (u,w) € ExyW and
cg k(D) (v, z,w) = (v,w) for (v,z,w) € (DxzX)xxW, respectively.
For a morphism & : f*(E) — ¢*(D) in WF(C,J)&) 2> we define a morphism &, : (fk)"(E) — (gk)"(D)

-1
in Z(C, )%, to be a composition (fk)* (B) <P s+ (£+(E)) T ke (g7 (D)) P (gh)* (D). We
put & = (&,idx), where £ : (Exy X, &N Z71) — (DxzX, 2% N 2 Ps) is a morphism in &r(C,.J) which
satisfies pg{ = m¢. Then, there exists unique morphism

€ xxidw : (Exy X)xx W, (N 2™ rqp Tx) 5 (Dxz X)) xx W, (290 2 Ps)kea oy (Po)k)

that makes the following diagram commute.

T )k kx
W T (Exy X)xx W —— s Exy X

dew l&xxidw J{E
k

W% (D X)xxW —— 5 Dx, X

Then, we have k*(&) = (€ x x idw, idw ). We denote by & : (Exy W, EURxqy/™ik) = (D x z X, 2R ey Par)
the following composition.

Cr R -1 7
LB (Bxy X)xx W, (&m0 2770)ors o (o £,

(Exy W, &R W)
(DxzX)xx W, (2%nN ggpg)kpgmyy(/)g)k) M (Dx zW, 2k)o 0 W Par)

It follows from the definition of &, : (fk)*(E) — (gk)*(D) that &, = (&, idw). Since ps§ = my, we have
E(u,x) = (9p€(u,x),x) for (u,z) € E xy X. Thus we have the following result.

Proposition 8.2 &, maps (u,w) € E xy W to (g,&(u, k(w)),w) € D xy W.

Let G = ((Go, %), (G1,%,);0,7,¢,u,) be a groupoid in Zp(C,J) and E = ((E,&) = (Go,%)) be an
object of Zr(C,J )520 %) Recall that we consider the following cartesian square.

Pry
G1 xg,Gi ———— G,

| Ja

G, ——— Gy

Definition 8.3 We call a pair (E,&) of object E of Zr(C, J)EQG)0 ) and a morphism § : o*(E) — 7*(E) in
2r(C, J)EQG)1 @) @ representation of G on E if € satisfies the following conditions.
(A) The following diagram is commutative.

(1) (E) —215 (7p1y)*(E) = (0pr)* (E) 22+ (rpry)* (E)

(op)"(E)

&y
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(U) &, +idg, (E) = (0e)*(E) — (12)"(E) = idg, (E) coincides with the identity morphism of idg, (E) = E.

Definition 8.4 Let (E,€) and (D,¢) be representations of G on E and D, respectively. If a morphism
p:E— D in Zr(C, J)%)(J %) makes the following diagram commute, we call @ a morphism of representations.

o*(E) S SN T(E)

o [
o*(D) ——— (D)
We denote by Rep(G) the category whose objects are representations of G and morphisms are morphisms of
representations. We call Rep(G) the category of representations of G.

Let G = ((Go, %), (G1,%);0,7,¢e,u,0), H = (Ho, 74), (H1,74);0', 7', &', 1/, (") be groupoids in ZPr(C, J)
and f = (fo, f1) : H — G a morphism of groupoids For a representation (E,£) of G on E, we define a
morphism &, : o™ (f5(E)) — 7 (f5(E)) in ZF(C, J)(H ) to be the following composition.

c 0"’/(E) 1\ * * 1 * 1\ * ¢ 0*"/(E)71 * *
o (f3(B)) =22 (foo')*(E) = (0 f1)*(E) S, (Th)*(B) = (for')*(B) —“"—— 7*(f3(E))
Proposition 8.5 ([10],[11]) (f5(E),&y) is a representation of H on f5(E).

Proposition 8.6 ([10], [11]) Let (E, &) and (D, ) be objects of Rep(G) and ¢ :
in Rep(G). For a morphism f = (fo, f1) : H — G of groupoids in Pr(C,J), fi(

a morphism [ () : (f5(E),&¢) = (f5(D),{¢) in Rep(H).

(8.4) and (8.5) enable us to define the notion of restriction functor.

(E, &) — (D, ¢) a morphism
@) : fE(E) = fi(D) defines

Definition 8.7 Let G and H be groupoids in Pr(C,J). For a morphism f = (fo, f1) : H — G of groupoids in
Zr(C,J), define a functor f* : Rep(G) — Rep(D) by f*(E,§) = (f5(E),&f) for an object (E,§) of Rep(G)
and f*(p) = f5(p) for a morphism ¢ : (E,§) — (D,() in Rep(G). We call (f5(E),&f) the restriction of
(E,€) along f and f° the restriction functor associated with f.

We consider the following diagrams whose rectangles are cartesian.

/ ’

(Exay Ho) x5 Hy —2% Exg, Hy 2% B (Exao Ho)xJ Hy —2% Exg, Hy 2% B
l(ﬂfo)a/ lﬁf@ 4 l(ﬂfo)-r’ lﬂ'fo Jﬂ'
H, o’ Hy — . q, H ™ Hy —1 5 @G,
(Exg, Gi)xa, Hy L3 pxe ¢y —224 B (Bxg, Gi)xa Hi L5 Bxr, ¢y —=5 B
S S

fl o fl T
H, G Go H, G, Go

The following result can be verified from the definition of £;.
Proposition 8.8 We put £ = ({y,idp,) for a morphism
€5+ ((Ex gy Ho) x5, Hy, (8900 A57) 70 1 A7) 5 (B x gy Ho) X 5y Hi, (EU0)7 1 o7 0) 00 0 771007
in Pr(C,J). Then, &5 maps ((u,x),y) € (EXGDHO)X(;{,OHI to (tx&(u, f1(y)), 7' (y)),y) € (EXGOHO)XJTLI,OHL

Let £ = (fo, f1),9 = (g0,91) : H — G be morphisms of groupoids in Zr(C,.J). Suppose that a morphism
X : (Ho, 74) — (G1,%) in P (C,J) makes the following diagrams commute.

GO<—H0—>G0 H1%G1XGOG1

N [ !

Gl XGo Gl % G1
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For a representation (E,&) of G, we define a morphism x(g¢) : f5(E) — g5(E) in QZF(C,J)EQO ) tO be
o) = (ox)"(E) = (7x)"(E) = g5(E).

Proposition 8.9 ([10], [11]) () defines a morphism of representations X (g.¢) : (5 (E),&s) — (95(E),&,)
and the following diagram in Rep(H) commutes for a morphism ¢ : (E, &) — (D, ) of representations of G.

(fe(B),&5) — s (£(D), ¢4)

l& l&
" (e x
(95(E). &) ——"— (45(D).C,)
Thus we have a natural transformation x* : f* —g°.

Let f: (X, 2) - (V\9),9: (X, Z) = (Z,%) and k : (V,¥) — (X, Z) be morphisms in Pp(C,J)
and E = ((E,&) = (Y,%)) an object of Zr(C, J)Ef,),@). We consider the following commutative diagram in
Pr(C,J) whose outer trapezoid and lower rectangle are cartesian.

(ExyV, &R ymsx)

T~ idg Xy k (fk)‘rr
\\\‘*w
sk (Exy X, &0 271 L (B, 6)
[ [
V,7) k (X, 2) —L— (v.2)

There exists unique morphism idg xy k : (ExyV, &R~y ™) o (Exy X, &N 2 7) that makes the above
diagram commute. Since objects (gk).(fk)*(E) and g, f*(E) of Zr(C, J)EZZ) ) are given by

(k) (fK)*(B) = (Exy V, 8B yminy L0k (7 o))
9 [ (E) = (Exy X, &0 27) T (7, 7)),

we define a morphism Ey, : (gk).(fk)*(E) — g.f*(E) in QZF(C,J)EQEX) by Ey = (idg Xy k,idz). It is easy to

verify the following fact.
Proposition 8.10 For a morphism j: (U, %) — (V. V) in Zr(C,J), a composition
. O\ % Ej * E *
(9k7)+(fJ)(E) — (gk)(fk)*(E) = g.f*(E)
coincides with Ey; @ (gkj)«(fkj)*(E) — g.f*(E). Moreover, E}, is natural in E, that is, for a morphism
¢:E— D in Zr(C, J)g/)@,), the following diagram is commutative.
* E *
(9k)+(fR)*(E) ———— g.[*(E)
|yt 0) |s-r)
N D
(gk)«(fk)"(D) :

—— g./"(D)
Let f: (X, 2) = Y, 9),9: (X, 2)—=(Z,%),h:(V,V) = (Z,%)and i: (V,¥) — (W, #) be morphisms
in Zr(C,J). We consider the following cartesian square in Zr(C, J).

(X xzV, 2 yom) — 2 (V,¥)

|1 |+

(X, 2) : (2, %)

For an object E = ((E,&) = (Y, %)) of 2r(C, J)g,) #), we consider the following commutative diagrams in
Pr(C,J) whose rectangles are all cartesian.
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(Exy (X xzV),&0h=n (2han yonyimgy Ut (g oy

[ I+

(X x5V, Zhanyon) fho Y, %)

hgn
(Exy X)x 7V, (50 @mayhoms qylomony Y (Exy X, &5~0 275) = (B, &)

¥ ]

(am ) X, 2) —L w2
ls
(v:7) : (2.2)
Thus we have the following equalities.
(ign)s(Fhg)* (B) = (Bxy (X xzV),8Uh)= 1 (g7 o yramyming ) 200 (7 )

1.1 g f*(B) = (Exy X)x 2V, (770 277ty ooy mony L7008, (7 o)

There exists unique morphism idg xy hy : (Exy (X xzV),8Tha)=n (2 haqy y9n)™she ) — (Exy X, /=0 277)
that makes the following diagram commute.

(EXy(XXZV)’éa(fhg)wﬁ (%’hgm %gh)ﬂ'fhg)

‘\‘~\“‘\ i(iEthg (fhg)w
T
Tshg (ExyX,&n 27y — I 3 (B, &)
J{Trf J{ﬂ'
(X %7V, 2o yan) b (X, 2) ! v, %)

There exists unique morphism
(idp Xy hg, gnmn,): (Exy (X x V), 8Fhadx (2 haqyon)™ine ) — (Exy X)x 7V, (670 2 )lamr oy (amin)

that makes the following diagram commute.

(Exy (X x7V),&Fha)n (2 haqyonymong) 1920 (Exy X,&50275)
T (tdpXyhg, gnmsng) Th‘”f gy
T
(BExy X)xzV, (&0 2w )homs nytamsn) (2,2)
l(gﬂ'f)h h
(X xzV, X s yon) < (V, %)

Thus we have a morphism ((idgXyhg, gnmsn, ), idw) : (ign)«(fhe)*(E) — i.h* g f*(E) in Zp(C, J)g/‘),w) which

we denote by 0¢4 1,i(E) below.

Proposition 8.11 ([11] Proposition 2.4.15) 05 4 1i(E) : (igh)«(fhe)*(E) — i.h*g.f*(E) is an isomorphism
which is natural in E.

Proof. There exists unique morphism
7 X zidy :(Exy X)x 2V, (502 ™) homs qy lominy 5 (Exy X, £ N 275)

in Zp(C,J) that makes the following diagram commute.
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gm §

(Exy X)xzV,(&1~n 2 ) romr oy (9mon) (Exy X, &0 2™

-~ ‘n'f><ZidV J/
-~ 7y
T

(X xzV, Zhanyo)y — 0 (X, 2)

Jo Js

V. 7) : (Z, %)

Hence here exists unique morphism
(Frhgn, g X zidy): (Exy X)x 7V, (=027 omr ay 970n) o (Exy (X x 7 V), &)= (2 hany/9n)Trng )
in Zp(C,J) that makes the following diagram commute.

hgx

(Exy X) %V, (502 7\ loms oy lamin) (Exy X, &0 27) In (E, &)

whgr e, T X zid
S (frhgny, X zidy) TidEXth T~ (Fho)n lﬂ

T
(Exy (XxzV),8Fha)n (2 haqyonymeng) N\

Y,%)
o b
(X %7V, Zhanyony — " (x @)

Thus we have a morphism ((frhgr,, 7y x zidy ), idw) : i.h* g f*(E) = (ign)«(fhg)*(E) in Zp(C, J)g/‘),w) which

is the inverse of 0y 4 1, ;(E). The naturality of 87,5 ,(E) in E is clear from the definition of 074 5 ;(E). |

Remark 8.12 (idp Xy hg,gnsn,) : Exy (X xzV) = (Exy X)xzV maps (u,(z,v)) € Exy (X xzV) to
((u,x),v) € (Exy X)xzV.

For an object E = ((E,cg? 5 (Go, %)) of WF(C,J)%O%) and a morphism £ : o*(E) — 7%(FE) in
Zr(C, J)Eé)l @) We denote by & : 7.0*(E) — E the adjoint of & with respect to the adjunction 7, 4 7*.

Proposition 8.13 ([11] Proposition 3.4.2) € satisfies condition (A) of (8.3) if and only if &€ makes the following
diagram commute.

(7pra)-(opr,)*(B) =22, 1.0%r.0" (B) —"2— r.0"(E)
* Ey * é
(7)o (op)*(B) ———*—— 7.0"(E) E

& satisfies condition (U) of (8.3) if and only if a composition E = (1¢).(oe)*(E) RN T.0*(E) &, E coincides
with the identity morphism of E.

Remark 8.14 We consider the following diagrams whose rectangles are all cartesian.

(E x%,G1)xg,G1 —% Exg Gi —"= E

E X2 (Gixa,G) M5B BExp G~ E | P
Gixa, G227 Gy Gy —T— Gy I
e o Go

Then, we have the following equalities.

70" (E)
(Tpro)«(opry)*(E) = (Tp)s (op)* (E)

r.0*r.0" (B) = (B x5, G1)x%, G, (67 N7y n g7y 0002 (G agy))

((E ngo C;lv(”@g7r mglﬂ'g) % (GO,gO))
(X3 (Gr Gy Ga), 807 (G2 1 P27 ) TE02% (G, )
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If we put € = (€,idg,) and € = (£,idg,) for morphisms € : (E X, G1, 87" NG ) — (Exg, G1,ETNY[™)
and € : (Exg, G, 87"NYG[) — (E,8) in Pr(C,J), then £ is a composition Exg Gi 5 Exg, Gi 5 E and
&= (57 7o) holds. The diagram of (8.13) is commutative if and only if the following diagram is commutative.

(idg X ) opry ) Exq,id
E @ (Gr %G, Gp) — R (B xg, Gh)xE, G —2 s B xg, Gy
H ¢
id g X ¢
) Xg; (G1 XGOGI) il 1 ) Xg‘DGl ¢ FE

A composition E = (1¢).(0e)*(E) Ley T.0*(E) %, E coincides with the identity morphism of E if and only if
a composition E M E <, G 5 E coincides with the identity morphism of E.

The next result follows from the naturality of the adjointness.
Proposition 8.15 Let (E, &) and (F, () be representations of G. A morphism ¢ : E — F in Zr(C, J)Eé)o %)
makes the following left diagram commute if and only if it makes the following right diagram commudte.

o*(E) ——— 7(E) ro'(E) —  E
" () lf*(cp) JT*U*(cp) .
o (F) —S s 7*(F) ro*(F) — S, F

If a morphism £ : 7,0*(E) — E in 2p(C, J)Eé)o o, Satisfies both conditions of (8.14), we also call a pair
(E,£ : 1,0*(E) — E) a representation of G on E.

Example 8.16 For an object E = ((E,&) = (B, %)) of Epi.(Zr(C,J)), we consider the groupoid G(E)
associated with E. We define a morpflism £p : B0 (E) — E in @F(C,J)gg)’@) by éEA = (€g,idg). It
follows from (5.5) and (8.14) that (E,&g) is a representation of G(E) on E. We call (E,£g) the canonical
representation of E.

Let G = ((Go, %), (G1,%);0,7,e,u,t) and H = ((Hy, 74),(Hy,54);0',7",¢',1/,1/) be a groupoids in
2p(C,J) and E = ((E,&) = (Go,%)) an object of 2 (C,J)(2), 4. For a morphism f = (fo, f1) : H — G
of groupoids in Zr(C, J), we consider the following diagram in & (C, J) whose rectangles are cartesian.

/

T (fO)‘rr
E—

((EXGDHO) X%’O Hy, (&Fo)=n j%ﬂ—f(])U;’fo n jﬁ(ﬂfo)a/) __To, (E x g, Ho, &F)= N %ﬂ'fo) (E, &)
l("rfo)a/ lﬂfo l‘n’
(Hy, ) ” (Ho, #5) ——"—— (Go, %)

There exists unique morphism
(fo)r X f1 ((EXGOHO) XCIIJ,O Hy, ((g"(fo)wm %Trfo )mrfo N %(ﬂ'fo)a/) . (E X‘éo thprE N glprcl)

in Zp(C, J) that makes the following diagram commute.

o’
T fo

(Ex g, Ho) x %, H Exq, Hy
T~ (Jo)ax o fa (fo)= lﬂ'f
~o 0]

Y

(710) o7 E X‘é Gy % E/, Hy
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Consider a representation (E,E) of G on FE and put é = <£, idg,). There exists unique morphism

¢ ((Exay Ho) xg. Hy, (U0 oo )70 0 I 5 (B Ho, 850w A7)

in Zr(C, J) that makes the following diagram commute.

/ (f )7r>< f
(Ex g, Ho)x% Hy —"""% B xg Gy

lwg)ﬁ/ C“’G \—9
]
>§Go

Define a morphism ¢ : 7.0 (f&(E)) — fZ(E) by ¢ = (C,idp,).

Proposition 8.17 (f;(E), é‘) coincides with the restriction of the representation (E,é) of G on E along f.

Proof. Let (fi(E),&;) be the restriction of (E,§) along f : H — G and put {5 = (§,idn,). We denote by
£s = ({r,idm,) : T.o™ (f5 (E)) — E the adjoint of £, with respect to the adjunction 7, - 7"*. It follows from
(8.8) that £y maps ((u,z),y) € (EXGOHO)X}'{IOHl to (£(u, f1(y)), 7' (y)) € Exg, Ho. On the other hand, ¢ also
maps ((u,z),y) € (Exg,Hop) x?{lo Hy to (E(u, f1(y)), 7 (y)) € Exg, Ho by the definition of {. Thus we have

éf = & O
Proposition 8.18 Let E = ((E,&) 5 (Go, %)) be an object Epi (#p(C,J)) and (E,& : 1.0*(E) — E)
a representation of G = ((Go, %), (G1,%1);0,7,¢,1u,t) on E. There exists a morphism f : G — G(E) of
groupoids in Pr(C,J) such that (E,&) coincides with the restriction of the canonical representation (E,&g)
along f. Moreover, if g = (idg,,¢91) : G — G(E) is a morphzsm of groupoids in Pr(C,J) such that (E,§)

coincides with the restriction of the canonical representation (E, EE) along g, then g = f holds.

Proof. We put & = <£, idg,). Here, ¢ is a morphism in Pr(C,J) from (E xg G1,E°7NY[7) to (E,&). By the
commutativity of the following diagram, (e, g) € 7 1(7(g)) holds for g € Gy and e € 7 1(c(g)).

E xg, G —f L E

Sl

G ———— Gy

For g € G1, U € ObC, A € Fr1(5(g)(U)N gif”dy)), we denote by ¢, : F(U) — G the constant map to g and

define a map /\g : F(U) — FE Xg;o G by )\g = (Z',,r—l(o.(g)))\,cg). Since 0'7r>\g = ’L',T—l(g(g))/\ = (F’i,r—l(a(q)))U(/\) €&
and m,\ = ¢4 € 91, A, belongs to &7 N4, We define a map ¢, : 71 (c(g)) — 7 *(7(g)) by pg(e) = (e, g).
If X € Fro1(5(g))(U) N &= then we have (Fiﬂ—lmg)Wg)U()‘) =€), = (Fg)u(Ag) € &, which shows that

¢4 defines a morphism ¢, : (7 (0(g)), &= ) — (171(7(g)), & @), For (g,h) € Gy x %, G, it follows
from the commutativity of the diagram of (8.14) that we have @ p4(e) = £((e,g),h) = E(e, ulg, b)) = Pu(g.n)(€).

This implies that ¢,y : 771 (7(g)) = 7' (0(g)) is the inverse of ¢y, hence ¢, € G1(E)(0(g),7(g)) C G1(E).
We define a map fi : G1 — G1(E) by fi(g9) = ¢4. Then, fi makes the following diagrams commute.

Ex3 G —— E Go 2 — Gy —™— Gy G1 %, G1 a =— Gy
ldEXM k lfl % lleGOfl lfl /
Exg Gi(E G1(E) G1(E)x6,G1(E) == G\(E)

For U € ObC and v € Fg,(U) N%, we verify (Fr,)(v) = fiv € Fa,(g)(U) NYE below. It follows from the
commutativity of the above middle diagram that the following compositions belong to % N Fg, (U).

FU) % Gu(EB) 25 Gy, FU) 22 Gy(E) 5 G,
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Assume that V,W € Ob(C, j € C(W,U), k € CW,V) and A € &N Fr(V) satisfy 7 F(k) = ogfivF(j).
Then, 7AF(k) = ovF(j) holds by the commutativity of the above middle diagram, there exists a morphism
(AF(k),vF(j)) : F(W) — E x_ G which makes the following diagram commute. It follows that a composition

pw) LEOIOEOD, o ¢ (B) £2, E belongs to & N Fip(W).

E x, G % E

(AF(k),vF(35))
lsz ><<;0f1/
e

>\F(k) f1yF @) IO AP, e, G.(E)

Assume that VW € ObC, j € CW,U), k € C(W,V) and A € &N Fr(V) satisty nA\F(k) = tgfivF(j).
Then, TAF(k) = ovyF(j) holds by the commutativity of the above middle diagram, there exists a morphism
(AF(k),:vF'(j)) : F(W) — E xg, G1 which makes the following diagram commute. We note that fit = (g fi

holds. It follows that a composition (W) AEWR), e hrFG)), xae G1(E) LNy belongs to & N Fr(W).

E xz, G % E

(AF(k), v1yF(5))
lsz ><<;0f1/
e

(AF( k) frvF () Exg, G.(E)

Thus we conclude that fiy belongs to F, (g)(U) N%E by the definition of ¥g and that we have a morphism
f = (idg,, f1) : G — G(E) of groupoids in Zr(C, J).

We define §: E'x¢, G1 — Exg G and {g: EX{EG1(E) = ExFEG(E) by § = (§,7,) and {g = (§E, Toy),
respectively. Consider a morphism &g : 0 (E) — 75(F) in Z5(C, J)EQG)I(E) gy 8iven by &g = (€p ida, (B))-

Note that (§g)f = (§g)p : 07 (E) = (cf1)"(E) = (t6/1)"(E) = 7°(E) and put (§g)5 = ((€r)f,ida,). We
consider the following diagrams whose rectangles are all cartesian.

E XZ,*OGl

— (idexXGof1,m0)

) Tty idE X Gq f1

(B xgr G1(E)) X6, (r)G1 T Ex¢EGi(B)
ro g

(0E)~
J/(WUE )fl J/W(’E J/Tr
G1

To

f G1(E) —=— G,
(F)mr o)
(E X7EGL(E)) X, (5) G ———E— E x[ZGy(E) 25 B
l(”*E)“ y,E k
Gl f Gl(E) L GO

Then, (£g)y is the following composition.

(idexGof1,70) EEXG(E)ida,
—_

EXUGOGl (E XgﬁGl(E))XGl(E)Gl

((TE)x (f) g s (Trg ) 71)

(B xg G1(E))Xa, 2 G

E XEO G1
Since é e(idg Xg, f1) = é , we have the following equalities by the commutativity of the above diagrams.

Tx(€E)f = Ta(TE)x ([1)r.p (Tre) 1) EE X6y (B) idG, ) (idE X Gy [1,7T0) = (TE)x (f1)r., (EE(idE XG4 f1), 7o)
)

= (T8)x (f)rry, (€ Mo (idB X6y 1) 70) = (TB)x (f1)r,, (ER(idE XG4 f1), Top (idE XG4y [1))s70)
( E)W(fl)‘ﬂ'q—E((éﬁ flﬂ-U)vﬂ-U) = (TE)ﬂ'(év flﬂa) = é = 7'71—5
T (€B) s = T ((TE)x (f1)r s (Tre) 1) (EE X6y () 1de, ) (idE XGo f1.70) = (Trg) 1 (ER(idE X Gy f1), 7o)

=Ty =&
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Hence we have (£g) s = &, equivalently (£5) 5 = (€,idg, ), which shows that (E,£) coincides with the restriction
of the canonical representation (E,£g) along f.

For a morphism g = (idg,, 1) : G — G(FE) of groupoids in Zr(C, J), we consider the restriction (E, (£g)g)
of the canonical representation (E, £ ) along g. We denote by (éE)g = <(5E)g, idg,) : T«0*(E) — E the adjoint
of (€g)a = (€E)g,idg,) : c*(E) — 7*(FE) with respect to the adjunction 7, 4 7*. It follows from (8.8) that
(€g)g maps (e,u) € Exg, G to €e(e,g1(u)) = g1(u)(e) € E. Assume that (E, (€g)g) coincides with (E, ).
Since (E, £) coincides with the restriction (éE)f = ((éE)f,idG0> of the canonical representation of E along f
and £g)f maps (e,u) € Exg Gy to £e(e, f1(w)) = fi(u)(e) € E, it follows that g (u)(e) = f1(u)(e) holds for
any e € 7 (o(u)) and u € G1. Thus g1(u) = fi(u) holds for any u € Gy, which shows g; = f1, equivalently
g=1r o
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