Toward a representation theory of the group scheme represented by the dual Steenrod algebra

Atsushi Yamaguchi
Struggle over how to understand the theory of unstable modules over the Steenrod algebra from a viewpoint of the representation theory

Atsushi Yamaguchi
References

Demazure, M., Gabriel, P., Introduction to Algebraic Geometry and Algebraic Groups, North-Holland MATHEMATICS STUDIES 39, North-Holland, 1980

Contents of “Representations of the Steenrod group”

1 Topological graded rings and modules
 1.1 Linear topology
 1.2 Suspension
 1.3 Completion of topological modules
 1.4 Topologies on graded modules

2 Tensor products
 2.1 Tensor product of topological modules
 2.2 Change of rings
 2.3 Completed tensor product

3 Spaces of homomorphisms
 3.1 Topology on spaces of homomorphisms
 3.2 Adjointness
 3.3 Homomorphisms
 3.4 Completion and spaces of homomorphisms
4 Relations between tensor products and spaces of linear maps
 4.1 Completed tensor products of spaces of linear maps
 4.2 Commutative diagrams

5 Algebras and coalgebras
 5.1 Algebras, coalgebra and duality
 5.2 Milnor coaction

6 Actions of group objects in a cartesian closed category
 6.1 Group objects
 6.2 Group objects in cartesian closed categories
 6.3 Right induction

7 Study on fibered categories
 7.1 Fibered categories
 7.2 Bifibered category
7.3 Fibered category with products
7.4 Fibered category with exponents
7.5 Cartesian closed fibered category

8 Representations of group objects
8.1 Representations of group objects
8.2 Representations in fibered category with products
8.3 Representations in fibered category with exponents
8.4 Left induced representations
8.5 Right induced representations

9 Quasi-topological category
9.1 Quasi-topological category and continuous functor
9.2 Yoneda’s lemma
9.3 Left adjoint of the Yoneda embedding
9.4 Colimit of representable functors
9.5 Exponential law
9.6 Kan extensions
10 Topological affine scheme
 10.1 Definition and properties of topological affine schemes
 10.2 Topological modules

11 Topological affine group schemes
 11.1 Topological group functors
 11.2 Hopf algebra and topological affine group scheme
 11.3 Examples
 11.4 General linear group

12 Fibered category of modules
 12.1 Fibered category of affine modules
 12.2 Fibered category of functorial modules
 12.3 Cartesian closedness of the fibered category of functorial modules
 12.4 Embedding of the fibered category of affine modules
 12.5 Quasi-coherent modules
13 Representation of topological affine group schemes
 13.1 Representation of topological group functors
 13.2 Tensor product of representations
 13.3 Regular representations
 13.4 Fixed points
 13.5 Examples

14 Unstable actions

15 Unstable coactions
Contents of this slide

§1. Motivation
§2. The Milnor coaction
§3. Topological graded rings and modules
§4. Suspensions
§5. Completion of topological modules
§6. Topologies on graded modules
§7. Tensor products of topological modules
§8. Spaces of homomorphisms
§9. Adjointness
§10. Completion of spaces of homomorphisms
§11. Tensor products and spaces of homomorphisms
§12. Reformulation of the Milnor coaction
§13. Quasi-topological category

§14. Topological affine scheme
§1. Motivation
Let p be a prime number and let us denote by A^* the Steenrod algebra over the prime field F_p. For a space X, we denote by $H^*(X)$ the cohomology group with coefficients in F_p. Then, $H^*(X)$ has a structure of left A^*-module.

Let us denote by A_* the dual Steenrod algebra. J. Milnor defined a map $\lambda : H^*(X) \to H^*(X) \hat{\otimes} A_*$ from the A^*-module structure of $H^*(X)$. We call this map the Milnor coaction. He showed that λ is coassociative and counital, that is, λ is a representation of the affine group scheme represented by A_* on $H^*(X)$. This motivates us to introduce various methods in representation theory to study the category of modules over the Steenrod algebra.
§2. The Milnor coaction
Let A^* be a graded Hopf algebra over a field K and M^* a graded left A^*-module with structure map $\alpha : A^* \otimes M^* \to M^*$. We assume that A^* and M^* are finite type, namely, A^n and M^n are finite dimensional for all $n \in \mathbb{Z}$.

Put $\text{Hom}(A^n, K) = A_{-n}$ and consider the dual Hopf algebra $A_* = \bigoplus_{n \in \mathbb{Z}} A_n$ of A^*. We review how Milnor defined the coaction

$$\lambda : M^* \to M^* \hat{\otimes} A_* = \bigoplus_{j \in \mathbb{Z}} \prod_{i \in \mathbb{Z}} M^{i+j} \otimes A_{-i}$$

in this section.
In Milnor’s paper “The Steenrod algebra and its dual”, the original definition of the Milnor coaction is as follows.

4. The homomorphism λ^*

Let H_*, H^* denote the homology and cohomology, with coefficients \mathbb{Z}_p, of a finite complex. The action of \mathcal{S}^* on H^* gives rise to an action of \mathcal{S}^* on H_* which is defined by the rule:

$$\langle \mu\theta, \alpha \rangle = \langle \mu, \theta\alpha \rangle$$

for all $\mu \in H_*$, $\theta \in \mathcal{S}^*$, $\alpha \in H^*$. This action can be considered as a homomorphism

$$\lambda_* : H_* \otimes \mathcal{S}^* \to H_* .$$

The dual homomorphism

$$\lambda^* : H^* \to H^* \otimes \mathcal{S}_*$$

will be the subject of this section.

He also remarked the following in the next paragraph.
Alternatively, the restricted homomorphism $H_{n+i} \otimes \mathcal{S}_i \to H_n$ has a
dual which we will denote by

$$\lambda^i : H^n \to H^{n+i} \otimes \mathcal{S}_i .$$

In this terminology we have

$$\lambda^* = \lambda^0 + \lambda^1 + \lambda^2 + \cdots$$

carrying H^n into $\sum_i H^{n+i} \otimes \mathcal{S}_i$. The condition that H^* be the cohomolo-
gy of a finite complex is essential here, since otherwise λ^* would be an
infinite sum.

Namely, the target of the Milnor coaction should be the
completed tensor product in general, hence we have to give
suitable topologies on H^* and A_*. Since the above definition of the Milnor coaction is very
brief, next we try to describe the Milnor coaction in detail.
For vector spaces V and W, we consider the following maps.

\[D_{v,w}: \text{Hom}(V, W) \to \text{Hom}(\text{Hom}(W, K), \text{Hom}(V, K)) \]
\[\phi_{v,w}: \text{Hom}(V, K) \otimes \text{Hom}(W, K) \to \text{Hom}(V \otimes W, K) \]
\[\chi_v: V \to \text{Hom}(\text{Hom}(V, K), K) \]
\[T_{v,w}: V \otimes W \to W \otimes V \]

$D_{v,w}$ assigns a linear map to its dual map, $\phi_{v,w}$ is defined by $\phi_{v,w}(f \otimes g) = f \otimes g$, $\chi_{v,w}$ is defined by $\chi_{v,w}(x)(f) = f(x)$ and $T_{v,w}$ is the switching map.

We note that $D_{v,w}$, $\phi_{v,w}$ and χ_v are isomorphisms if V and W are finite dimensional.
Let $\tilde{\alpha}_{i,j} : A^i \to \text{Hom}(M^j, M^{i+j})$ be the adjoint of a component $\alpha_{i,j} : A^i \otimes M^j \to M^{i+j}$ of $\alpha : A^* \otimes M^* \to M^*$. We put

$$D_{j,i+j} = (-1)^{i(i+j)} D_{M^j,M^{i+j}} : \text{Hom}(M^j, M^{i+j}) \to \text{Hom}(\text{Hom}(M^{i+j}, K), \text{Hom}(M^j, K)).$$

Let $\beta_{i,j} : A^i \otimes \text{Hom}(M^{i+j}, K) \to \text{Hom}(M^j, K)$ be the adjoint of the following composition.

$$A^i \xrightarrow{\tilde{\alpha}_{i,j}} \text{Hom}(M^j, M^{i+j}) \xrightarrow{D_{j,i+j}} \text{Hom}(\text{Hom}(M^{i+j}, K), \text{Hom}(M^j, K)).$$
We put $\chi_i = (-1)^i \chi^i_A : A^i \to \text{Hom}(\text{Hom}(A^i, K), K) = \text{Hom}(A_{-i}, K)$, $\phi_{i,j} = (-1)^{(i+j)} \phi_{M^{i+j}, A^{-i}} : \text{Hom}(M^{i+j}, K) \otimes \text{Hom}(A_{-i}, K) \to \text{Hom}(M^{i+j} \otimes A_{-i}, K)$ and $T_{i,j} = (-1)^{(i+j)} T_{\text{Hom}(M^{i+j}, K), A^i} : \text{Hom}(M^{i+j}, K) \otimes A^i \to A^i \otimes \text{Hom}(M^{i+j}, K)$.

Since A^* and M^* are finite type, χ_i and $\phi_{i,j}$ are isomorphisms. Let $\gamma_{i,j} : \text{Hom}(M^{i+j} \otimes A_{-i}, K) \to \text{Hom}(M^j, K)$ be the following composition.

$$
\text{Hom}(M^{i+j} \otimes A_{-i}, K) \xrightarrow{\phi_{i,j}^{-1}} \text{Hom}(M^{i+j}, K) \otimes \text{Hom}(A_{-i}, K) \xrightarrow{(1 \otimes \chi_i)^{-1}} \\
\text{Hom}(M^{i+j}, K) \otimes A^i \xrightarrow{T_{i,j}} A^i \otimes \text{Hom}(M^{i+j}, K) \xrightarrow{\beta_{i,j}} \text{Hom}(M^j, K)
$$
Then, $\gamma_{i,j}$ is regarded as an element of
\[\text{Hom}(\text{Hom}(M^{i+j} \otimes A_{-i}, K), \text{Hom}(M^{j}, K)). \]
Since
\[D_{M^{i+j} \otimes A_{-i}} : \text{Hom}(M^{j}, M^{i+j} \otimes A_{-i}) \to \text{Hom}(\text{Hom}(M^{i+j} \otimes A_{-i}, K), \text{Hom}(M^{j}, K)) \]
is an isomorphism, there exists a unique element
\[\lambda_{i,j} : M^{j} \to M^{i+j} \otimes A_{-i} \]
of $\text{Hom}(M^{j}, M^{i+j} \otimes A_{-i})$ that maps to $\gamma_{i,j}$ by $D_{M^{i+j} \otimes A_{-i}}$.
Let $\lambda_{j} : M^{j} \to \prod_{i \in \mathbb{Z}} M^{i+j} \otimes A_{-i}$ be the map whose i-th component is $\lambda_{i,j}$. Finally, the Milnor coaction
\[\lambda : M^{*} \to M^{*} \hat{\otimes} A_{*} = \bigoplus_{j \in \mathbb{Z}} \prod_{i \in \mathbb{Z}} M^{i+j} \otimes A_{-i} \]
is the map whose component of degree j is λ_{j}.
Milnor showed that the left A^*-module structure
\[\alpha : A^* \otimes M^* \rightarrow M^* \]
is recovered from the Milnor coaction as follows.

Theorem 2.1

For $x \in A^i$ and $m \in M^j$, $\alpha(x \otimes m) = (-1)^{ij} \sum_{k \in \mathbb{Z}} a_k(x)m_k$ if

\[\lambda_j(m) = \sum_{k \in \mathbb{Z}} m_k \otimes a_k \in \prod_{l \in \mathbb{Z}} M^{j+l} \otimes A_{-l}. \]
§3. Topological graded rings and modules

Definition 3.1

(1) We say that a graded ring K^* is commutative if $xy = (-1)^{mn}yx$ for any $m, n \in \mathbb{Z}$ and $x \in K^m, y \in K^n$.

(2) Let K^* be a graded ring and M^* a graded K^*-module. A submodule of M^* is said to be homogeneous if it is generated by elements of $\bigcup_{n \in \mathbb{Z}} M^n$. Similarly, an ideal of K^* is said to be homogeneous if it is generated by elements of $\bigcup_{n \in \mathbb{Z}} K^n$.

From now on, “an ideal” of a graded ring always means a homogeneous ideal and “a submodule” of a graded module means a homogeneous submodule unless otherwise stated.
Definition 3.2

(1) For a topological graded ring A^*, we denote by I_{A^*} the set of open homogeneous two-sided ideals of A^*. If I_{A^*} is a fundamental system of neighborhoods of 0, A^* is said to be linearly topologized.

(2) Let A^* and K^* be linearly topologized graded rings and $\eta : K^* \rightarrow A^*$ a continuous homomorphism preserving degrees. If $\eta(x)y = (-1)^{mn} y \eta(x)$ holds for any $m, n \in \mathbb{Z}$ and $x \in K^m, y \in A^n$, (A^*, η) (or A^* for short) is called a topological K^*-algebra.
(3) Let \((A^*, \eta)\) and \((B^*, \iota)\) be topological \(K^*\)-algebras. If a continuous homomorphism \(f: A^* \to B^*\) preserving degrees satisfies \(f \eta = \iota\), we call \(f\) a homomorphism of topological \(K^*\)-algebras.

(4) For a commutative linearly topologized graded ring \(K^*\), we denote by \(\text{TopAlg}_{K^*}\) the category of commutative topological \(K^*\)-algebras and homomorphisms of topological \(K^*\)-algebras.
Definition 3.3

(1) Let L^*, M^* and N^* be graded abelian groups. A map $\beta : L^* \times M^* \to N^*$ is said to be biadditive if β satisfies the following conditions (i) and (ii).

(i) $\beta (L^l \times M^m) \subset N^{l+m}$ for any $l, m \in \mathbb{Z}$.

(ii) $\beta (x+y, z) = \beta (x, z) + \beta (y, z)$, $\beta (x, z+w) = \beta (x, z) + \beta (x, w)$ for any $x, y \in L^*$ and $z, w \in M^*$.

(2) Suppose that K^* is a commutative graded ring and L^*, M^*, N^* are graded left K^*-modules. If $\beta : L^* \times M^* \to N^*$ is biadditive and satisfies the following condition (iii), we say that β is bilinear.

(iii) $\beta (rx, z) = r \beta (x, z)$, $\beta (x, rz) = (-1)^{ln} r \beta (x, z)$ if $r \in K^n$, $x \in L^l$ and $z \in M^*$ for $l, n \in \mathbb{Z}$.
Definition 3.4
(1) For a topological graded K^*-module M^*, let us denote by V_{M^*} the set of homogeneous open submodules of M^*. If V_{M^*} is a fundamental system of neighborhoods of 0, we say that M^* is **linearly topologized**.
(2) Let K^* be a linearly topologized graded ring and M^* a topological graded left (resp. right) K^*-module. If
\{IM^* | I \in I_{K^*}\} (resp. \{M^*I | I \in I_{K^*}\}) is a fundamental system of neighborhoods of 0, we say that the topology of M^* is **induced by K^***.

Remark 3.5
If A^* is a topological K^*-algebra and we regard A^* as a left (right) K^*-module, then the topology of A^* is coarser than the topology induced by K^*.
Definition 3.6

Let L^*, M^* and N^* be linearly topologized graded abelian groups. We say that a biadditive map $\beta : L^* \times M^* \rightarrow N^*$ is **strongly continuous** if, for any open subgroup U^* of N^*, there exist an open subgroup V^* of L^* and an open subgroup W^* of M^* such that $\beta (V^* \times M^*)$ and $\beta (L^* \times W^*)$ are contained in U^*.
Proposition 3.7
Let K^* be a linearly topologized graded ring and M^*, N^* linearly topologized graded left K^*-modules.

(1) The topology of M^* is coarser than the topology induced by K^* if and only if the structure map $\alpha : K^* \times M^* \to M^*$ is strongly continuous.

(2) Let $f : M^* \to N^*$ be a homomorphism of left K^*-modules. If the topology of M^* is finer than the topology induced by K^* and the topology of N^* is coarser than the topology induced by K^*, then f is continuous.
For a linearly topologized graded ring K^*, we denote by TopMod_{K^*} the category of linearly topologized graded left K^*-modules and continuous homomorphisms preserving degrees. We denote by TopMod_{iK^*} the full subcategory of TopMod_{K^*} consisting of linearly topologized graded left K^*-modules whose topology are coarser than the topology induced by K^*.

For objects M^* and N^* of TopMod_{K^*}, we denote by $\text{Hom}_{K^*}(M^*, N^*)$

the set of all morphisms in TopMod_{K^*} from M^* to N^*.

Proposition 3.8
(1) TopMod_{K^*} is complete and cocomplete.
(2) TopMod_{iK^*} is complete and finitely cocomplete.
§4. Suspensions

Let $\tau_{K^*}: K^* \to K^*$ be a homomorphism of graded rings given by
$\tau_{K^*}(r) = (-1)^r$ if $r \in K^n$. Then, it is clear that τ_{K^*} is continuous
and $\tau_{K^*} \tau_{K^*} = \text{id}_{K^*}$. We call τ_{K^*} the conjugation of K^*.

For $m \in \mathbb{Z}$ and an object M^* of TopMod_{K^*}, define an object
$\Sigma^m M^*$ of TopMod_{K^*} as follows.
Definition 4.1

Put \((\sum^m M^*)_i = \{[m]\} \times M^i_m\) for \(i \in \mathbb{Z}\) and give \((\sum^m M^*)_i\) the structure of an abelian group such that the projection \((\sum^m M^*)_i = \{[m]\} \times M^i_m\) onto the second component is an isomorphism of abelian groups.

If \(\alpha : K^* \times M^* \rightarrow M^*\) is the \(K^*\)-module structure of \(M^*\), we define the \(K^*\)-module structure \(\alpha^m : K^* \times \sum^m M^* \rightarrow \sum^m M^*\) of \(\sum^m M^*\) by \(\alpha^m(r, ([m], x)) = ([m], \alpha(\tau_K^m(r), x))\) for \(r \in K^*\) and \(x \in M^*\), where \(\tau_K^m : K^* \rightarrow K^*\) is the \(m\) times composition of \(\tau_K^*\).

If \(U^*\) is an submodule of \(M^*\), we can regard \(\sum^m U^*\) as a submodule of \(\sum^m M^*\). We give a linear topology on \(\sum^m M^*\) such that the set of open submodules of \(\sum^m M^*\) is given by

\[V_{\sum^m M^*} = \{ \sum^m U^* | U^* \in V_{M^*} \} . \]
If \(f: M^* \rightarrow N^* \) is a morphism in \(\text{TopMod}_{K^*} \), we denote by \(\Sigma^m f: \Sigma^m M^* \rightarrow \Sigma^m N^* \) the map which maps \(([m], x) \in (\Sigma^m M^*)^i\) to \(([m], f(x)) \in (\Sigma^m N^*)^i\). It is easy to verify that \(\Sigma^m f \) is a morphism in \(\text{TopMod}_{K^*} \). Thus we have a functor

\[
\Sigma^m: \text{TopMod}_{K^*} \rightarrow \text{TopMod}_{K^*}.
\]

We call \(\Sigma^m M^* \) and \(\Sigma^m f \) the m-fold suspension of \(M^* \) and \(f \), respectively.
§5. Completion of topological modules

Definition 5.1
We say that an object M^* of TopMod_{k^*} is complete if M^n is complete for each $n \in \mathbb{Z}$.

Let M^* an object of TopMod_{k^*}. Regarding V_{M^*} as a category whose morphisms are inclusion maps, consider a functor $D_{M^*}: V_{M^*} \to \text{TopMod}_{k^*}$ given by $D_{M^*}(U^*) = M^*/U^*$. We denote by \hat{M}^* the limit $\lim D_{M^*}$ of D_{M^*}, namely, there is a limiting cone $(\hat{M}^* \xrightarrow{\pi_{U^*}} M^*/U^*)_{U^* \in V_{M^*}}$. Since the quotient maps $p_{U^*}: M^* \to M^*/U^*$ for $U^* \in V_{M^*}$ define a cone of D_{M^*}, there is a unique map $\eta_{M^*}: M^* \to \hat{M}^*$ satisfying $\pi_{U^*} \eta_{M^*} = p_{U^*}$ for any $U^* \in V_{M^*}$.
Proposition 5.2
The image of $\eta_{M^*}:M^* \to \hat{M}^*$ is dense and η_{M^*} is an open map onto its image.

Proposition 5.3
(1) M^* is Hausdorff if and only if $\eta_{M^*}:M^* \to \hat{M}^*$ is injective.
(2) \hat{M}^* is complete Hausdorff.
(3) M^* is complete Hausdorff if and only if $\eta_{M^*}:M^* \to \hat{M}^*$ is an isomorphism.
Definition 5.4

The limit \hat{M}^* of $D_{M^*}: V_{M^*} \rightarrow \text{TopMod}_{K^*}$ is called the completion of M^*.

Let $f: M^* \rightarrow N^*$ be a morphism in TopMod_{K^*}. For each $U^* \in V_{N^*}$, we have a map $f_{U^*}: M^*/f^{-1}(U^*) \rightarrow N^*/U^*$ induced by f. Then, $(\hat{M}^* \xrightarrow{f_{U^*} \pi_f^{-1}(U^*)} N^*/U^*)_{U^* \in V_{N^*}}$ is a cone of $D_{N^*}: V_{N^*} \rightarrow \text{TopMod}_{K^*}$.

There exists a unique morphism $\hat{f}: \hat{M}^* \rightarrow \hat{N}^*$ which makes the following diagram commute for any $U^* \in V_{N^*}$.

\[
\begin{array}{ccc}
M^* & \xrightarrow{\eta_{M^*}} & \hat{M}^* \\
\downarrow f & & \downarrow \hat{f} \\
N^* & \xrightarrow{\eta_{N^*}} & \hat{N}^*
\end{array}
\]
Proposition 5.5
Let \(f: M^* \to N^* \) be a morphism in \(\text{TopMod}_{K^*} \) such that \(N^* \) is complete Hausdorff. Then, there exists a unique morphism \(g: \hat{M}^* \to N^* \) such that \(g \eta_{M^*} = f \).

Let us denote by \(\text{TopMod}_{cK^*} \) (resp. \(\text{TopMod}_i^{cK^*} \)) the full subcategory of \(\text{TopMod}_{K^*} \) (resp. \(\text{TopMod}_i^{K^*} \)) consisting of objects which are complete Hausdorff.

Proposition 5.6
A functor \(C: \text{TopMod}_{K^*} \to \text{TopMod}_{cK^*} \) (resp. \(C: \text{TopMod}_i^{K^*} \to \text{TopMod}_{cK^*} \)) defined by \(C(M^*) = \hat{M}^* \) and \(C(f) = \hat{f} \) is a left adjoint of the inclusion functor \(\text{TopMod}_{cK^*} \to \text{TopMod}_{K^*} \) (resp. \(\text{TopMod}_i^{cK^*} \to \text{TopMod}_i^{K^*} \)).
§6. Topologies on graded modules

Definition 6.1

(1) A linearly topologized graded ring K^* is said to be finite if K^* is discrete and artinian.

(2) For a linearly topologized graded ring K^*, we say that an ideal I of K^* is cofinite if K^*/I is artinian. We say that K^* has the cofinite topology if the set of all cofinite ideals of K^* is a fundamental system of the neighborhood of 0.

(3) If the topology of K^* is coarser (resp. finer) than the cofinite topology, we say that K^* is subcofinite (resp. supercofinite). Hence K^* is subcofinite (resp. supercofinite) if and only if every open ideal is cofinite (resp. every cofinite ideal is open).
Definition 6.2

(1) An object M^* of TopMod_{k^*} is said to be finite if M^* is discrete and of finite length.

(2) For an object M^* of TopMod_{k^*}, we say that a submodule N^* of M^* is cofinite if M^*/N^* is finite. We say that M^* has the cofinite topology if the set of all cofinite submodules of M^* is a fundamental system of the neighborhood of 0.

(3) If the topology of M^* is coarser (resp. finer) than the cofinite topology, we say that M^* is subcofinite (resp. supercofinite). Hence M^* is subcofinite (resp. supercofinite) if and only if every open submodule is cofinite (resp. every cofinite submodule is open).
(4) If \(M^* \) is complete Hausdorff and subcofinite, we say that \(M^* \) is profinite.

(5) For a non-negative integer \(n \), let us denote by \(M^*[n] \) the submodule of \(M^* \) generated by \(\bigcup_{|i| \geq n} M^i \). We say that an object \(M^* \) of \(\text{TopMod}_{k^*} \) has a skeletal topology if \(\{M^*[n]|n=0,1,2,...\} \) is a fundamental system of the neighborhood of 0.

(6) If the topology of \(M^* \) is coarser (resp. finer) than the skeletal topology, we say that \(M^* \) is subskeletal (resp. superskeletal). Hence \(M^* \) is subskeletal (resp. superskeletal) if and only if every open submodule contains \(M^*[n] \) for some \(n \) (resp. every submodule containing \(M^*[n] \) for some \(n \) is open).
Proposition 6.3

(1) If M^* is a subcofinite K^*-module, then each submodule and quotient module of M^* are subcofinite.

(2) If $(M_i^*)_{i \in I}$ is a family of subcofinite K^*-modules, then $\prod_{i \in I} M_i^*$ is also subcofinite.

(3) M^* is isomorphic to a submodule of product of finite K^*-modules if and only if M^* is subcofinite and Hausdorff.

(4) If M^* is subcofinite, the completion \hat{M}^* is also subcofinite.

Proposition 6.4

Let M^* and N^* be objects of TopMod_{K^*}. If “M^* is supercofinite and N^* is subcofinite” or “M^* is superskeletal and N^* is subskeletal”, then every linear map from M^* to N^* preserving degrees is continuous.
§7. Tensor products of topological modules

For objects M^*, N^* of TopMod_{K^*}, we give a topology on $M^* \otimes_{K^*} N^*$ so that

$$\{\text{Ker}(p_{U^*} \otimes q_{V^*}: M^* \otimes_{K^*} N^* \to \frac{M^*}{U^*} \otimes_{K^*} \frac{N^*}{V^*}) | U^* \in V_{M^*}, V^* \in V_{N^*}\}$$

is a fundamental system of the neighborhood of 0.

Here, we denote by $p_{U^*}: M^* \to \frac{M^*}{U^*}$ and $q_{V^*}: N^* \to \frac{N^*}{V^*}$ the quotient maps for submodules U^* of M^* and V^* of N^*.

We denote by $\hat{M^* \otimes_{K^*} N^*}$ the completion of $M^* \otimes_{K^*} N^*$ and call this the completed tensor product of M^* and $N^*.$
Proposition 7.1

A map $\beta_{M^*,N^*}: M^* \times N^* \to M^* \otimes_{K^*} N^*$ defined by $\beta_{M^*,N^*}(x,y) = x \otimes y$ is a strongly continuous bilinear map and, for a strongly continuous bilinear map $B: M^* \times N^* \to L^*$, there exists a unique morphism $\tilde{B}: M^* \otimes_{K^*} N^* \to L^*$ in TopMod_{K^*} satisfying $\tilde{B} \beta_{M^*,N^*} = B$.

Proposition 7.2

(1) If M^* or N^* has a topology coarser than the topology induced by K^*, the topology on $M^* \otimes_{K^*} N^*$ is coarser than the topology induced by K^*.

(2) M^* has a topology coarser than the topology induced by K^* if and only if there is an isomorphism $K^* \otimes_{K^*} M^* \to M^*$.
For objects M^* and N^* of TopMod_{K^*}, define a morphism

$$
\tau_{M^*, N^*}^{m,n} : \Sigma^m M^* \otimes_{K^*} \Sigma^n N^* \to \Sigma^{m+n} (M^* \otimes_{K^*} N^*)
$$

as follows. Define $\tilde{\tau}_{M^*, N^*}^{m,n} : \Sigma^m M^* \times \Sigma^n N^* \to \Sigma^{m+n} (M^* \otimes_{K^*} N^*)$ by

$$
\tilde{\tau}_{M^*, N^*}^{m,n} \left(([m], x), ([n], y) \right) = ([m+n], (-1)^{n(i-m)} \beta_{M^*, N^*}(x, y))
$$

for $(x, y) \in M^{i-m} \times N^{j-n}$. Then, it is easy to verify that $\tilde{\tau}_{M^*, N^*}^{m,n}$ is bilinear and strongly continuous.

Let $\tau_{M^*, N^*}^{m,n}$ be the unique morphism satisfying

$$
\tau_{M^*, N^*}^{m,n} \beta_{\Sigma^m M^*, \Sigma^n N^*} = \tilde{\tau}_{M^*, N^*}^{m,n}
$$

Clearly, $\tau_{M^*, N^*}^{m,n}$ is a natural isomorphism.
For an object M^* of TopMod_{K^*}, define a morphism

$$s_M^*: \Sigma^m M^* \to (\Sigma^m K^*) \otimes_{K^*} M^*$$

by $s_M^m([m], x) = \beta_{\Sigma^m K^*, M^*}(([m], 1), x)$ for $x \in M^{i-m}$. Then, s_M^m is a homomorphism of K^*-modules.

We note that s_M^m is a natural isomorphism if and only if the topology on M^* is coarser than the topology induced by K^*.
§8. Spaces of homomorphisms

For \(r \in K^l \) and a morphism \(f: \Sigma^m M^* \to N^* \), define a morphism \(rf: \Sigma^{l+m} M^* \to N^* \) in \(\text{TopMod}_{K^*} \) by \((rf)([l+m], x) = rf([m], x) \) for \(x \in M^* \).

Definition 8.1

For objects \(M^* \) and \(N^* \) of \(\text{TopMod}_{K^*} \), we define an object \(\text{Hom}^*(M^*, N^*) \) of \(\text{TopMod}_{K^*} \) as follows. Put

\[
\text{Hom}^n(M^*, N^*) = (\text{Hom}^*(M^*, N^*))^n = \text{Hom}_{K^*}(\Sigma^n M^*, N^*).
\]

The maps \(K^l \times \text{Hom}^n(M^*, N^*) \to \text{Hom}^{l+n}(M^*, N^*) \) for \(l, n \in \mathbb{Z} \) given by \((r, f) \to rf \) define a left \(K^* \)-module structure of \(\text{Hom}^*(M^*, N^*) \).
For morphisms $f: M^* \rightarrow N^*$, $g: N^* \rightarrow L^*$ in TopMod_{k^*}, define maps $f^*: \text{Hom}^*(N^*, L^*) \rightarrow \text{Hom}^*(M^*, L^*)$ and $g_*: \text{Hom}^*(M^*, N^*) \rightarrow \text{Hom}^*(M^*, L^*)$ by $f^*(\varphi) = \varphi \Sigma n^* f$ and $g_*(\psi) = g \psi$ for $\varphi \in \text{Hom}^n(N^*, L^*)$ and $\psi \in \text{Hom}^m(M^*, N^*)$. It is easy to verify that f^* and g_* are maps of K^*-modules.

For a submodule S^* of M^* and a submodule U^* of N^*, we put $O(S^*, U^*) = \text{Ker}(i_{S^*}^* p_{U^*}: \text{Hom}^*(M^*, N^*) \rightarrow \text{Hom}^*(S^*, N^*/U^*))$.

Here we denote by $i_{S^*}: S^* \rightarrow M^*$ the inclusion map and by $p_{U^*}: N^* \rightarrow N^*/U^*$ the quotient map.
Let F_{M^*} be the set of finitely generated submodules of M^*. Define a topology on $\text{Hom}^*(M^*, N^*)$ such that

$$\{O(S^*, U^*) \mid S^* \in F_{M^*}, U^* \in V_{N^*}\}$$

is a fundamental system of neighborhoods of 0. We denote by M^{**} the dual module $\text{Hom}^*(M^*, K^*)$ of M^*.

Proposition 8.2

Define a map $\delta_{N^*} : N^* \to \text{Hom}^*(K^*, N^*)$ by $(\delta_{N^*}(x))(\langle n \rangle, s) = (-1)^n s x$ for $x \in N^n$ and $s \in K^*$. Then, δ_{N^*} is an isomorphism whose inverse is the evaluation map $E_1 : \text{Hom}^*(K^*, N^*) \to N^*$ defined by $E_1(f) = f([k], 1)$ for $f \in \text{Hom}^k(K^*, N^*)$.

§9. Adjointness

Let M^*, N^*, L^* be objects of TopMod_{K^*} and $f: M^* \otimes_{K^*} N^* \rightarrow L^*$ a morphism in TopMod_{K^*}. For $x \in M^k$, define a map $f_x: \Sigma^k N^* \rightarrow L^*$ by $f_x(y) = f(x \otimes y)$ for $y \in (\Sigma^k N^*)^n = N^{n-k}$. Then, f_x is an element of $\text{Hom}_K^k(N^*, L^*) = \text{Hom}_{K^*}(\Sigma^k N^*, L^*)$.

Thus we have a map $(f^a)^k: M^k \rightarrow \text{Hom}_{K^*}(\Sigma^k N^*, L^*)$ given by $(f^a)^k(x) = f_x$ and a family of linear maps $((f^a)^k)_{k \in \mathbb{Z}}$ defines a morphism $f^a: M^* \rightarrow \text{Hom}^*(N^*, L^*)$ in TopMod_{K^*}. Define a map

$$\Phi = \Phi_{M^*, N^*, L^*}: \text{Hom}_{K^*}(M^* \otimes_{K^*} N^*, L^*) \rightarrow \text{Hom}_{K^*}(M^*, \text{Hom}^*(N^*, L^*))$$

by $\Phi(f) = f^a$.
Proposition 9.1

Φ_{M^*,N^*,L^*} is injective and if one of the following conditions is satisfied, Φ_{M^*,N^*,L^*} is an isomorphism.

(i) $M^* \times_K N^*$ is supercofinite and L^* is subcofinite.
(ii) $M^* \times_K N^*$ is superskeletal and L^* is subskeletal.
(iii) The topology on $M^* \times_K N^*$ is finer than the topology induced by K^* and the topology on L^* is coarser than the topology induced by K^*.
§10. Completion of spaces of homomorphisms

Proposition 10.1
If N^* is Hausdorff, so is $\text{Hom}^*(M^*, N^*)$.

Proposition 10.2
If N^* is complete Hausdorff, $\eta_{M^*}^*: \text{Hom}^*(\hat{M}^*, N^*) \to \text{Hom}^*(M^*, N^*)$ is an isomorphism in TopMod_{K^*}.

Proposition 10.3
Suppose that N^* is complete Hausdorff. If there exists a finitely generated open submodule of M^*, $\text{Hom}^*(M^*, N^*)$ is complete Hausdorff.
Proposition 10.4

If one of the following conditions (i) or (ii) is satisfied, there exists a unique monomorphism

$$\lambda_{M^*, N^*} : \text{Hom}^*(M^*, N^*)^\wedge \to \text{Hom}^*(M^*, \hat{N}^*)$$

that makes a diagram

$$\begin{array}{ccc}
\text{Hom}^*(M^*, N^*) & \xrightarrow{\eta_{\text{Hom}^*(M^*, N^*)}} & \text{Hom}^*(M^*, N^*)^\wedge \\
\downarrow{\eta_{N^*}} & & \downarrow{\lambda_{M^*, N^*}} \\
\text{Hom}^*(M^*, \hat{N}^*) & & \\
\end{array}$$

commute.

(i) M^* is supercofinite and N^* is subcofinite.

(ii) M^* has a finitely generated open submodule.
Definition 10.5

(1) We say that a pair \((M^*, N^*)\) of objects of \(\text{TopMod}_{K^*}\) is **nice** if there exists a cofinal subset \(C\) of \(F_{M^*} \times V_{N^*}^{op}\) such that \(i^*_S p_{U^*}: \text{Hom}^*(M^*, N^*) \to \text{Hom}^*(S^*, N^*/U^*)\) is surjective for each \((S^*, U^*) \in C\).

(2) We say that a pair \((M^*, N^*)\) of objects of \(\text{TopMod}_{K^*}\) is **very nice** if there exists a cofinal subset \(C\) of \(F_{M^*} \times V_{N^*}^{op}\) such that \(i^*_S p_{U^*}: \text{Hom}^*(M^*, N^*) \to \text{Hom}^*(S^*, N^*/U^*)\) is surjective and \(S^*\) is projective for each \((S^*, U^*) \in C\).
Remark 10.6

(1) A pair \((M^*, N^*)\) is nice if one of the following conditions is satisfied.

(i) \(N^*\) is injective and there exists a cofinal subset \(S\) of \(F_M^*\) such that every element of \(S\) is projective.

(ii) \(M^*\) is projective and there exists a cofinal subset \(M\) of \(V_N^{\text{op}}\) such that \(N^*/U^*\) is injective for every \(U^* \in M\).

(iii) There exists a cofinal subset \(S\) of \(F_M^*\) such that every element of \(S\) is a direct summand of \(M^*\) and there exists a cofinal subset \(M\) of \(V_N^{\text{op}}\) such that every element of \(M\) is a direct summand of \(N^*\).

(2) \((M^*, N^*)\) is a very nice pair if the above (i) is satisfied.

(3) The above (iii) is satisfied for \(S = F_M^*\) and \(M = V_N^{\text{op}}\) if \(K^*\) is a field and \(M^*\) is supercofinite.
Theorem 10.7
Suppose that \((M^*, N^*)\) is nice. If one of the following conditions (i) or (ii) is satisfied, then the morphism

\[\lambda_{M^*, N^*} : \text{Hom}^*(M^*, N^*)^\wedge \rightarrow \text{Hom}^*(M^*, \hat{N}^*) \]

given in (10.4) is an isomorphism.

(i) \(M^*\) is supercofinite and \(N^*\) is subcofinite.

(ii) \(M^*\) has a finitely generated open submodule.
§11. Tensor products and spaces of homomorphisms

Let M_s, N_s $(s=1, 2)$ be objects of TopMod_{K^*}. We define a map

$$\phi: \text{Hom}^*(M_1^*, N_1^*) \otimes_{K^*} \text{Hom}^*(M_2^*, N_2^*) \rightarrow \text{Hom}^*(M_1^* \otimes_{K^*} M_2^*, N_1^* \otimes_{K^*} N_2^*)$$

of graded K^*-modules by

$$\phi^{m+n}(f \otimes g) = (f \otimes g)(\tau_{M_1^*, M_2^*}^{m,n})^{-1}$$

for $f \in \text{Hom}^m(M_1^*, N_1^*)$ and $g \in \text{Hom}^n(M_2^*, N_2^*)$. In other words,

$$\phi^{m+n}(f \otimes g)([m+n], x \otimes y) = (-1)^{n(i-m)}f([m], x) \otimes g([n], y)$$

if $x \in M_1^{i-m}$, $y \in M_2^{j-n}$. Then, ϕ is a morphism in TopMod_{K^*}.

We denote by

$$\hat{\phi}: \text{Hom}^*(M_1^*, N_1^*) \hat{\otimes}_{K^*} \text{Hom}^*(M_2^*, N_2^*) \rightarrow \text{Hom}^*(M_1^* \otimes_{K^*} M_2^*, N_1^* \otimes_{K^*} N_2^*)^\wedge$$

the completion of ϕ.
Let us define a map \(\iota_1: M^* \to M^* \otimes_{K^*} K^* \) by \(\iota_1(x) = x \otimes 1 \). Then, \(\iota_1 \) is a morphism in \(\text{TopMod}_{K^*} \) and it is an isomorphism if the topology on \(M^* \) is coarser than the topology induced by \(K^* \). Suppose that the topology on \(N^* \) is coarser than the topology induced by \(K^* \). Then, the \(K^* \)-module structure map of \(N^* \) induces an isomorphism \(\tilde{\alpha}: K^* \otimes_{K^*} N^* \to N^* \) by (7.2). Let

\[
\varphi_{M^*}^{N^*}: \text{Hom}^*(M^*, K^*) \otimes_{K^*} N^* \to \text{Hom}^*(M^*, N^*)
\]

be the following composition of morphisms.

\[
\begin{array}{c}
\text{Hom}^*(M^*, K^*) \otimes_{K^*} N^* \xrightarrow{1 \otimes \delta_{N^*}} \text{Hom}^*(M^*, K^*) \otimes_{K^*} \text{Hom}^*(K^*, N^*) \xrightarrow{\phi} \\
\text{Hom}^*(M^* \otimes_{K^*} K^*, K^* \otimes_{K^*} N^*) \xrightarrow{\iota_1^*} \text{Hom}^*(M^*, K^* \otimes_{K^*} N^*) \xrightarrow{\tilde{\alpha}^*} \text{Hom}^*(M^*, N^*)
\end{array}
\]
Theorem 11.1
If both \((M^*_1, N^*_1)\) and \((M^*_2, N^*_2)\) are very nice pairs, then
\[
\hat{\phi}: \text{Hom}^*(M^*_1, N^*_1) \otimes_K^* \text{Hom}^*(M^*_2, N^*_2) \to \text{Hom}^*(M^*_1 \otimes_K^* M^*_2, N^*_1 \otimes_K^* N^*_2)^\wedge
\]
is an isomorphism.

Suppose that the topology on \(N^*\) is coarser than the topology induced by \(K^*\). Let
\[
\hat{\phi}^M_{N^*}: \text{Hom}^*(M^*, K^*) \hat{\otimes}_K^* N^* \to \text{Hom}^*(M^*, N^*)^\wedge
\]
be the completion of \(\varphi^M_{N^*}: \text{Hom}^*(M^*, K^*) \otimes_K^* N^* \to \text{Hom}^*(M^*, N^*).\)

Corollary 11.2
Let \((M^*, K^*)\) be a very nice pair.

(1) \(\hat{\phi}: \text{Hom}^*(M^*, K^*) \hat{\otimes}_K^* \text{Hom}^*(M^*, K^*) \to \text{Hom}^*(M^* \otimes_K^* M^*, K^*)^\wedge\) is an isomorphism.

(2) If \(M^*\) and \(N^*\) are objects of \(\text{TopMod}_{K^*}^i\), then
\[
\hat{\phi}^M_{N^*}: \text{Hom}^*(M^*, K^*) \hat{\otimes}_K^* N^* \to \text{Hom}^*(M^*, N^*)^\wedge
\]
is an isomorphism.
Suppose that “$M_1^* \otimes_{k^*} M_2^*$ is supercofinite and both N_1^* and N_2^* are subcofinite” or “$M_1^* \otimes_{k^*} M_2^*$ has a finitely generated open submodule”. By (10.7), there exists the following morphism.

$\lambda_{M_1^* \otimes_{k^*} M_2^*, N_1^* \otimes_{k^*} N_2^*} : \text{Hom}^*(M_1^* \otimes_{k^*} M_2^*, N_1^* \otimes_{k^*} N_2^*)^\wedge \rightarrow \text{Hom}^*(M_1^* \otimes_{k^*} M_2^*, N_1^* \otimes_{k^*} N_2^*)$

Composing $\lambda_{M_1^* \otimes_{k^*} M_2^*, N_1^* \otimes_{k^*} N_2^*}$ and an isomorphism

$(\eta_{M_1^* \otimes_{k^*} M_2^*}^*)^{-1} : \text{Hom}^*(M_1^* \otimes_{k^*} M_2^*, N_1^* \otimes_{k^*} N_2^*) \rightarrow \text{Hom}^*(M_1^* \otimes_{k^*} M_2^*, N_1^* \otimes_{k^*} N_2^*)$

with $\hat{\phi}$, we have the following morphism.

$\tilde{\phi} : \text{Hom}^*(M_1^*, N_1^*) \otimes_{k^*} \text{Hom}^*(M_2^*, N_2^*) \rightarrow \text{Hom}^*(M_1^* \otimes_{k^*} M_2^*, N_1^* \otimes_{k^*} N_2^*)$
Combining (11.1) and (10.7), we have the following result.

Corollary 11.3

Suppose that both \((M_1^*, N_1^*)\) and \((M_2^*, N_2^*)\) are very nice pairs. If one of the following conditions (i) or (ii) is satisfied, then the morphism

\[\tilde{\phi} : \text{Hom}^*(M_1^*, N_1^*) \hat{\otimes}_k \text{Hom}^*(M_2^*, N_2^*) \to \text{Hom}^*(M_1^* \hat{\otimes}_k M_2^*, N_1^* \hat{\otimes}_k N_2^*) \]

is an isomorphism.

(i) \(M_1^* \hat{\otimes}_k M_2^*\) is supercofinite and both \(N_1^*\) and \(N_2^*\) are subcofinite.

(ii) \(M_1^* \hat{\otimes}_k M_2^*\) has a finitely generated open submodule.
Suppose that “M* is supercofinite and N* is subcofinite” or “M* has a finitely generated open submodule”. By (10.7), there exists a morphism \(\lambda_{\text{M}, N} : \text{Hom}^*(\text{M}, N^*)^! \to \text{Hom}^*(\text{M}, \hat{N})^* \). We define a morphism

\[
\tilde{\phi}_{\text{N}}^\text{M} : \text{Hom}^*(\text{M}, K^*) \widehat{\otimes} K N^* \to \text{Hom}^*(\text{M}, \hat{N})^*
\]

by \(\tilde{\phi}_{\text{N}^*}^\text{M} = \lambda_{\text{M}, N} \tilde{\phi}_{\text{N}}^\text{M} \). The next result follows from (2) of (11.2) and (10.7).

Corollary 11.4
Suppose that (M*, K*) is a very nice pair and that both M* and N* are objects of \(\text{TopMod}^i_k \). If “M* is supercofinite and N* is subcofinite” or “M* has a finitely generated open submodule”, then \(\tilde{\phi}_{\text{N}}^\text{M} : \text{Hom}^*(\text{M}, K^*) \widehat{\otimes} K N^* \to \text{Hom}^*(\text{M}, \hat{N})^* \) is an isomorphism.
§12. Reformulation of the Milnor coaction

Definition 12.1

Let C^* be an object of TopMod_{K^*}. Suppose that morphisms $\gamma : C^* \rightarrow C^* \hat{\otimes}_K C^*$ and $\varepsilon : C^* \rightarrow K^*$ in TopMod_{K^*} are given. We call a triple $(C^*, \gamma, \varepsilon)$ a K^*-coalgebra if the following diagrams commute.

For the rest of this section, we assume that K^* is complete Hausdorff.
We assume that $\text{Hom}^*(C^* \otimes K^* C^*, K^*)$ is complete.

For morphisms $\gamma : C^* \to C^* \hat{\otimes}_K C^*$ and $\varepsilon : C^* \to K^*$ in TopMod_{K^*}, we define morphisms $\tilde{\gamma} : C^{**} \hat{\otimes}_K C^{**} \to C^{**}$ and $\tilde{\varepsilon} : K^* \to C^{**}$ to be the following compositions of morphisms, respectively.

\[
\begin{align*}
\text{Hom}^*(C^*, K^*) \otimes_{K^*} \text{Hom}^*(C^*, K^*) & \xrightarrow{\eta} \text{Hom}^*(C^*, K^*) \hat{\otimes}_{K^*} \text{Hom}^*(C^*, K^*) \\
\text{Hom}^*(C^* \hat{\otimes}_{K^*} C^*, K^*) & \xrightarrow{(\eta^*)^{-1}} \text{Hom}^*(C^* \hat{\otimes}_{K^*} C^*, K^*) \xrightarrow{\gamma^*} \text{Hom}^*(C^*, K^*) \\
K^* & \xrightarrow{\delta_{K^*}} \text{Hom}^*(K^*, K^*) \xrightarrow{\varepsilon^*} \text{Hom}^*(C^*, K^*)
\end{align*}
\]

Proposition 12.2

$(C^{**}, \tilde{\gamma}, \tilde{\varepsilon})$ is a K^*-algebra if and only if $(C^*, \gamma, \varepsilon)$ is a K^*-coalgebra.
We assume that $\text{Hom}^*(A^* \otimes_{K^*} A^*, K^*)$ is complete and that $\hat{\phi}: \text{Hom}^*(A^*, K^*) \hat{\otimes}_{K^*} \text{Hom}^*(A^*, K^*) \to \text{Hom}^*(A^* \otimes_{K^*} A^*, K^*)$ is an isomorphism.

For morphisms $\mu: A^* \otimes_{K^*} A^* \to A^*$ and $\eta: K^* \to A^*$ in TopMod_{K^*}, we define morphisms $\tilde{\mu}: A^{**} \to A^{**} \hat{\otimes}_{K^*} A^{**}$ and $\tilde{\eta}: A^{**} \to K^*$ to be the following compositions of morphisms, respectively.

$$\begin{align*}
\text{Hom}^*(A^*, K^*) & \xrightarrow{\mu^*} \text{Hom}^*(A^* \otimes_{K^*} A^*, K^*) \xrightarrow{\hat{\phi}^{-1}} \text{Hom}^*(A^*, K^*) \hat{\otimes}_{K^*} \text{Hom}^*(A^*, K^*) \\
\text{Hom}^*(A^*, K^*) & \xrightarrow{\eta^*} \text{Hom}^*(K^*, K^*) \xrightarrow{\delta_{K^*}^{-1}} K^*
\end{align*}$$

Proposition 12.3

$(A^{**}, \tilde{\mu}, \tilde{\eta})$ is a K^*-coalgebra if and only if (A^*, μ, η) is a K^*-algebra.
Let M^* and N^* be objects of $\text{TopMod}_{K^*}^i$. We assume that (M^*, K^*) is a very nice pair and that one of the following conditions is satisfied.

(i) M^* is supercofinite and N^* is subcofinite.
(ii) M^* has a finitely generated open submodule.

Then, $\tilde{\varphi}^M_{N^*}_K: \text{Hom}^*(M^*, K^*) \hat{\otimes}_K N^* \to \text{Hom}^*(M^*, \hat{N}^*)$ is defined and it is an isomorphism by (11.4). Under these assumptions, let

$$\Lambda = \Lambda_{M^*, L^*, N^*}: \text{Hom}_K^*(M^* \otimes K^* L^*, N^*) \to \text{Hom}_K^*(L^*, N^* \hat{\otimes}_K M^*)$$

be the following composition.
\[
\begin{align*}
\text{Hom}_K^*(M^* \otimes K^* L^*, N^*) & \xrightarrow{\eta_{N^*}} \text{Hom}_K^*(M^* \otimes K^* L^*, \hat{N}^*) \\
& \xrightarrow{T^*_L, M^*} \text{Hom}_K^*(L^* \otimes K^* M^*, \hat{N}^*) \\
& \xrightarrow{\Phi_{L^*, M^*, \hat{N}^*}} \text{Hom}_K^*(L^*, \text{Hom}^*(M^*, \hat{N}^*)) \\
& \xrightarrow{(\phi_{N^*})^{-1}} \text{Hom}_K^*(L^*, M^{**} \hat{\otimes}_K N^*) \\
& \xrightarrow{\hat{T}_{M^{**}, N^*}} \text{Hom}_K^*(L^*, N^{**} \hat{\otimes}_K M^{**})
\end{align*}
\]

We remark that \(\Lambda \) is injective if \(N^* \) is Hausdorff and it is an isomorphism if \(N^* \) is profinite and \(L^* \hat{\otimes}_K M^* \) is supercofinite.

Definition 12.4

Let \((C^*, \gamma, \varepsilon)\) be a \(K^* \)-coalgebra and \(M^* \) an object of \(\text{TopMod}_{K^*} \). A right \(C^* \)-comodule in \(\text{TopMod}_{K^*} \) is a pair \((M^*, \lambda)\) of an that the following diagrams commute.

\[
\begin{align*}
M^* & \xrightarrow{\lambda} M^* \hat{\otimes}_K C^* \\
\downarrow \lambda & \downarrow 1 \otimes \gamma \\
M^* \hat{\otimes}_K C^* & \xrightarrow{\lambda \otimes 1} M^* \hat{\otimes}_K C^* \hat{\otimes}_K C^* \\
M^* \hat{\otimes}_K C^* & \xrightarrow{1 \otimes \varepsilon} M^* \hat{\otimes}_K K^*
\end{align*}
\]
Let \((A^*, \mu, \eta)\) be a \(K^*\)-algebra and \(M^*\) an object of \(\text{TopMod}_{K^*}\) satisfying the conditions (i), (ii), (iii) and “(iv) or (v)”.

(i) \(\text{Hom}^*(A^* \otimes_{K^*} A^*, K^*)\) is complete.

(ii) \(\hat{\phi}: \text{Hom}^*(A^*, K^*) \otimes_{K^*} \text{Hom}^*(A^*, K^*) \rightarrow \text{Hom}^*(A^* \otimes_{K^*} A^*, K^*)\) is an isomorphism.

(iii) \(M^*\) is Hausdorff.

(iv) \(A^*\) is supercofinite and \(M^*\) is subcofinite.

(v) \(A^*\) has a finitely generated open submodule.

Then, a morphism \(\alpha: A^* \otimes_{K^*} M^* \rightarrow M^*\) in \(\text{TopMod}_{K^*}\) gives a left \(A^*\)-module structure of \(M^*\) if and if the image of \(\alpha\) by

\[\Lambda_{A^*, A^*, M^*}: \text{Hom}_{K^*}(A^* \otimes_{K^*} M^*, M^*) \rightarrow \text{Hom}_{K^*}(M^*, M^* \hat{\otimes}_{K^*} A^{**})\]

gives a right \(A^{**}\)-comodule structure of \(M^*\).
Corollary 12.6

Let \((A^*, \mu, \eta)\) be a \(K^*\)-algebra and \(M^*\) an object of \(\text{TopMod}_{K^*}\). If the following conditions are satisfied, then

\[\Lambda_{A^*, A^*, M^*} : \text{Hom}_{K^*}(A^* \otimes_{K^*} M^*, M^*) \to \text{Hom}_{K^*}(M^*, M^* \hat{\otimes}_{K^*} A^{**}) \]

maps the subset of \(\text{Hom}_{K^*}(A^* \otimes_{K^*} M^*, M^*)\) consisting of left \(A^*\)-module structures of \(M^*\) bijectively onto the subset of \(\text{Hom}_{K^*}(M^*, M^* \hat{\otimes}_{K^*} A^{**})\) consisting of right \(A^*\)-comodule structures of \(M^*\).

(i) \(\text{Hom}^*(A^* \otimes_{K^*} A^*, K^*)\) is complete.

(ii) \(\hat{\phi} : \text{Hom}^*(A^*, K^*) \hat{\otimes}_{K^*} \text{Hom}^*(A^*, K^*) \to \text{Hom}^*(A^* \otimes_{K^*} A^*, K^*)\) is an isomorphism.

(iii) \(A^*\) is supercofinite or \(A^*\) has a finitely generated open submodule.

(iv) \(M^*\) is profinite.

(v) \(A^* \otimes_{K^*} M^*\) is supercofinite.
§13. Quasi-topological category

We denote by \textbf{Top} the category of topological spaces and continuous maps.

For $x \in X$, we denote by $\text{ev}_x : \textbf{Top}(X,Y) \to Y$ the map defined by $\text{ev}_x(f) = f(x)$. For $O \subset Y$, put $W(x,O) = \text{ev}_x^{-1}(O)$.

We give $\textbf{Top}(X,Y)$ the pointwise convergent topology generated by $\{W(x,O) \mid x \in X, O \text{ is an open set of } Y\}$. In other words, the pointwise convergent topology on $\textbf{Top}(X,Y)$ is the coarsest topology that ev_x is continuous for every $x \in X$.
Proposition 13.1

Let X, Y and Z be topological spaces.

(1) A map $\varphi : Z \to \text{Top}(X,Y)$ is continuous if and only if $\text{ev}_x \varphi : Z \to Y$ is continuous for any $x \in X$.

(2) For a continuous map $f : X \to Y$, the maps

$$f^* : \text{Top}(Y,Z) \to \text{Top}(X,Z)$$

and

$$f_* : \text{Top}(Z,X) \to \text{Top}(Z,Y)$$

induced by f are continuous.
Definition 13.2

A category T is called a quasi-topological category if the following conditions are satisfied.

1. For each $R, S \in \text{Ob } T$, $T(R, S)$ is a topological space.
2. For any morphism $f : R \to S$ in T and $Z \in \text{Ob } T$, the maps $f_* : T(Z, R) \to T(Z, S)$ and $f^* : T(S, Z) \to T(R, Z)$ are continuous.

It follows from (2) of (13.1) that Top is a quasi-topological category.
Condition 13.3
Let T be a quasi-topological category and $D:D \to T$ a functor. For an object X of T, define functors $D_X:D \to \text{Top}$ and $D^X:D^{op} \to \text{Top}$ by $D_X(i)=T(X,D(i))$, $D_X(\tau)=D(\tau)_*$ and $D^X(i)=T(D(i),X)$, $D^X(\tau)=D(\tau)^*$ for $i \in \text{Ob} D$ and $\tau \in \text{Mor} D$.

We consider the following conditions.

(L) If $(L \to D(i))_{i \in \text{Ob} D}$ is a limiting cone of D,
$$(T(X,L) \xrightarrow{\pi_i} T(X,D(i)))_{i \in \text{Ob} D}$$

is a limiting cone of D_X.

(C) If $(D(i) \xrightarrow{l_i} C)_{i \in \text{Ob} D}$ is a colimiting cone of D,
$$(T(C,X) \xrightarrow{l_i^*} T(D(i),X))_{i \in \text{Ob} D}$$

is a limiting cone of D_X.

Proposition 13.4
The conditions (L) and (C) of (13.3) are satisfied for any functor $D:D \to \text{Top}$ and topological space X.
For categories \mathbf{C} and \mathbf{D}, we denote by $\text{Funct}(\mathbf{C}, \mathbf{D})$ the category of functors from \mathbf{C} to \mathbf{D} and natural transformations between them.

Definition 13.5

Let \mathbf{C} and \mathbf{T} be quasi-topological categories. We say that a functor $F : \mathbf{C} \to \mathbf{T}$ is **continuous** if $F : C(R, S) \to T(F(R), F(S))$ is continuous for any $R, S \in \text{Ob} \mathbf{C}$.

We denote by $\text{Funct}_c(\mathbf{C}, \mathbf{T})$ the full subcategory of $\text{Funct}(\mathbf{C}, \mathbf{T})$ consisting of continuous functors.
Proposition 13.6
Let T be a quasi-topological category and R an object of T. Then, the functor $h_R : T \to \text{Top}$ represented by R is continuous.

Proposition 13.7
Let C be a quasi-topological category and $D : D \to \text{Funct}_c(C, \text{Top})$ a functor.

1. If $(L \xrightarrow{\pi_i} D(i))_{i \in \text{Ob}_D}$ is a limiting cone of D, L is a continuous functor.
2. If $(D(i) \xrightarrow{\pi_i} C)_{i \in \text{Ob}_D}$ is a colimiting cone of D, L is a continuous functor.
Let us denote by \textbf{Set} the category of sets and maps and by $\Phi: \textbf{Top} \to \textbf{Set}$ the forgetful functor.

Corollary 13.8

For a quasi-topological category \mathcal{C}, the composition

$$\tilde{\Phi}: \text{Funct}_c(\mathcal{C}, \textbf{Top}) \to \text{Funct}(\mathcal{C}, \textbf{Set})$$

of the inclusion functor

$$\text{Funct}_c(\mathcal{C}, \textbf{Top}) \to \text{Funct}(\mathcal{C}, \textbf{Top})$$

and the functor

$$\Phi_*: \text{Funct}(\mathcal{C}, \textbf{Top}) \to \text{Funct}(\mathcal{C}, \textbf{Set})$$

induced by Φ creates limits and colimits.

Hence $\text{Funct}_c(\mathcal{C}, \textbf{Top})$ is complete and cocomplete.
Let \mathbf{C} and \mathbf{T} be categories. For $R \in \text{Ob}\mathbf{C}$, define an evaluation functor $E_R : \text{Funct}(\mathbf{C}, \mathbf{T}) \to \mathbf{T}$ at R by $E_R(F) = F(R)$ and $E_R(\varnothing) = \varnothing_R$.

Let \mathbf{T} be a quasi-topological category. For $F, G \in \text{Ob}\text{Funct}(\mathbf{C}, \mathbf{T})$, we give $\text{Funct}(\mathbf{C}, \mathbf{T})(F, G)$ the coarsest topology such that $E_R : \text{Funct}(\mathbf{C}, \mathbf{T})(F, G) \to \mathbf{T}(F(R), G(R))$ is continuous for any object R of \mathbf{C}.

Proposition 13.9

Let \mathbf{C} be a category and \mathbf{T} a quasi-topological category. Then, $\text{Funct}(\mathbf{C}, \mathbf{T})$ is a quasi-topological category.
Proposition 13.10

Let T be a quasi-topological category and $F : C \to T$ a functor.

(1) Suppose that $(L \xrightarrow{\pi_i} D(i))_{i \in \text{Ob} D}$ is a limiting cone of a functor $D : D \to \text{Funct}(C, T)$ and that, for any $R \in \text{Ob} C$, $E_R D : D \to T$ and $F(R) \in \text{Ob} T$ satisfy the condition (L) of (13.3) ($T = \text{Top}$, for example). Then,

$$(\text{Funct}(C, T)(F, L) \xrightarrow{\pi_i} \text{Funct}(C, T)(F, D(i)))_{i \in \text{Ob} D}$$

is a limiting cone of a functor $D_F : D \to \text{Top}$ defined by $D_F(i) = \text{Funct}(C, T)(F, D(i))$ and $D_F(\tau) = D(\tau)_\ast$ for $i \in \text{Ob} D$, $\tau \in \text{Mor} D$.
(2) Suppose that \((D(i) \xrightarrow{l_i} C)_{i \in \text{Ob} D}\) is a colimiting cone of a functor \(D : D \to \text{Funct}(C, T)\) and that, for any \(R \in \text{Ob} C\), \(E_R D : D \to T\) and \(F(R) \in \text{Ob} T\) satisfy the condition (C) of (13.3) \((T = \text{Top}, \text{for example})\). Then,

\[
(\text{Funct}(C, T)(C, L) \xrightarrow{l_i^*} \text{Funct}(C, T)(D(i), F))_{i \in \text{Ob} D}
\]

is a limiting cone of a functor \(D^F : D^{op} \to \text{Top} \) defined by \(D^F(i) = \text{Funct}(C, T)(D(i), F)\) and \(D^F(\tau) = D(\tau)^*\) for \(i \in \text{Ob} D\), \(\tau \in \text{Mor} D\).
Definition 13.11
If \(T = \text{Set} \) or \(\text{Top} \), for a functor \(F: C \to T \), we denote by \(C_F \) the category of \(F \)-models, that is, \(C_F \) is given by

\[
\text{Ob} C_F = \{(R, x) | R \in \text{Ob} C, x \in F(R)\},
\]

\[
C_F((R, x), (Y, y)) = \{f \in C(R, Y) | F(f)(x) = y\}.
\]

Remark 13.12
Since \(\{E_R^{-1}(W(x, O)) | (R, x) \in \text{Ob} C_F, O \text{ is an open set of } G(R)\} \) is a subbasis of the topology on \(\text{Funct}(C, \text{Top})(F, G) \), a map \(f: Z \to \text{Funct}(C, \text{Top})(F, G) \) is continuous if and only if \(\text{ev}_x E_R f: Z \to G(R) \) is continuous for any \((R, x) \in \text{Ob} C_F \).
Lemma 13.13

Let \(\mathcal{C} \) be a quasi-topological category and \(F: \mathcal{C} \to \text{Top} \) a functor. For \((R, x) \in \text{Ob} \mathcal{C} \) and \(S \in \text{Ob} \mathcal{C} \), define a map \((\varphi(F)_{(R, x)})(S): h_R(S) \to F(S) \) by \((\varphi(F)_{(R, x)})(S)(f) = F(f)(x) \) for \(f \in \mathcal{C}(R, S) = h_R(S) \). If \(F \) is continuous, \((\varphi(F)_{(R, x)})(S) \) is continuous. Thus we have a morphism \(\varphi(F)_{(R, x)}: h_R \to F \) in \(\text{Funct}(\mathcal{C}, \text{Top}) \).

Let \(\mathcal{C} \) be a category and \(R \) an object of \(\mathcal{C} \). Define a map \(\theta_R(G): \text{Funct}(\mathcal{C}, \text{Top})(h_R, G) \to G(R) \) by \(\theta_R(G)(\varphi) = \varphi_R(\text{id}_R) \).
Proposition 13.14
For an object R of C and a functor $G : C \rightarrow \text{Top}$, the following topologies $\mathcal{O}, \mathcal{O}_1$ and \mathcal{O}_2 on $\text{Funct}(C, \text{Top})(h_R, G)$ are the same.

(i) \mathcal{O} is the coarsest topology such that
\[E_S : \text{Funct}(C, \text{Top})(h_R, G) \rightarrow \text{Top}(h_R(S), G(S)) \]
is continuous for any $S \in \text{Ob} C$.

(ii) \mathcal{O}_1 the coarsest topology such that
\[\theta_R(G) : \text{Funct}(C, \text{Top})(h_R, G) \rightarrow G(R) \]
is continuous.

(iii) \mathcal{O}_2 is the coarsest topology such that
\[E_R : \text{Funct}(C, \text{Top})(h_R, G) \rightarrow \text{Top}(h_R(R), G(R)) \]
is continuous.
Corollary 13.15 (Yoneda embedding)
A functor $h: C^{op} \to \text{Funct}_c(C, \text{Top})$ defined by $h(R) = h_R$ and $h(f) = h_f$ is continuous.

Proposition 13.16 (Yoneda’s lemma)
Let C be a quasi-topological category and $F: C \to \text{Top}$ a continuous functor. Then, $\theta_R(F): \text{Funct}(C, \text{Top})(h_R, F) \to F(R)$ is a homeomorphism.

Proposition 13.17
Let C be a quasi-topological category. The functor
$$\tilde{\Phi}: \text{Funct}_c(C, \text{Top}) \to \text{Funct}(C, \text{Set})$$
given in (13.8) has a left adjoint.
If \mathbf{C} is a quasi-topological category, we denote by $D(F): \mathbf{C}_F^{\text{op}} \to \text{Funct}_c(\mathbf{C}, \text{Top})$ a functor given by $D(F)(R, x) = h_R$ and $D(F)(f) = h_f$.

Proposition 13.18

Let \mathbf{C} be a quasi-topological category. If $F: \mathbf{C} \to \text{Top}$ is a colimit of representable functors, then

$$(D_F(R, x) \xrightarrow{\varphi(F)(R, x)} F)_{(R, x) \in \text{Ob } \mathbf{C}_F}$$

is a colimiting cone of the functor $D(F): \mathbf{C}_F^{\text{op}} \to \text{Funct}_c(\mathbf{C}, \text{Top})$. Hence F is in the image of a left adjoint of the functor

\[
\tilde{\Phi}: \text{Funct}_c(\mathbf{C}, \text{Top}) \to \text{Funct}(\mathbf{C}, \text{Set})
\]

given in (13.8).
For a quasi-topological category \mathcal{C} and a functor $D: \mathcal{D}^{\text{op}} \to \mathcal{C}$, we denote by $h_D: \mathcal{D}^{\text{op}} \to \operatorname{Funct}_c(\mathcal{C}, \text{Top})$ the composition of functors $\mathcal{D}^{\text{op}}: \mathcal{D} \to \mathcal{C}^{\text{op}}$ and $h: \mathcal{C}^{\text{op}} \to \operatorname{Funct}_c(\mathcal{C}, \text{Top})$ defined in (13.15).

Proposition 13.19

(1) If $F: \mathcal{C} \to \text{Top}$ is a colimit of representable functors and $(h_D(i) \xrightarrow{\iota_i} F)_{i \in \text{Ob} \mathcal{D}}$ is a cone of h_D such that $(\tilde{\Phi}(h_D(i)) \xrightarrow{\tilde{\Phi}(\iota_i)} \tilde{\Phi}(F))_{i \in \text{Ob} \mathcal{D}}$ is a colimiting cone of $\tilde{\Phi} h_D$. Then, $(h_D(i) \xrightarrow{\iota_i} F)_{i \in \text{Ob} \mathcal{D}}$ is a colimiting cone of h_D.

(2) Suppose that F is a colimit of $h_D: \mathcal{D}^{\text{op}} \to \operatorname{Funct}_c(\mathcal{C}, \text{Top})$ and that L is a limit of D. Then, L is a limit of the functor $\hat{D}(F): \mathcal{C}_F^{\text{op}} \to \mathcal{C}$ defined by $\hat{D}(F)(R, x) = R$ and $\hat{D}(F)(f) = f$.
Proposition 13.20
Let A be an object of a quasi-topological category \mathcal{C} and $F: \mathcal{C} \to \text{Top}$ a functor. Suppose that a limit $L(F)$ of the functor $\hat{D}(F): \mathcal{C}^\text{op} \to \mathcal{C}$ defined in (13.19) exists.

If F is a colimit of representable functors, there is a bijection $\Theta_{F,A}: \text{Funct}(\mathcal{C}, \text{Top})(F, h_A) \to \mathcal{C}(A, L(F)) = \mathcal{C}^\text{op}(L(F), A)$. Moreover, if the condition (L) of (13.3) is satisfied for A and $(L(F) \xrightarrow{\pi(R,x)} D(F)(R,x))_{(R,x) \in \text{Ob} \mathcal{C}_F}$, $\Theta_{F,A}$ is a homeomorphism.

Proposition 13.21
For objects F and G of $\text{Funct}(\mathcal{C}, \text{Top})$, suppose that limits of $\hat{D}(F): \mathcal{C}^\text{op}_F \to \mathcal{C}$ and $\hat{D}(G): \mathcal{C}^\text{op}_G \to \mathcal{C}$ exist and that F is a colimit of representable functors. If the condition (L) of (13.3) is satisfied for $L(G)$ and $(L(F) \xrightarrow{\pi(R,x)} D(F)(R,x))_{(R,x) \in \text{Ob} \mathcal{C}_F}$, then $L: \text{Funct}(\mathcal{C}, \text{Top})(F, G) \to \mathcal{C}(L(G), L(F))$ is continuous.
For a quasi-topological category C, we denote by $\text{Funct}_r(C, \text{Top})$ the full subcategory of $\text{Funct}(C, \text{Top})$ consisting of functors which are colimit of representable functors.

Proposition 13.22

For $F, G \in \text{Ob}\, \text{Funct}_r(C, \text{Top})$, there is a product of F and G in $\text{Funct}_r(C, \text{Top})$.
Definition 13.23
Let A and B be objects of a quasi-topological category C. A topological coproduct of A and B is a coproduct $A \coprod B$ of A and B such that

$$
C(A,R) \xleftarrow{l_1^*} C(A \coprod B,R) \xrightarrow{l_2^*} C(B,R)
$$

is a product of $C(A,R)$ and $C(B,R)$ in Top for any $R \in \text{Ob } C$. If each pair of objects of C has a topological coproduct, we say that C is a category with finite topological coproducts.

Theorem 13.24
If C is quasi-topological category with finite topological coproducts, $\text{Funct}_r(C,\text{Top})$ is a cartesian closed category.
§14. Topological affine scheme

For objects A^* and B^* of TopAlg_{K^*}, we give a topology on the set of morphisms $\text{TopAlg}_{K^*}(A^*, B^*)$ by giving a uniform structure as follows. For $p \in \text{TopAlg}_{K^*}(A^*, B^*)$, $S \subset A^*$ and $J \in I_{B^*}$, we put

$$U(S, J) = \{(f, g) \in \text{TopAlg}_{K^*}(A^*, B^*) \times \text{TopAlg}_{K^*}(A^*, B^*) | f(x) - g(x) \in J \text{ if } x \in S\},$$

$$U(p; S, J) = \{f \in \text{TopAlg}_{K^*}(A^*, B^*) | (f, p) \in U(S, J)\}.$$

Recall that F_{A^*} denotes the set of finitely generated K^*-submodules of A^*. We also put

$$B = \{U(S^*, J) | S^* \in F_{A^*}, J \in I_{B^*}\},$$

$$B_p = \{U(p; S^*, J) | S^* \in F_{A^*}, J \in I_{B^*}\}.$$
\(\mathcal{B} \) is a basis of a uniform structure of \(\text{TopAlg}_{K^*}(A^*, B^*) \) and \(\mathcal{B}_p \) is a basis of the neighborhood of \(p \) with respect to the topology defined by the uniform structure of \(\text{TopAlg}_{K^*}(A^*, B^*) \).

If \(C \) is a subcategory of \(\text{TopAlg}_{K^*} \), we give \(C(A^*, B^*) \) the topology induced by \(\text{TopAlg}_{K^*}(A^*, B^*) \) for \(A^*, B^* \in \text{Ob} \, C \).

We remark that \(\text{TopAlg}_{K^*}(A^*, B^*) \) is a subspace of \(\text{Hom}^0(A^*, B^*) \) if we regard \(A^* \) and \(B^* \) as objects of \(\text{TopMod}_{K^*} \).
Definition 14.1

Let \textbf{Top} be the category of topological spaces and continuous maps. For an object A^* of \textbf{TopAlg}_{K^*} and a subcategory C of \textbf{TopAlg}_{K^*}, we denote by $h_{A^*} : C \to \textbf{Top}$ the functor represented by A^*, that is, h_{A^*} maps $B^* \in \text{Ob} \ C$ to $\textbf{TopAlg}_{K^*}(A^*, B^*)$.

We call h_{A^*} a \textbf{topological affine K^*-scheme}. Thus we have a functor $h : C^\text{op} \to \text{Funct}(C, \textbf{Top})$ given by $h(A) = h_{A^*}$ and $h(f) = f^*$. Generally, we call a functor from a subcategory of \textbf{TopAlg}_{K^*} to \textbf{Top} a \textbf{topological K^*-functor}.
To be continued.